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Abstract: We present an analytical calculation of temporal evolution of populations for optically
pumped atoms under the influence of weak, circularly polarized light. The differential equations
for the populations of magnetic sublevels in the excited state, derived from rate equations,
are expressed in the form of inhomogeneous second-order differential equations with constant
coefficients. We present a general method of analytically solving these differential equations, and
obtain explicit analytical forms of the populations of the ground state at the lowest order in the
saturation parameter. The obtained populations can be used to calculate lineshapes in various laser
spectroscopies, considering transit time relaxation.
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1. Introduction

When an atom is illuminated by single-mode laser light, the populations of the magnetic
sublevels and coherences between them exhibit complicated temporal variations. This phenomenon
is called optical pumping, which is widely used in the preparation of internal atomic states
of interest [1,2]. It has recently been observed that optical pumping affects the lineshapes in
saturated absorption spectroscopy (SAS) [3], electromagnetically induced transparency (EIT) [4], and
absorption of cold atoms with a Λ-type three-level scheme [5]. Nonlinear effects in optical pumping
have also been investigated [6,7].

The temporal dynamics of the internal states of an atom are accurately described by density
matrix equations [8,9]. In some special cases, however, a simpler method can be employed to solve
for the dynamics of the internal states of the atom, using rate equations [10,11]. Furthermore, when
the intensity of light is weak, the rate equations can be solved analytically [12–15]. These analytical
solutions are practically very useful; once they are obtained, it is readily possible to obtain analytically
computed quantities such as the absorption coefficient of a probe beam and lineshape functions in
nonlinear laser spectroscopy. We have previously reported analytical solutions for SAS [16,17] and
polarization spectroscopy (PS) [18].

Interestingly, the equations governing the temporal dynamics of populations at the weak
intensity limit are homogeneous or inhomogeneous second-order linear differential equations
(DEs) with constant coefficients [12–15]. Unlike the harmonic oscillator in mechanics, where
under- or over-damped motions are observed [19], the equations for optical pumping show only
over-damped behaviors. However, this system exhibits a variety of inhomogeneous DEs. In a
recent publication, we reported the method of solving these equations analytically, in the context of
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a pedagogical description of the method of solving inhomogeneous DEs [15]. Although the method
is straightforward in principle, it is not easy to obtain analytical solutions for complicated atomic
structures, such as Cs. Extending the previous study [15], in this paper, we present a general method
of analytically solving the DEs for such a complicated atom.

2. Theory

The energy level diagram under consideration is shown in Figure 1. Since alkali-metal atoms
are considered, there are two ground states with Fg = I + 1/2 and Fg = I − 1/2 (I: nuclear spin
angular momentum quantum number). We consider a σ+ polarized weak laser beam, whose Rabi
frequency is Ω and optical frequency is ω = ω0 + δ (ω0 is the resonance frequency and δ is the laser
frequency detuning). We assume that the laser frequency is tuned to the transition from one of the
two ground states (in Figure 1, the state Fg = I + 1/2). Then, the other ground state (in Figure 1,
the state Fg = I − 1/2) is not excited by laser light, and can be populated by spontaneous emission
from the excited state when the optical transition is not cycling. The populations (and the states
themselves) of the magnetic sublevels in the excited, upper ground, and lower ground states are
labeled, respectively, as gi, fi, and hi with i = 1, 2, · · · .
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Figure 1. An energy level diagram for an optically pumped atom under the influence of circularly
polarized light.

The internal dynamics of the atom can be described by the density matrix equation in the frame
rotating with frequency ω:

ρ̇ = − (i/h̄) [H, ρ] + ρ̇sp, (1)

where ρ is the density operator. In Equation (1), the Hamiltonian, H, is given by

H = −∑
j

h̄δ
∣∣gj
〉 〈

gj
∣∣−∑

j
h̄∆g

∣∣hj
〉 〈

hj
∣∣− h̄Ω

2 ∑
j

Cj
j

∣∣gj
〉 〈

f j
∣∣+ h.c., (2)

where ∆g is the hyperfine splitting between the two ground states and h.c. denotes the harmonic
conjugate. In Equation (2), the first two terms in the right-hand side represent the bare atomic
Hamiltonian and the rest terms denote the atom-photon interaction Hamiltonian [20]. Cj

i is

the normalized transition strength between the states fi and gj, and Rj
i ≡

(
Cj

i

)2
is given

below (Equation (13)). In Equation (1), ρ̇sp represents spontaneous emission term, whose matrix
representations are given by:

