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Abstract: We investigate the modeling capabilities of sets of coupled classical harmonic oscillators
(CHO) in the form of a modeling game. The application of the simple but restrictive rules of the
game lead to conditions for an isomorphism between Lie-algebras and real Clifford algebras. We
show that the correlations between two coupled classical oscillators find their natural description in
the Dirac algebra and allow to model aspects of special relativity, inertial motion, electromagnetism
and quantum phenomena including spin in one go. The algebraic properties of Hamiltonian motion
of low-dimensional systems can generally be related to certain types of interactions and hence to
the dimensionality of emergent space-times. We describe the intrinsic connection between phase
space volumes of a 2-dimensional oscillator and the Dirac algebra. In this version of a phase space
interpretation of quantum mechanics the (components of the) spinor wavefunction in momentum
space are abstract canonical coordinates, and the integrals over the squared wave function represents
second moments in phase space. The wave function in ordinary space-time can be obtained via
Fourier transformation. Within this modeling game, 3+1-dimensional space-time is interpreted as
a structural property of electromagnetic interaction. A generalization selects a series of Clifford
algebras of specific dimensions with similar properties, specifically also 10- and 26-dimensional real
Clifford algebras.
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1. Introduction

D. Hestenes had the joyful idea to describe physics as a modeling game [1]. We intend to play a
modeling game with (ensembles of) classical harmonic oscillators (CHO). The CHO is certainly one of
the most discussed and analyzed systems in physics and one of the few exactly solveable problems.
One would not expect any substantially new discoveries related to this subject. Nevertheless there are
aspects that are less well-known than others. One of these aspects concerns the transformation group of
the symplectic transformations of n coupled oscillators, Sp(2n). We invite the reader to join us playing
“a modeling game” and to discover some fascinating features related to possible reinterpretations of
systems of two (or more) coupled oscillators. We will show that special relativity can be reinterpreted as
a transformation theory of the second moments of the abstract canonical variables of coupled oscillator
systems (The connection of the Dirac matrices to the symplectic group has been mentioned by Dirac in
Reference [2]. For the connection of oscillators and Lorentz transformations (LTs) see also the papers
of Kim and Noz [3-5] and references therein. The use of CHOs to model quantum systems has been
recently described-for instance-by Briggs and Eisfeld [6-8]). We extend the application beyond pure
LTs and show that the Lorentz force can be reinterpreted by the second moments of two coupled
oscillators in proper time. Lorentz transformations can be modeled as symplectic transformations [4].
We shall show how Maxwell’s equations find their place within the game.
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The motivation for this game is to show that many aspects of modern physics can be understood on
the basis of the classical notions of harmonic oscillation if these notions are appropriately reinterpreted.

In Section 2 we introduce the rules of our game, in Section 3 we introduce the algebraic notions
of the Hamilton formalism. In Section 4 we describe how geometry emerges from coupled oscillator
systems, in Section 5 we describe the use of symplectic transformations and introduce the Pauli- and
Dirac algebra. In Section 6 we introduce a physical interpretation of oscillator moments and in
Section 7 we relate the phase space of coupled oscillators to the real Dirac algebra. Section 8 contains a
short summary.

2. The Rules Of The Game

The first rule of our game is the principle of reason (POR): No distinction without reason-we should
not add or remove something specific (an asymmetry, a concept, a distinction) from our model without
having a clear and explicite reason. If there is no reason for a specific asymmetry or choice, then all
possibilities are considered equivalently.

The second rule is the principle of variation (POV): We postulate that change is immanent to all
fundamental quantities in our game. From these two rules, we take that the mathematical object of our
theory is a list (n-tuple) of quantities (variables) ¢, each of which varies at all times.

The third rule is the principle of objectivity (POO): Any law within this game refers to
measurements, defined as comparison of quantities (object properties) in relation to other object
properties of the same type (i.e., unit). Measurements require reference standards (rulers). A
measurement is objective if it is based on (properties of) the objects of the game. This apparent
self-reference is unavoidable, as it models the real situation of physics as experimental science. Since all
fundamental objects (quantities) in our model vary at all times, the only option to construct a constant
quantity that might serve as a ruler, is given by constants of motion (COM). Hence the principle of
objectivity requires that measurement standards are derived from constants of motion.

This third rule implies that the fundamental variables can not be directly measured, but only
functions of the fundamental variables of the same dimension (unit) of a COM. Thus the model has
two levels: The level of the fundamental variable list ¢, which is experimentally not directly accessible
and a level of observables which are (as we shall argue) even moments of the fundamental variables .

2.1. Discussion of the Rules

E.T. Jaynes wrote that “Because of their empirical origins, QM and QED are not physical theories
at all. In contrast, Newtonian celestial mechanics, Relativity, and Mendelian genetics are physical
theories, because their mathematics was developed by reasoning out the consequences of clearly stated
physical principles from which constraint the possibilities”. And he continues “To this day we have
no constraining principle from which one can deduce the mathematics of QM and QED; [...] In other
words, the mathematical system of the present quantum theory is [...] unconstrained by any physical
principle” [9]. This remarkably harsh criticism of quantum mechanics raises the question of what we
consider to be a physical principle. Are the rules of our game physical principles? We believe that
they are no substantial physical principles but formal first principles, they are preconditions of a sensible
theory. They contain no immediate physical content, but they define the form or the idea of physics.

It is to a large degree immanent to science and specifically to physics to presuppose the existence
of reason: Apples do not fall down by chance—there is a reason for this tendency. Usually this believe in
reason implies the believe in causality, i.e., that we can also (at least in principle) explain why a specific
apple falls at a specific time, but practically this latter believe can rarely be confirmed experimentally
and therefore remains to some degree metaphysical. Thus, if, as scientists, we postulate that things
have reason, then this is not a physical principle but a precondition, a first principle.

The second rules (POV), is specific to the form (or idea) of physics, e.g., that it is the sense of
physics to recognize the pattern of motion and to predict future. Therefore the notion of time in the form
of change is indeed immanent to the physical description of reality.
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The principle of objectivity (POO) is immanent to the very idea of physics: A measurement is
the comparison of properties of objects with compatible properties of reference objects, e.g., requires
“constant” rulers. Hence the rules of the game are to a large degree unavoidable: They follow from
the very form of physics and therefore certain laws of physics are not substantial results of a physical
theory. For instance a consistent “explanation” of the stability of matter is impossible as we presumed
it already within the idea of measurement. More precisely: if this presumption does not follow within
the framework of a physical theory, then the theory is flawed, since it can not reproduce it’s own
presumptions.

Einstein wrote with respect to relativity that “It is striking that the theory (except for the
four-dimensional space) introduces two kinds of things, i.e., (1) measuring rods and clocks; (2) all other
things, e.g., the electromagnetic field, the material point, efc. This, in a certain sense, is inconsistent;
strictly speaking, measuring rods and clocks should emerge as solutions of the basic equations [...],
not, as it were, as theoretically self-sufficient entities”. [10]. The more it may surprise that the stability
of matter can not be obtained from classical physics as remarked by Elliott H. Lieb: “A fundamental
paradox of classical physics is why matter, which is held together by Coulomb forces, does not
collapse” [11]. This single sentence seems to rule out the possibility of a fundamental classical theory
and uncovers the uncomfortable situation of theoretical physics today: Despite the overwhelming
experimental and technological success, there is a deep-seated confusion concerning the theoretical
foundations. Our game is therefore a meta-experiment. It is not the primary goal to find “new” laws
of nature or new experimental predictions, but it is a conceptional “experiment” that aims to further
develop our understanding of the consequences of principles: which ones are really required to derive
central “results” of contemporary physics. In this short essay final answers can not be given, but
maybe some new insights are possible.

2.2. What about Space-Time?

A theory has to make the choice between postulate and proof. If a 3+1 dimensional space-time is
presumed, then it cannot be proven within the same theoretical framework. More precisely, the value
of such a proof remains questionable. This is a sufficient reason to avoid postulates concerning the
dimensionality of space-time. Another, even stronger, reason to avoid a direct postulate of space-time
and its geometry has been given above: The fundamental variables that we postulated, can not be
directly measured. This excludes space-time coordinates as primary variables (which can be directly
measured), but with it almost all other apriori assumed concepts like velocity, acceleration, momentum,
energy and so on. At some point these concepts certainly have to be introduced, but we suggest
an approach to the formation of concepts that differs from the Newtonian axiomatic method. The
POR does not allow to introduce distinctions between the fundamental variables into coordinates
and momenta without reason. Therefore we are forced to use an interpretational method, which one
might summarize as function follows form. We shall first derive equations and then we shall interpret
the equations according to some formal criteria. This implies that we have to refer to already existing
notions if we want to identify quantities according to their appearance within a certain formalism.
The consequence for the game is, that we have to show how to give rise to geometrical notions: If we do
not postulate space-time then we have to suggest a method to construct it.

A consequence of our conception is that both, objects and fields have to be identified with
dynamical structures, as there is simply nothing else available. This fits to the framework of structure
preserving (symplectic) dynamics that we shall derive from the described principles.
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3. Theory of Small Oscillations

In this section we shall derive the theory of coupled oscillators from the rules of our game.
According to the POO there exists a function (COM) H(y) such that ( Let us first (for simplicity)
assume that %" =0.):

dH oH .
=Y s =0 ()
dt ; P
or in vector notation
dH ,
E:(leH)'lP:O )

The simplest solution is given by an arbitrary skew-symmetric matrix X
p=XVyH (©))

Note that it is only the skew-symmetry of X, which ensures that it is always a solution to Equation (2)
and which ensures that H is constant. If we now consider a state vector i of dimension k, then
there is a theorem in linear algebra, which states that for any skew-symmetric matrix X there exists a
non-singular matrix Q such that we can write [12]:

QT X Q = diag(”()/ 170/ 770/ sy 0/ 0/ 0) (4)

0 1
7]0=<_1 0) ®)

If we restrict us to orthogonal matrices Q, then we may still write

where 7 is the matrix

QT X Q = dlag(/\o 1o, )Ll 1o, )\2 "o, - - - rO/ 0/ 0) (6)

In both cases we may leave away the zeros, since they correspond to non-varying variables, which
would be in conflict with the second rule of our modeling game. Hence k = 2n must be even and the
square matrix X has the dimension 2n x 2n. As we have no specific reason to assume asymmetries
between the different degrees of freedom (DOF), we have to choose all Ay = 1 in Equation (6) and
return to Equation (4) without zeros and define the block-diagonal so-called symplectic unit matrix
(SUM) 70:

Q" X Q = diag (10, 70, - - -, 110) = Y0 )

These few basic rules thus lead us directly to Hamiltonian mechanics: Since the state vector has even
dimension and due to the form of g, we can interpret i as an ensemble of 1 classical DOF-each DOF
represented by a canonical pair of coordinate and momentum: ¢ = (41, p1,42, P2, - - - ,qn, Pn)" - In this
notation and after the application of the transformation Q, Equation (3) can be written in form of the
Hamiltonian equations of motion (HEQOM):

qi = Sj,f
pi = 5 8)

The validity of the HEQOM is of fundamental importance as it allows for the use of the results
of Hamiltonian mechanics, of statistical mechanics and thermodynamics-but without the intrinsic
presupposition that the g; have to be understood as positions in real space and the p; as the
corresponding canonical momenta. This is legitimate as the theory of canonical transformations is
independent from any specific physical interpretation of what the coordinates and momenta represent physically.
As no other interpretation is at hand, we say that these canonical pairs are coordinates g;, p; in an
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abstract phase space and they are canonical coordinates and momenta only due to the form of the
HEQOM. The choice of the specific form of v is for n > 1 DOF not unique. It could for instance be
written as

Y0 =10 ® Luxn )

which corresponds a state vector of the form

= (Q1,~--rﬂinIP1,---,Pn,)T

or by
Y0 = Luxn @10 (10)

as in Equation (7). Therefore we are forced to make an arbitrary choice (But we should keep in mind,
that other “systems” with a different choice are possible. If we can not exclude their existence, then
they should exist as well. With respect to the form of the SUM, we suggest that different “particle”
types (different types of fermions for instance) have a different SUM). But in all cases the SUM vy must
be skew-symmetric and have the following properties:

T o_ _
N = -1

which also implies that g is orthogonal and has unit determinant. Note also that all eigenvalues of
Yo are purely imaginary. However, once we have chosen a specific form of ¢, we have specified a
set of canonical pairs (g;, p;) within the state vector. This choice fixes the set of possible canonical
(structure preserving) transformations.