〈gi| ρ̇sp
∣∣gj
〉
= −Γ 〈gi| ρ

∣∣gj
〉

,
〈gi| ρ̇sp

∣∣ f j
〉
= − Γ

2 〈gi| ρ
∣∣ f j
〉

, 〈gi| ρ̇sp
∣∣hj
〉
= − Γ

2 〈gi| ρ
∣∣hj
〉

,
〈 fi| ρ̇sp

∣∣ f j
〉
= Γ ∑0

ε=−2 Ci+ε
i Cj+ε

j 〈gi+ε| ρ
∣∣gj+ε

〉
,

〈hi| ρ̇sp
∣∣hj
〉
= Γ ∑0

ε=−2 Di+ε
i Dj+ε

j 〈gi+ε| ρ
∣∣gj+ε

〉
,

(3)
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and 〈µ| ρ̇sp |ν〉 = 〈ν| ρ̇sp |µ〉∗ when µ 6= ν, where Γ is the decay rate of the excited state. Dj
i is the

normalized transition strength between the states hi and gj, and T j
i ≡

(
Dj

i

)2
is also given below

(Equation (13)). Inserting Equations (2) and (3) into Equation (1), we can obtain the following
differential equations for the optical coherences and populations:

〈gi| ρ̇ | fi〉 =

(
iδ− Γ

2

)
〈gi| ρ | fi〉+

i
2

Ci
i Ω (gi − fi) , (4)

ġi = −Γgi +
i
2

Ci
i Ω (〈gi| ρ | fi〉 − 〈 fi| ρ |gi〉) , (5)

ḟi = Γ
i

∑
j=i−2

(
Cj

i

)2
gj −

i
2

Ci
i Ω (〈gi| ρ | fi〉 − 〈 fi| ρ |gi〉) , (6)

ḣi = Γ
i

∑
j=i−2

(
Dj

i

)2
gj, (7)

where we use simplified expressions for the populations: 〈gi| ρ |gi〉 = gi, 〈 fi| ρ | fi〉 = fi, and
〈hi| ρ |hi〉 = hi. In Equations (4)–(7), we assume that 〈gi| ρ |hi〉 = 0 because ∆g is much larger than
|δ| and Γ. We note that, because the polarization of light is σ+, and therefore the Zeeman coherences
between the magnetic sublevels in the excited and ground states disappear.

In Equation (4), the characteristic decay rate of the optical coherence is Γ/2, which is much larger
than the characteristic decay rate of the populations (∼ sΓ; see Equation (12) below for definition
of s). Thus, the optical coherences evolve much faster than the populations, which is called the rate
equation approximation [21]. Owing to this rate equation approximation, 〈gi| ρ | fi〉 can be expressed
in terms of the populations as follows by letting 〈gi| ρ̇ | fi〉 = 0:

〈gi| ρ | fi〉 =
Ci

i Ω
iΓ + 2δ

( fi − gi) . (8)

Then, inserting Equation (8) and its complex conjugate into Equations (5)–(7), we can obtain the
following rate equations for the populations:

ḟi = −Γ
2

sRi
i ( fi − gi) +

i

∑
j=i−2

ΓRj
i gj, (9)

ġi =
Γ
2

sRi
i ( fi − gi)− Γgi, (10)

ḣi =
i

∑
j=i−2

ΓT j
i gj, (11)

for i = 1, 2, · · · . In Equations (9)–(11), s is the saturation parameter, which is given by

s =
Ω2/2

δ2 + Γ2/4
, (12)

and Rj
i =

(
Cj

i

)2
and T j

i =
(

Dj
i

)2
. We note that s is a function of both the δ and Rabi frequency.