Now we write the Hamiltonian # () as a Taylor series, we remove the rule-violating constant
term and cut it after the second term. We do not claim that higher terms may not appear, but we
delay the discussion of higher orders to a later stage. All this is well-known in the theory of small
oscillations. There is only one difference to the conventional treatment: We have no direct macroscopic
interpretation for ¢ and following our first rule we have to write the second-order Hamiltonian # (1)
in the most general form:

H(p) = 547 Ay 12)

where A is only restricted to be symmetric as all non-symmetric terms do not contribute to H. Since it
is not unlikely to find more than a single constant of motion in systems with multiple DOFs, we
distinguish systems with singular matrix A from those with a positive or negative definite matrix A.
Positive definite matrices are favoured in the sense that they allow to identify H with the amount of a
substance or an amount of energy (It is immanent to the concept of substance that it is understood as
something positive semidefinite).

Before we try to interprete the elements in A, we will explore some general algebraic properties
of the Hamiltonian formalism. If we plug Equations (12) into (3), then the equations of motion can be
written in the general form

p=70Ayp=Fy¢ (13)

The matrix F = g A is the product of the symmetric (positive semi-definite) matrix A and the
skew-symmetric matrix yg. As known from linear algebra, the trace of such products is zero:

Tr(F) =0 (14)

Pure harmonic oscillation of ¢ is described by matrices F with purely imaginary eigenvalues and those
are the only stable solutions [12]. Note that Equation (13) may represent a tremendous amount of
different types of systems-all linearily coupled systems in any dimension, chains or d-dimensional
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lattices of linear coupled oscillators and wave propagation (However the linear approximation does
not allow for the description of the transport of heat).
One quickly derives from the properties of vy and A that

Fl=ATyl = -Av=7%A7% =7F7 (15)

Since any square matrix can be written as the sum of a symmetric and a skew-symmetric matrix, it is
nearby to also consider the properties of products of g with a skew-symmetric real square matrices 5.
If C = ¢ B, then

C" =BT§ =By =—-7%Bv =—7C0 (16)

Symmetric 21 x 2n-matrices contain 2n (2n + 1) /2 different matrix elements and skew-symmetric
ones 2n (2n — 1) /2 elements, so that there are v; linear independent matrix elements in A

vs=n2n+1) (17)

and v, matrix elements in B with
ve=mn(2n—1) (18)

In the theory of linear Hamiltonian dynamics, matrices of the form of F are known as “Hamiltonian” or
“infinitesimal symplectic” and those of the form of C as “skew-Hamiltonian” matrices. This convention
is a bit odd as F does not appear in the Hamiltonian and it is in general not symplectic. Furthermore
the term “Hamiltonian matrix” has a different meaning in quantum mechanics - in close analogy to A.
But it is known that this type of matrix is closely connected to symplectic matrices as every symplectic
matrix is a matrix exponential of a matrix F [12]. We consider the matrices as defined by Equations (15)
and (16) as too important and fundamental to have no meaningful and unique names: Therefore we
speak of a symplex (plural symplices), if a matrix holds Equation (15) and of a cosymplex if it holds
Equation (16).

Symplectic Motion and Second Moments

So what is a symplectic matrix anyway? The concept of symplectic transformations is a specific
formulation of the theory of canonical transformations. Consider we define a new state vector (or new
coordinates) ¢(1)-with the additional requirement, that the transformation is reversible. Then the
Jacobian matrix of the transformation is given by

_ [ 9¢i
Jij = (8%) (19)

and the transformation is said to be symplectic, if the Jacobian matrix holds [12]

T =7 (20)

Let us see what this implies in the linear case:

Jp = JFJ 'y
g - }ﬁrltﬁ ey
$ = F§
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and-by the use of Equation (20) one finds that F is still a symplex:

T — (OHTET)T
FI' = ()T yFy])"

T = _'Y% (J_l)T'VOFJ_l Y0 (22)
FI' = —J1§F) 10

FT = %JFJ 'y

FT Y0F 70

Hence a symplectic transformation is first of all a similarity transformation, but secondly, it preserves
the structure of all involved equations. Therefore the transformation is said to be canonical or structure
preserving. The distinction between canonical and non-canonical transformations can therefore be
traced back to the skew-symmetry of ¢ and the symmetry of A- both of them consequences of the
rules of our physics modeling game.

Recall that we argued that the matrix .4 should be symmetric because skew-symmetric terms do
not contribute to the Hamiltonian. Let us have a closer look what this means. Consider the matrix of
second moments ¥ that can be build from the variables :

= (py") (23)

in which the angles indicate some (yet unspecified) sort of average. The equation of motion of this
matrix is given by

o= (9l +(pyh)
2= (FyyT)+ (e F) .

Now, as long as F does not depend on ¢, we obtain

> = FX+3XFT
(Z70) = F(Z7)—(Z70)F
S = FS—SF

where we defined the new matrix S = X 7. For completeness we introduce the “adjunct” spinor
P = 9T 79 so that we may write

S = (yp) (26)

Note that S is also a symplex. The matrix S (i.e., all second moments) is constant, iff S and F commute.
Now we define an observable to be an operator O with a (potentially) non-vanishing expectation

value, defined by:
(0) = (FOy) = (" 79 Oy) (27)

Thus, if the product ¢ O is not skew-symmetric, i.e., contains a product of vy with a symmetric matrix
B, then the expectation value is potentially non-zero:

(0) = (" 70 (0 B)yp) = — (v Byp) (28)

This means that only the symplex-part of an operator is “observable”, while cosymplices yield a
vanishing expectation value. Hence Equation (25) delivers the blueprint for the general definition of
observables. Furthermore we find in the last line the constituting equation for Lax pairs [13]. Peter Lax
has shown that for such pairs of operators S and F that obey Equation (25) there are the following
constants of motion

Tr(S*) = const (29)
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for arbitrary integer k > 0. Since S is a symplex and therefore by definition the product of a symmetric
matrix and the skew-symmetric 7y, Equation (29) is always zero and hence trivially true for k = 1.
The same is true for any odd power of S, as it can be easily shown that any odd power of a symplex
is again a symplex (see Equation (35)), so that the only non-trivial general constants of motion
correspond to even powers of S, which implies that all observables are functions of even powers of the
fundamental variables.

To see the validity for k > 1 we have to consider the general algebraic properties of the trace
operator. Let A be an arbitrary real constant and 7 be a real parameter, then

Tr(A) Tr(AT)
Tr(AA) = ATr(A)
AT(A(T) = T(%) (30)
Tr(A+B) = Tr(A)+Tr(B)
Tr(AB) Tr(BA)
It follows that
0 = Tr(AB—-BA)
0 = Tr(A"B—-A""1BA) G31)
0 = Tr[A"1(AB-BA)]
From the last line of Equation (31) it follows with % =A(AB—BA)
iTr(A”) =0 (32)
at

Remark: This conclusion is not limited to symplices.

However for single spinors ¢ and the corresponding second moments S = £ 9 = ¢! 79 we
find:

Tr($5) = Te[yy yo ¢’ 7o)

Tely (" 70+ ¢ 97 70)]

T T (33)
= T v 99’ 70)¥]
= [ r0y)--- (@Try)] =0

since each single factor ( T 70 ¢) vanishes due to the skew-symmetry of 7. Therefore the constants of
motion as derived from Equation (29) are non-zero only for even k and after averaging over some kind of
distribution such that S = (T v¢) has non-zero eigenvalues as in Equation (34) below.

The symmetric matrix 2n x 2n-matrix X (and also A) is positive definite, if it can be written as a
product X = Y¥T where ¥ is a non-singular matrix of size 2n x m with m > 2n.

For n = m/2 =1, the form of ¥ may be chosen as

¥ — 1 q —p — 1 19,
Ve \ p q> iz (1o d)

= =¥ =97y =1

S = 7

(34)

so that for k = 2 the average of two “orthogonal” column-vectors ¢ and 7 i gives a non-zero constant
of motion via Lax pairs as ’y% = -1

These findings have some consequences for the modeling game. The first is that we have found
constants of motion-though some of them are physically meaningful only for a non-vanishing volume
in phase space, i.e., by the combination of several spinors §. Secondly, a stable state S = 0 implies
that the matrix operators forming the Lax pair have the same eigenvectors: a density distribution in
phase space (as described by the matrix of second moments) is stable if it is adapted or matched to the
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symplex F. The phase space distribution as represented by S and the driving terms (the components of
F) must fit to each other in order to obtain a stable “eigenstate”. But we also found a clear reason, why
generators (of symplectic transformations) are always observables and vice versa: Both, the generators
as well as the observables are symplices of the same type. There is a one-to-one correspondence
between them, not only as generators of infinitesimal transformations, but also algebraically.

Furthermore, we may conclude that (anti-) commutators are an essential part of “classical”
Hamiltonian mechanics and secondly that the matrix S has the desired properties of observables:
Though S is based on continuously varying fundamental variables, it is constant, if it commutes with
F, and it varies otherwise (In accelerator physics, Equation (25) describes the envelope of a beam in
linear optics. The matrix of second moments X is a covariance matrix-and therefore our modeling
game is connected to probability theory exactly when observables are introduced).

Hence it appears sensible to take a closer look on the (anti-) commutation relations of (co-)
symplices and though the definitions of (co-) symplices are quite plain, the (anti-) commutator algebra
that emerges from them has a surprisingly rich structure. If we denote symplices by Sy and cosymplices
by C, then the following rules can quickly be derived:

$1$,-5,8;
GG -GG

CS+SC
SZn+1

=  symplex

S$1S2,+S52S; (35)
GG+ G
CS-SC = cosymplex
S§2n

C?I

This Hamiltonian algebra of (anti-)commutators is of fundamental importance insofar as we derived
it in a few steps from first principles (i.e., the rules of the game) and it defines the structure of
Hamiltonian dynamics in phase space. The distinction between symplices and cosymplices is also the
distinction between observables and non-observables. It is the basis of essential parts of the following
considerations.

4. Geometry from Hamiltonian Motion

In the following we will demonstrate the geometrical content of the algebra of (co-)symplices
(Equation (35)) which emerges for specific numbers of DOF n. As shown above, pairs of canonical
variables (DOFs) are a direct consequence of the abstract rules of our game. Though single DOFs
are poor “objects”, it is remarkable to find physical structures emerging from our abstract rules at all.
This suggests that there might be more structure to discover when n DOF are combined, for instance
geometrical structures. The following considerations obey the rules of our game, since they are
based purely on symmetry considerations like those that guided us towards Hamiltonian dynamics.
The objects of interest in our algebraic interpretation of Hamiltonian dynamics are matrices. The first
matrix (besides A) with a specific form that we found, is y. It is a symplex:

1 =-7 =7 (36)

According to Equation (17) there are vs = n (2n + 1) (i.e., vs > 3) symplices. Hence it is nearby to
ask if other symplices with similar properties like g exist-and if so, what the relations between these
matrices are. According to Equation (35) the commutator of two symplices is again a symplex, while
the anti-commutator is a cosymplex. As we are primarily interested in observables and components of
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the Hamiltonian (i.e., symplices), respectively, we look for further symplices that anti-commute with
70 and with each other. In this case, the product of two such matrices is also a symplex, i.e., another
potential contribution to the general Hamiltonian matrix F.

Assumed we had a set of N mutually anti-commuting orthogonal symplices o and 7 with
k € [1...N —1], then a Hamiltonian matrix F might look like

N-1
F=¥Y fine+-- (37)
k=0
The vy are symplices and anti-commute with v:

YoYk+ Yk v0 =0 (38)

Multiplication from the left with vy, gives:

—MFNTY=—Te+ 7 =0 (39)

so that all other possible symplices 7, which anticommute with 7, are symmetric and square to 1.
This is an important finding for what follows, as it can (within our game) be interpreted as a classical
proof of the uniqueness of (observable) time-dimension: Time is one-dimensional as there is no other
skew-symmetric symplex that anti-commutes with 9. We can choose different forms for g, but the
emerging algebra allows for no second “direction of time”.