Notably, the reference of the frequency detuning differs, depending on the transition line considered.
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When i and j refer to the states
∣∣Fg, mg

〉
and |Fe, me〉, respectively, the transition strength (Rj

i) is
given by

RFe ,me
Fg ,mg

= (2Le + 1)(2Je + 1)(2Jg + 1)(2Fe + 1)(2Fg + 1)

×
[{

Le Je S
Jg Lg 1

}{
Je Fe I
Fg Jg 1

}(
Fg 1 Fe

mg me −mg −me

)]2

,
(13)

where L and S denote the orbital and electron spin angular momenta, respectively, and the curly
(round) brackets represent the 6J (3J) symbol. T j

i are similarly obtained by using different Fg values
in Equation (13).

The explicit form of Equation (9) is given by

ḟi =
Γ
2

sRi
i (gi − fi) + Γ

(
Ri−2

i gi−2 + Ri−1
i gi−1 + Ri

igi

)
, (14)

and fi can be expressed in terms of ġi and gi from Equation (10) at the lowest order in s as follows:

fi =
2

ΓsRi
i
(ġi + Γgi) . (15)

Insertion of Equations (10) and (15) into Equation (14) yields the following DE for gi:

g̈i + Γ
(

1 +
s
2

Ri
i

)
ġi +

s
2

Γ2Ri
i

(
1− Ri

i

)
gi

=
s
2

Γ2Ri−2
i Ri

igi−2 +
s
2

Γ2Ri−1
i Ri

igi−1. (16)

when i = 1, the right-hand side of Equation (16) vanishes. Therefore, Equation (16) becomes a
homogeneous DE. In contrast, when i 6= 1, Equation (16) becomes an inhomogeneous DE because
the right-hand side terms are functions of gi.

We solve Equation (16) from i = 1 consecutively. As is well-known, the solution of Equation (16)
consists of two parts: a homogeneous solution and a particular solution. We first find the solutions of
the homogeneous equation by inserting the equation gi ∼ eλΓt into Equation (16). Then, we have two
values (λ2i−1, λ2i) for λ as follows:

λ2i−1(2i) =
1
4

(
−2− sRi

i − (+)

√
4− 4sRi

i + s(8 + s)
(

Ri
i
)2
)

,

which can be approximated as follows in the weak intensity limit:

λ2i−1 ' −1− s
2

(
Ri

i

)2
, λ2i ' −

s
2

Ri
i

(
1− Ri

i

)
.

We consider the case of i = 1 in Equation (16). Then, the solution is given by

g1 = C1,1eλ1Γt + C1,2eλ2Γt,

where the coefficients C1,1 and C1,2 should be determined using the initial conditions. In the case of
i = 2, the right-hand side in Equation (16) contains the terms of eλ1Γt and eλ2Γt. Therefore, g2 has four
exponential terms:

g2 = C2,1eλ1Γt + C2,2eλ2Γt + C2,3eλ3Γt + C2,4eλ4Γt,
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where the coefficients should also be determined. Therefore, we can express gj generally as follows:

gj =
2j

∑
k=1

Cj,keλkΓt. (17)

We find Cj,k with k = 1, 2, · · · , 2j by means of recursion relations; i.e., Cj,k are expressed in terms
of Ci,l with i < j and l = 1, 2, · · · , 2i. Inserting Equation (17) into Equation (16), we obtain

gi = Ci,2i−1eλ2i−1Γt + Ci,2ieλ2iΓt

+ ∑
2(i−1)
k=1

(s/2)Ri−1
i Ri

iCi−1,k

λ2
k+λk+

s
2 Ri

i(1+λk−Ri
i)

eλkΓt

+ ∑
2(i−2)
k=1

(s/2)Ri−2
i Ri

iCi−2,k

λ2
k+λk+

s
2 Ri

i(1+λk−Ri
i)

eλkΓt.

(18)

Comparing Equations (17) and (18) gives

Ci,k =
(s/2)Ri

i

(
Ri−1

i Ci−1,k + Ri−2
i Ci−2,k

)
λ2

k + λk +
s
2 Ri

i
(
1 + λk − Ri

i
) , (19)

for k = 1, 2, · · · , 2(i− 2),

Ci,k =
(s/2)Ri−1

i Ri
iCi−1,k

λ2
k + λk +

s
2 Ri

i
(
1 + λk − Ri

i
) , (20)

for k = 2i− 3 and 2(i− 1).