The second order derivative of  is (for constant F) given by ¢y = F? ¢ which yields:

N-1
F = ,EO fEi+ % fifi (vivi+7j1) (40)
i= i#]

Since the anti-commutator on the right vanishes by definition, we are left with:

N-1
P (% #-7)1 @)
k=1
Thus-we find a set of (coupled) oscillators, if
R =
5> Y (42)
k=1
such that
J=—-w’y (43)

Given such matrix systems exist-then they generate a Minkowski type “metric” as in Equation (41)
(Indeed it appears that Dirac derived his system of matrices from the this requirement [14]).
The appearance of this metric shows how a Minkowski type geometry emerges from the driving
terms of oscillatory motion. This is indeed possible- at least for symplices of certain dimensions
as we will show below. The first thing needed is some kind of measure to define the length of a
“vector”. Since the length is a measure that is invariant under certain transformations, specifically
under rotations, we prefer to use a quantity with certain invariance properties to define a length. The
only one we have at hand is given by Equation (29). Accordingly we define the (squared) length of a
matrix representing a “vector” by

2 1 2
A = 5 Te(A%) (44)
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The division by 2 n is required to make the unit matrix have unit norm. Besides the norm we need a
scalar product, i.e., a definition of orthogonality. Consider the Pythagorean theorem which says that
two vectors @ and b are orthogonal iff

(@+0D)* =+ P> (45)

The general expression is
@+Db)2=a+D*+2d-b (46)

The equations are equal, iff @ - b = 0. Hence the Pythagorean theorem yields a reasonable definition of
orthogonality. However, we had no method yet to define vectors within our game. Using matrices A
and B we may then write

la+B]?

5 Tr [(A + B)?] )
|A|1> + ||B||* + 75 Tr(AB + BA)

If we compare this to Equations (45) and (46), respectively, then the obvious definition of the inner
product is given by:

AB+BA

A'Bzf (48)

Since the anticommutator does in general not yield a scalar, we have to distinguish between inner
product and scalar product:

1
4n
where we indicate the scalar part by the subscript “S”. Accordingly we define the exterior product by
the commutator

(A-B)s=-—Tr(AB+BA) (49)

AnB=AB=BA )

Now that we defined the products, we should come back to the unit vectors. The only “unit vector” that
we explicitely defined so far is the symplectic unit matrix 7. If it represents anything at all then it must
be “the direction” of change, the direction of evolution in time as it was derived in this context and is the
only “dimension” found so far. As we have already shown, all other unit vectors ; must be symmetric,
if they are symplices. And vice versa: If y; is symmetric and anti-commutes with 7, then it is a
symplex. As only symplices represent observables and are generators of symplectic transformations,
we can have only a single “time” direction ¢ and a yet unknown number of symmetric unit vectors
(Thus we found a simple answer to the question, why only a single time direction is possible, a
question also debated in Reference [15]). However, for n > 1, there might be different equivalent
choices of 7. Whatever the specific form of 7 is, we will show that in combination with some general
requirements like completeness, normalizability and observability it determines the structure of the
complete algebra. Though we don’t yet know how many symmetric and pairwise anti-commuting
unit vectors ‘y; exist-we have to interpret them as unit vectors in “spatial directions” (The meaning of
what a spatial direction is, especially in contrast to the direction of time 7, has to be derived from the
form of the emerging equations, of course. As meaning follows form, we do not define space-time, but
we identify structures that fit to the known concept of space-time). Of course unit vectors must have
unit length, so that we have to demand that

17kl = 25 Tr(75) = £1 (51)
Note that (since our norm is not positive definite), we explicitely allow for unit vectors with negative
“length” as we find it for 7. Note furthermore that all skew-symmetric unit vectors square to —1 while
the symmetric ones square to 1 [16].
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Indeed systems of N = p + g anti-commuting real matrices are known as real representations
of Clifford algebras Cly ;. The index p is the number of unit elements (“vectors”) that square to +1
and g is the number of unit vectors that square to —1. Clifford algebras are not necessarily connected
to Hamiltonian motion, rather they can be regarded as purely mathematical “objects”. They can
be defined without reference to matrices whatsoever. Hence in mathematics, sets of matrices are
merely “representations” of Clifford algebras. But our game is about physics and due to the proven
one-dimensionality of time we concentrate on Clifford algebras Cly_;; which link CHOs in the
described way with the generators of a Minkowski type metric. Further below it will turn out that the
representation by matrices is-within the game-indeed helpful, since it leads to an overlap of certain
symmetry structures. The unit elements (or unit “vectors”) of a Clifford algebra, ey, are called the
generators of the Clifford algebra. They pairwise anticommute and they square to £1 (The role as
generator of the Clifford algebra should not be confused with the role as generators of symplectic
transformations (i.e., symplices). Though we are especially interested in Clifford algebras in which
all generators are symplices, not all symplices are generators of the Clifford algebra. Bi-vectors for
instance are symplices, but not generators of the Clifford algebra). Since the inverse of the unit elements
ey of a Clifford algebra must be unique, the products of different unit vectors form new elements and

all possible products including the unit matrix form a group. There are (II\{I ) possible combinations
(products without repetition) of k elements from a set of N generators. We therefore find (g] ) bi-vectors,

which are products of two generators, (I;I ) trivectors) and so on. The product of all N basic matrices is
called pseudoscalar. The total number of all k-vectors then is (We identify k = 0 with the unit matrix 1.):

ﬁ (f) =N (52)

k=0

If we desire to construct a complete system, then the number of variables of the Clifford algebra has to
match the number of variables of the used matrix system:

2N = (2n)2 (53)

Note that the root of this equation gives an even integer 2N/2 = 211 so that N must be even. Hence all
Hamiltonian Clifford algebras have an even dimension. Of course not all elements of the Clifford
algebra may be symplices. The unit matrix (for instance) is a cosymplex. Consider the Clifford algebra
Cly 1 with N = 2, which has two generators, say g with 7(2) = —1and 7; with 'y% = 1. Since these two
anticommute (by definition of the Clifford algebra), so that we find (besides the unit matrix) a fourth
matrix formed by the product g v1:

Y0Yr = —717
(vom)* = rmrom (54)
= —v7v71711=1

The completeness of the Clifford algebras as we use them here implies that any 27 x 2 n-matrix M
with (2n)2 = 2N can be written as a linear combination of all elements of the Clifford algebra:

4n? -1
M= Y my (55)
k=0

The coefficients can be computed from the scalar product of the unit vectors with the matrix M:

S
mg = (v -M)s = ﬁ Tr(ye M+ M) (56)
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Recall that skew-symmetric 7 have a negative length and therefore we included a factor sy which
represents the “signature” of <y, in order to get the correct sign of the coefficients my.

Can we derive more properties of the constructable space-times? One restriction results
from representation theory: A theorem from the theory of Clifford algebras states that Cl,; has
a representation by real matrices if (and only if) [17]

p—g=0or2mod8 (57)

The additional requirement that all generators must be symplices so that p = N — 1 and g = 1 then
restricts N to
N—-2=0o0r2mod 8 (58)

Hence the only matrix systems that have the required symmetry properties within our modeling game
are those that represent Clifford algebras with the dimensions1+1,3+1,9+1,11+1,174+1,19+1,
25+1, 27 +1 and so on. These correspond to matrix representations of size 2 x 2, 4 x 4, 32 x 32,
64 x 64,512 x 512 and so on. The first of them is called Pauli algebra, the second one is the Dirac algebra.
Do these two have special properties that the higher-dimensional algebras do not have? Yes, indeed.

Firstly, since dynamics is based on canonical pairs, the real Pauli algebra describes the motion
of a single DOF and the Dirac algebra decribes the simplest system with interaction between two
DOF. This suggests the interpretation that within our game, objects (Dirac-particles) are not located
“within space-time”, since we did not define space at all up to this point, but that space-time can be
modeled as an emergent phenomenon. Space-time is in between particles.

Secondly, if we equate the number of fundamental variables (2 1) of the oscillator phase space
with the dimension of the Clifford space N, then Equation (53) leads to

2N = N? (59)

which allows for N = 2 and N = 4 only. But why should it be meaningful to assume N = 2n?
The reason is quite simple: If 21 > N as for all higher-dimensional state vectors, there are less
generators of the algebra than independent variables. This discrepancy increases with n. Hence the
described objects can not be pure vectors anymore, but must contain tensor-type components (k-vectors)
(For a deeper discussion of the dimensionality of space-time, see Reference [16] and references therein).

But before we describe a formal way to interprete Equation (59), let us first investigate the physical
and geometrical implications of the game as described so far.

Matrix Exponentials

We said that the unit vectors ¢ and <y are symplices and therefore generators of symplectic
transformations. All symplectic matrices are matrix exponentials of symplices [12]. The computation
of matrix exponentials is in the general case non-trivial. However, in the special case of matrices that
square to 1 (e.g., along the “axis” 7y, of the coordinate system), the exponentials are readily evaluated:

) k
exp(1,7) = ¥ 7
k°:°0 2k R (60)
exp (1.T) = LS o T LS arr
where s = +1 is the sign of the matrix square of 7,. For s = —1 (92 = —1), it follows that
R, (T) = exp (74 T) = cos (T) + ¥4 sin (7) (61)

and fors =1 (92 = 1):
B, (7) = exp (74 T) = cosh (T) + 7, sinh () (62)
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We can indentify skew-symmetric generators with rotations and (as we will show in more detail below)
symmetric generators with boosts.

The (hyperbolic) sine/cosine structure of symplectic matrices are not limited to the generators
but are a general property of the matrix exponentials of the symplex F (These properties are the main
motivation to choose the nomenclature of “symplex” and “cosymplex”.):

M(t) =exp (Ft) =C+S (63)
where the (co-) symplex S (C) is given by:

S
C

sinh (Ft)
cosh (Ft)

(64)

since (the linear combination of) all odd powers of a symplex is again a symplex and the sum of all
even powers is a cosymplex. The inverse transfer matrix M~ () is given by:

M () =M(-t)=C-S (65)

The physical meaning of the matrix exponential results from Equation (13), which states that (for
constant symplices F) the solutions are given by the matrix exponential of F:

p(t) = M(t) (0) (66)

A symplectic transformation can be regarded as the result of a possible evolution in time. There is no
proof that non-symplectic processes are forbidden by nature, but that only symplectic transformations
are structure preserving. Non-symplectic transformations are then structure defining. Both play a
fundamental role in the physics of our model reality, because fundamental particles are-according to
our model-represented by dynamical structures. Therefore symplectic transformations describe those
processes and interactions, in which structure is preserved, i.e., in which the type of the particle is not
changed. The fundamental variables are just “carriers” of the dynamical structures. Non-symplectic
transformations can be used to transform the structure. This could also be described by a rotation of
the direction of time. Another interpretation is that of a gauge-transformation [18].

5. The Significance of (De-)Coupling

In physics it is a standard technique to reduce complexity of problems by a suitable change
of variables. In case of linear systems, the change of variables is a linear canonical transformation.
The goal of such transformations is usually to substitute the solution of a complicated problem by
the solution of multiple simpler problems. This technique is known under various names, one of
these names is decoupling, but it is also known as principal component analysis or (as we will later show)
transformation into the “rest frame”. In other branches of science one might refer to it as pattern
recognition.