The remaining two coefficients, Ci,2i−1 and Ci,2i, can be derived from Equation (18) using two
initial conditions for gi(0) and ġi(0):

gi(0) = 0, ġi(0) =
s
2

p0Ri
i,

where p0 is the population of each sublevel in the ground state at equilibrium, which is equal to
1/[2(2I + 1)]. Then, the results are given by

Ci,2i−1 = 1
2Qi

[
2
(

Ai + 2A′i + Bi + 2B′i
)

+ (Ai + Bi − 2p0) sRi
i
]
− Ai+Bi

2 ,
(21)

Ci,2i = − 1
2Qi

[
2
(

Ai + 2A′i + Bi + 2B′i
)

+ (Ai + Bi − 2p0) sRi
i
]
− Ai+Bi

2 ,
(22)

where

Qi =
√

4 + sRi
i
(
−4 + (8 + s) Ri

i
)
,

Ai =
2(i−1)

∑
k=1

(s/2)Ri−1
i Ri

iCi−1,k

λ2
k + λk +

s
2 Ri

i
(
1 + λk − Ri

i
) , for i ≥ 2

Bi =
2(i−2)

∑
k=1

(s/2)Ri−2
i Ri

iCi−2,k

λ2
k + λk +

s
2 Ri

i
(
1 + λk − Ri

i
) , for i ≥ 3,

A′i =
2(i−1)

∑
k=1

(s/2)Ri−1
i Ri

iλkCi−1,k

λ2
k + λk +

s
2 Ri

i
(
1 + λk − Ri

i
) , for i ≥ 2

B′i =
2(i−2)

∑
k=1

(s/2)Ri−2
i Ri

iλkCi−2,k

λ2
k + λk +

s
2 Ri

i
(
1 + λk − Ri

i
) , for i ≥ 3,
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and
A1 = 0, A′1 = 0, B1 = B2 = 0, and B′1 = B′2 = 0.

The coefficients in gi from g1 can be obtained by successively using the recursion relations in
Equations (19)–(22). Once gi are obtained, fi can be obtained using Equation (15). Up to the lowest
order in s, the result is given by

fi =
i

∑
k=1

2Ci,2k

sRi
i

eλ2kΓt. (23)

Since λk ∼ −1 for odd k, gi can be expressed as follows:

gi =
i

∑
k=1

(
Ci,2k−1e−Γt + Ci,2keλ2kΓt

)
. (24)

Taking the derivative of Equation (24) with respect to time and letting t = 0, we have

ġi(0) = −
i

∑
k=1

Ci,2k−1,

up to the first order in s, since λ2k (k = 1, 2, · · · , i) are already in the first order in s. Because one of
the initial conditions is ġi(0) = sp0Ri

i/2, and gi(0) = ∑i
k=1 (Ci,2k−1 + Ci,2k) = 0 from the other initial

condition, we obtain the following equations:

i

∑
k=1

Ci,2k−1 = −
i

∑
k=1

Ci,2k = −
s
2

p0Ri
i. (25)

Using the relations in Equations (23) and (25), we find the simplified form of gi as follows:

gi =
Ri

is
2

(
fi − p0e−Γt

)
. (26)

We obtain the populations of the sublevels in the ground state, which are not excited by laser
light. The one or two magnetic sublevels with higher magnetic quantum numbers correspond to
this case. We can easily obtain analytical populations by integrating the populations spontaneously
transferred from the excited state, and the result is given by

fi = p0 +
i−2

∑
k=1

Ri−2
i Ci−2,2k

eλ2kΓt − 1
λ2k

+
i−1

∑
k=1

Ri−1
i Ci−1,2k

eλ2kΓt − 1
λ2k

. (27)

In several cases of atomic transition systems, λk can duplicate, and the method of solving
particular solutions given in Equation (18) no longer holds. We may solve for the particular solutions
using the method presented in our previous paper [15]. However, it is also possible to solve by
intentionally modifying λk to satisfy the conditions that all λk are unique. One possible method is
setting Rj

i → Rj
i + δi,j jε, where ε is a constant that is taken as zero at the final stage of the calculation.