In the following we investigate, how to transform a general oscillatory 2n x 2n-dimensional
symplex to normal form. Certainly it would be preferable to find a “physical method”, i.e., a method
that matches to the concepts that we introcuded so far and that has inherently physical significance.
Or at least significance and explanatory power with respect to our modeling game. Let us start from
the simplest systems, i.e., with the Pauli and Dirac algebras which correspond to matrices of size 2 x 2
and 4 x 4, respectively.
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5.1. The Pauli Algebra

The fundamental significance of the Pauli algebra is based on the even dimensionality of (classical)
phase space. The algebra of 2 x 2 matrices describes the motion of a single (isolated) DOF. Besides 7,
the real Pauli algebra includes the following three matrices:

(01
m = 10
1 0
= 770771—<0 1) (67)

10
Bo= 1‘(0 1)

All except the unit matrix 73 are symplices. If 779 and #; are chosen to represent the generators of the
corresponding Clifford algebra Cl 1, then 7 is the only possible bi-vector. A general symplex has
the form:

F = ano+bm+cy
_ c a+b (68)
- —a+b —c

The characteristic equation is given by Det(F — A1) =0

0 = (c—A)(—c—A)—(a+b)(—a+b) (69)
A= tVE2+2—a2

The eigenvalues A+ are both either real for a? < c? + b? or both imaginary a? > ¢ + b? (or both zero).
Systems in stable oscillation have purely imaginary eigenvalues. This case is most interesting for our
modeling game.
Decoupling is usually understood in the more general sense to treat the interplay of several
(at least two) DOEF, but here we ask, whether all possible oscillating systems of n = 1 are isomorphic to
normal form oscillators. Since there are 3 parameters in F and only one COM, namely the frequency
w, we need at least two parameters in the transformation matrix. Let us see, if we can choose these
two transformations along the axis of the Clifford algebra. In this case we apply subsequentially two
symplectic transformations along the axis #g and #,. Applying the symplectic transformation matrix
exp (10 T/2) we obtain:
Fi = exp(n07/2)F exp(—107/2)

70
= dn+bm+cp 7

(The “half-angle” argument is for convenience). The transformed coefficients a’, b’ and ¢’ are given by

/

ad = a
b = bcost—csinT (71)
¢ = ccost+bsint

so that-depending on the “duration of the pulse”, we can chose to transform into a coordinate system
in which either o’ = 0 or ¢/ = 0. If we choose t = arctan (—c/b), then ¢’ = 0, so that

F'o= an+vb2+ccpm=dn+bn (72)

If we chose the next generator to be 7, then:

a’" = a' cosht—"V sinht

7.
b = b cosht—a sinht (73)



Symmetry 2016, 8, 30 16 of 35

In this case we have to dinstinguish between the case, where a’ > b’ and 4’ < b’. The former is the
oscillatory system and in this case the transformation with T = artanh(b’/a’) leads to the normal form
of a 1-dim. oscillator:

al' = Va?—-b*—c?
Vo= 0 (74)
=0

and the matrix F” has the form

F' = Va2 -2 — 2y (75)

If the eigenvalues are imaginary, then A = +iw and hence
F' = wnp (76)
so that the solution is-for constant frequency-given by the matrix exponential:

¥(t) = exp(wrnot)P(0)
= (Lcos(wt) + 1o sin(w?)) $(0) @7)

This shows that in the context of stable oscillator algebras-the real Pauli algebra can be reduced to the
complex number system: This becomes evident, if we consider possible representations of the complex
numbers. Clearly we need two basic elements- the unit matrix and 7o, i.e., a matrix that commutes

with the unit matrix and squares to —1. If we write “i” instead of 1y, then it is easily verified that
(See also References [17,19] and Equation (34) in combination with Reference [20].):

x+iy:z:<_xy z)

ya =
exp(i¢) = cos(p)+isin(¢p)
|22 = ZZT =zz=x>+?

The theory of holomorphic functions is based on series expansions and can be equally well formulated
with matrices. Viewed from our perspective the complex numbers are a special case of the real
Pauli algebra- since we have shown above that any one-dimensional oscillator can be canonically
transformed into a system of the form of Equation (76). Nevertheless we emphasize that the complex
numbers interpreted this way can only represent the normal form of an oscillator. The normal form
excludes a different scaling of coordinates and momenta as used in classical mechanics, i.e., it avoids
intrinsically the appearance of different “spring constants” and masses (There have been several
attempts to explain the appearance of the complex numbers in quantum mechanics [21-27]. A general
discussion of the use of complex numbers in physics is beyond the scope of this essay, therefore we add
just a remark. Gary W. Gibbons wrote that “In particular there can be no evolution if ¢ is real” [24]. We
agree with Gibbons that the unit imaginary can be related to evolution in time as it implies oscillation,
but we do not agree with his conclusion. Physics was able to describe evolution in time without
imaginaries before quantum mechanics and it still is. The unconscious use of the unit imaginary did
not prevent quantum mechanics from being experimetally successful. But it prevents physicists from
understanding its structure).

5.2. The Dirac Algebra

In this subsection we consider the oscillator algebra for two coupled DOF, the algebra of
4 x 4 matrices. In contrast to the real Pauli algebra, where the parameters 2, b and ¢ did not
suggest a specific physical meaning, the structure of the Dirac algebra bears geometrical significance
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as has been pointed out by David Hestenes and others [28-30]. The (real) Dirac algebra is the
simplest real algebra that enables for a description of two DOF and the interaction between them.
Furthermore the eigenfrequencies of a Dirac symplex F may be complex, while the spectrum of the
Pauli matrices does not include complex numbers off the real and imaginary axis. The spectrum of
general 2n x 2n-symplices has a certain structure - since the coefficients of the characteristic polynomial
arereal: If A is an eigenvalue of F, then its complex conjugate A as well as A and —A are also eigenvalues.
As we will show, this is the spectrum of the Dirac algebra and therefore any 2n x 2n-system can, at
least in principle, be block-diagonalized using 4 x 4-blocks. The Dirac algebra is therefore the simplest
algebra that covers the general case.