Although this method is not novel, it is very efficient.
The populations (hi) of the sublevels in the ground state, which are not excited by laser light,

can be easily obtained analytically by integrating the populations spontaneously transferred from the
excited state (Equation (11)), and the result is given by

hi = p0 +
0

∑
l=−2

i+l

∑
k=1

Ti+l
i Ci+l,2k

eλ2kΓt − 1
λ2k

. (28)
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3. Calculated Results

Based on the method developed in Section 2, here we present the calculated results of the
populations for the two transition schemes: (i) Fg = 4 → Fe = 5 and (ii) Fg = 3 → Fe = 3
for the D2 line of Cs. The energy level diagram for the Cs-D2 line is shown in Figure 2a, and
the energy level diagrams for these two transitions are shown in Figure 2b,c. Owing to the large
hyperfine splitting in the excited states, it is justifiable to neglect the off-resonant transitions; i.e., the
Fg = 4 → Fe = 4 and Fg = 4 → Fe = 3 transitions can be neglected when the laser light is tuned to
the Fg = 4 → Fe = 5 transition line. Although it is in principle possible to include the off-resonant
transitions in the analytical calculation of the populations [13], the complicated analytical solutions
may not be practically useful.

F =4g

9192 MHz

F =5e

6S1/2

6P3/2

f1 f2 f3
f4 f5

f6 f7 f8
f9

g1 g2
g3 g4 g5

g6 g7 g8
g9

m =-5  -4  -3  -2  -1  0   1   2   3   4   5e

F =4e

F =3e

F =2e

f1 f2 f3
f4 f5

f6 f7

h1 h2
h3

h4 h5
h6 h7 h8

g1 g2
g3 g4 g5

g6

m = -3  -2  -1   0   1   2   3e

F =4g

F =5e

F =3g F =3g

F =4g

F =3e

F =3g

(a) (b) (c)

251 MHz

201 MHz

151 MHz

Figure 2. (a) Energy level diagram of the Cs-D2 line. (b) Energy level diagrams for the
Fg = 4 → Fe = 5 cycling transition line and (c) for the Fg = 3→ Fe = 3 transition line illuminated
by σ+ polarized laser light.

3.1. Results for the Fg = 4→ Fe = 5 Transition

The Fg = 4→ Fe = 5 transition shown in Figure 2b is cycling, and is used in many experiments,
such as laser cooling and trapping [22]. Because σ+ polarized laser light is illuminated, the sublevels
with me = −5 and −4 are not optically excited. The normalized transition strengths, for the
transitions presented in Figure 2b, are given by(

R1
1, R2

2, R3
3, R4

4, R5
5, R6

6, R7
7, R8

8, R9
9

)
=

(
1

45
,

1
15

,
2

15
,

2
9

,
1
3

,
7

15
,

28
45

,
4
5

, 1
)

.

For the transition for i = 1, we obtain λ1 ' −1 and λ2 ' − 22
2025 s, and

C1,1 = − s
1440

, C1,2 =
s

1440
.

Thus, using Equation (23), we obtain

f1 =
1
16

e−22sΓt/2025.
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The λ4 for the transition for i = 2 is approximately given by − 7
225 s, and the coefficients are

given by

C2,1 =
s

240
, C2,2 =

s
2460

,

C2,3 = − s
160

, C2,4 =
11

6560
s.

Therefore, we have

f2 =
1
82

e−22sΓt/2025 +
33

656
e−7sΓt/225.

The remaining λ2k (k = 2, · · · , 9) values are given by

(λ6, λ8, λ10, λ12, λ14, λ16, λ18)

=

(
− 13

225
s, − 7

81
s, − s

9
, − 28

225
s, − 238

2025
s, − 2

25
s, 0
)

,

and the remaining populations are explicitly given by

f3 =
413

31 160
e−22τ/2025 +

77
2624

e−7τ/225 +
121

6080
e−13τ/225,

f4 =
2317

264 860
e−22τ/2025 +

693
20 992

e−7τ/225 +
1089

44 080
e−13τ/225 − 1001

252416
e−7τ/81,

f5 =
25 577

3 072 376
e−22τ/2025 +

4235
125 952

e−7τ/225 +
5203

141 056
e−13τ/225

− 5005
504 832

e−7τ/81 − 143
22 272

e−τ/9,

f6 =
148 693

17 666 162
e−22τ/2025 +

1925
47 232

e−7τ/225 +
2057

35 264
e−13τ/225

− 1625
63 104

e−7τ/81 − 715
16 704

e−τ/9 +
13
552

e−28τ/225,

f7 =
921 751

89 260 608
e−22τ/2025 +

2519
41 984

e−7τ/225 +
891

7424
e−13τ/225

− 49 075
504 832

e−7τ/81 − 5555
7424

e−τ/9 − 273
736

e−28τ/225 +
209
192

e−238τ/2025,

f8 =
39 041 249

2 119 939 440
e−22τ/2025 +

1561
10 496

e−7τ/225 +
225 071
352 640

e−13τ/225 +
219 275
126 208

e−7τ/81

+
9955
3712

e−τ/9 +
3367
3680

e−28τ/225 − 77
24

e−238τ/2025 − 459
160

e−2τ/25,

f9 =
9
16
− 1 205 666 281

8 479 757 760
e−22τ/2025 − 74 771

188 928
e−7τ/225 − 316 701

352 640
e−13τ/225

−404 009
252 416

e−7τ/81 − 62 953
33 408

e−τ/9 − 3133
5520

e−28τ/225 +
407
192

e−238τ/2025 +
459
160

e−2τ/25,

where we use a simplified notation: τ ≡ sΓt. Since the Fg = 4 → Fe = 5 transition is cycling, the
populations in the magnetic sublevels in the Fg = 3 ground state remain at their equilibrium value,
1/16. It should be also noted that the sum of the ground state populations is conserved, i.e.,

9

∑
i=1

fi =
9
16

.
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From Equation (26), the populations of the sublevels in the excited state can be expressed in
terms of the populations in the ground state as follows:

gi =
Ri

is
2

(
fi −

1
16

e−Γt
)

.

The constants in f9 and g9 can be accurately calculated using Equation (10). In the steady-state
regime, all the populations except f9 and g9 vanish, and these satisfy the following equations:

Γ
2

s [ f9(∞)− g9(∞)]− Γg9(∞) = 0, f9(∞) + g9(∞) =
9

16
,

with R9
9 = 1. Then, we have

f9(∞) =
9(2 + s)
32(1 + s)

, g9(∞) =
9s

32(1 + s)
,

which can be used in a more accurate calculation of the SAS spectrum.

3.2. Results for the Fg = 3→ Fe = 3 Transition

Now we present the calculated results of the populations for the Fg = 3 → Fe = 3 transition of
the D2 line of Cs. The energy level diagram for the transition is shown in Figure 2c. The sublevel of
the excited state with me = −3 is not optically excited, and thus the sublevel of the upper-ground state
with mg = −4 is not filled by spontaneous emission. We also obtain the solutions for the populations
in the other ground state (Fg = 4). To prevent the duplication of the transition strengths in this
transition, we introduce ε so that the transition strengths are given explicitly by(

R1
1, R2

2, R3
3, R4

4, R5
5, R6

6

)
=

(
3

16
+ ε,

5
16

+ 2ε,
3
8
+ 3ε,

3
8
+ 4ε,

5
16

+ 5ε,
3

16
+ 6ε

)
.

We take ε → 0 at the final stage of the calculation. The λ2k (k = 1, · · · , 6) values at ε → 0 are
given by

(λ2, λ4, λ6, λ8, λ10, λ12)

=

(
− 39

512
s, − 55

512
s, − 15

128
s, − 15

128
s, − 55

512
s, − 39

512
s
)

.

We first find various Cik values using the recursion relations in Equations (19)–(22). For the
transition for i = 1, we obtain

C1,1 = − 3
512

s, C1,2 =
3

512
s;

thus, using Equation (23), we obtain

f1 =
1
16

e−39sΓt/512.

Using a similar method, we can obtain f2 and f3 as follows:

f2 =
3

64
e−39τ/512 +

1
64

e−55τ/512,

f3 =
25

448
e−39τ/512 +

1
64

e−55τ/512 − 1
112

e−15τ/128,
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where the simplified notation, τ ≡ sΓt, is used. In the calculation of f4, because λ6 and λ8 are equal, f4

may contain the term ∼ τe−15τ/128. However, because the transition between g3 and f4 is prohibited,
the particular solution for f4 does not contain the term∼ τe−15τ/128. In contrast, f5, f6, and f7 contain
the terms proportional to τ. The results for f4, f5, and f6 are explicitly given by

f4 =
15
224

e−39τ/512 +
3

32
e−55τ/512 − 11

112
e−15τ/128,

f5 =
135
896

e−39τ/512 +

(
−173

640
+

9τ

4096

)
e−55τ/512 +

51
280

e−15τ/128,

f6 =

(
269

12 544
+

1125τ

114 688

)
e−39τ/512

+

(
19

256
− 45τ

16 384

)
e−55τ/512 − 13

392
e−15τ/128.

Since f7 is not excited by laser light, using Equation (27) yields,

f7 =
68 971
327 184

−
(

343 323
2 119 936

+
10 125τ

1 490 944

)
e−39τ/512

+

(
1371

30 976
+

135τ

180 224

)
e−55τ/512 − 3

98
e−15τ/128.

The populations of the sublevels in the excited state, using Equation (26), can be expressed as
follows:

gi =
Ri

is
2

(
fi −

1
16

e−Γt
)

.

The populations of the sublevels in the ground state Fg = 4 can be obtained using Equation (28),
and are presented in the appendix.

4. Conclusions

We have presented a general method of solving homogeneous or inhomogeneous second-order
DEs corresponding to the optical pumping phenomenon with σ+ polarized laser light. Unlike
the harmonic oscillator in mechanics or electrical circuits, this system only exhibits over-damped
behavior. Although the method of solving inhomogeneous DEs with constant coefficients is
straightforward in principle, obtaining accurate analytical solutions for the equations related to
optically pumped atoms, in particular, those with complicated atomic structures, such as Cs, is
cumbersome. Our method of solving the DEs provides an easy way to obtain analytical solutions at
the weak intensity limit. This method is general and applicable to most atoms. As stated in Section 1,
the obtained analytical form of the populations can be used in the calculation of spectroscopic
lineshapes such as in saturated absorption spectroscopy (SAS) [16,17] and polarization spectroscopy
(PS) [18]. Calculations of SAS and PS for Cs atoms are in progress.
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Appendix

When the laser frequency is tuned to the Fg = 3→ Fe = 3 transition (Figure 2c), the populations
of the sublevels in the ground state Fg = 4 are given by
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h1 =
23

312
− 7

624
e−39τ/512,

h2 =
93

1144
− 41

2496
e−39τ/512 − 5

2112
e−55τ/512,

h3 =
895

10 296
− 1109

52 416
e−39τ/512 − 3

704
e−55τ/512 +

1
1008

e−15τ/128,

h4 =
235

2574
− 685

26 208
e−39τ/512 − 19

1760
e−55τ/512 +

41
5040

e−15τ/128,

h5 =
10 727

113 256
− 3475

104 832
e−39τ/512

−
(

2641
232 320

+
3τ

45 056

)
e−55τ/512 +

31
2520

e−15τ/128,

h6 =
143 477

1 472 328
−
(

843 497
19 079 424

+
125τ

1 490 944

)
e−39τ/512

+

(
401

30 976
− 45τ

180 224

)
e−55τ/512 − 13

3528
e−15τ/128,

h7 =
293 731

2 944 656
−
(

147 347
2 725 632

+
125τ

212 992

)
e−39τ/512

+

(
7889

154 880
− 63τ

180 224

)
e−55τ/512 − 43

1260
e−15τ/128,

h8 =
299 023

2 944 656
−
(

24 497
681 408

+
125τ

53 248

)
e−39τ/512

+

(
− 959

116 160
+

21τ

45 056

)
e−55τ/512 +

13
2520

e−15τ/128.

Finally, we note that the sum of the populations is conserved, i.e.,

1
16

+
7

∑
i=1

fi +
8

∑
i=1

hi = 1,

where 1/16 is the population at the sublevel mg = −4 in the upper ground state.
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