The structure of Clifford algebras follows Pascal’s triangle. The Pauli algebra has the structure
1 — 2 — 1 (scalar-vector-bivector), the Dirac algebra has the structure 1 — 4 — 6 — 4 — 1, standing for
unit element (scalar), vectors, bi-vectors, tri-vectors and pseudoscalar. The vector elements are by
convention indexed with 7, with u = 0...3, i.e., the generators of the algebra (According to Pauli’s
fundamental theorem of the Dirac algebra, all possible choices of the Dirac matrices are, as long as the
“metric tensor” g,y remains unchanged, equivalent [31]. ):

01 0 0 0 -10 0
| =10 0 0 -1 0 00
T = 0 0 0 1 no= 0 0 0 1

0 0 -1 0 0 10

000 1 10 0 0 @)
oo B 0 1 0 0
= o1 0 0 T = 0 0 -1 0

1000 00 0 1

We define the following numbering scheme for the remaining matrices (The specific choice of the
matrices is not unique. A table of the different systems can be found in Reference ([32]).):

Y4 = YOY1 Y23 75 = 1
Y4 = YOV, Y7 = Y1401 = 71273
5= Yo Y8 = Y4Y02 =T33
Yo = Y03 Y9 = TaYYI=7172 (80)
Yo = Y1470 = M7273
Y1 = Y4M = 07273
Y12 = Y42 = Yorsm
Y13 = Y1473 = TYor172

According to Equation (17) we expect 10 symplices and since the 4 vectors and 6 bi-vectors are
symplices, all other elements are cosymplices. With this ordering, the general 4 x 4-symplex F can be

written as (instead of Equation (55)):
9

F=) fin (81)
k=0

In Reference [32] we presented a detailed survey of the Dirac algebra with respect to symplectic
Hamiltonian motion. The essence of this survey is the insight that the real Dirac algebra describes
Hamiltonian motion of an ensembles of two-dimensional oscillators, but as well the motion of a
“point particle” in 3-dimensional space, i.e., that Equation (25) is, when expressed by the real Dirac
algebra, isomorphic to the Lorentz force equation as we are going to show in Section 6.3. Or, in other words,
the Dirac algebra allows to model a point particle and its interaction with the electromagnetic field in
terms of the classical statistical ensemble of abstract oscillators.
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6. Electromechanical Equivalence (EMEQ)

The number and type of symplices within the Dirac algebra (80) suggests to use the following
vector notation for the coefficients [32,33] of the observables:

f=h
P = (fi,fafs)
E o= (ufsfol o
B = (f7.fsfo)"

where the “clustering” of the coefficients into 3-dimensional vectors will be explained in the following.
The first four elements £ and P are the coefficients of the generators of the Clifford algebra and the
remaining symplices are 3 symmetric bi-vectors E and skew-symmetric bi-vectors B. As explained
above, the matrix exponentials of pure Clifford elements are readily evaluated (Equations (61) and (62)).
The effect of a symplectic similarity transformation on a symplex

R(7/2)¢
= R(t/2)FRY(7/2) (83)
= R(7t/2)FR(-71/2)

s [ Ia SN
|

can then be computed component-wise as in the following case of a rotation (using Equation (81)):

F

9
Y feRaveR!
k=0

R, 7R, = (cos(T/2) + va sin(t/2)) i (cos(T/2) — 4 sin(1/2))
= 7k 08*(T/2) = Ya ¥ Ya SIn*(T/2) + (Ya Ve = ¥k Va) cos(7/2) sin(7/2))

(84)

Since all Clifford elements either commute or anti-commute with each other, we have two possible
solutions. The first (7, and <y, commute) yields with 72 = —1:

R, 7k R, = 75 cos?(T/2) — 93 7y sin®(1/2) = ¢ (85)

but if (74 and 1y, anti-commute) we obtain a rotation:

R, R;1 = v (cos?(t/2) —sin?(1/2)) + 727k 2 cos(T/2) sin(t/2)) (86)
= g cos(T) + vq Yk sin(7)
For a = 9 (7, = 71 72) for instance we find:
Y1 = 71 €os(T) + 917271 sin(T) = 1 cos(T) — 72 sin(T)
F2 = 72 cos(T)+ 717272 sin(T) = 2 cos(T) + 1 sin(7) (87)
,73 = 3,

which is formally equivalent to a rotation of P about the “z-axis”. If the generator 7, of the
transformation is symmetric, we obtain:

R;7«R;! = (cosh(t/2) + 7, sinh(1/2)) vk (cosh(t/2) — 7, sinh(1/2))
= 7k cosh?(T/2) = Ya Yk Ya sinh?(T/2) + (Yo Y — Vi Ya) cosh(t/2) sinh(t/2))
(88)
so that (if 7, and y; commute):
Y& = 7k cosh®(T/2) — 12 sinh*(7/2) (89)

Y& = vk (cosh’(T/2) —sinh*(1/2)) = 7x
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and if 7y, and 7, anticommute:

Tk = 7 (cosh?(T/2) + sinh?(7/2)) 4 2y, vk cosh(t/2) sinh(7/2))
. (90)
= 9, cosh(T) + v ¥ sinh(7),
which is equivalent to a boost when the following parametrization of “rapidity” 7 is used:
tanh (1) = B
sinh(t) = By
cosh(t) = 7y 1)

v = —
V1-p2
A complete survey of these transformations and the (anti-) commutator tables can be found in
Reference [32] (This formalism corresponds exactly to the relativistic invariance of a Dirac spinor in

QED as described for instance in Reference [34], although the Dirac theory uses complex numbers
and a different sign-convention for the metric tensor). The “spatial” rotations are generated by the

bi-vectors associated with B and Lorentz boosts by the components associated with E. The remaining
4 generators of symplectic transformations correspond to € and P. They where named phase-rotation
(generated by 7o) and phase-boosts (generated by 7 = (1, 72, 3)) and have been used for instance for
symplectic decoupling as described in Reference [33].

It is nearby (and already suggested by our notation) to consider the possibility that the EMEQ
(Equation (82)) allows to model a relativistic particle as represented by energy £ and momentum P
either in an external electromagnetic field given by E and B or-alternatively-in an accelerating and /or
rotating reference frame, where the elements E and B correspond to the axis of acceleration and
rotation, respectively. We assumed, that all components of the state vector i are equivalent in meaning
and unit. Though we found that the state vector is formally composed of canonical pairs, the units are
unchanged and identical for all elements of ¢. From Equation (13) we take, that the simplex F (and
also A) have the unit of a frequency. If the Hamiltonian H is supposed to represent energy, then the
components of i have the unit of the square root of action.

If the coefficients are supposed to represent the electromagnetic field, then we need to express
these fields in the unit of frequency. This can be done, but it requires to involve natural conversion
factors like 7, charge e, velocity c and a mass, for instance the electron mass m1,. The magnetic field (for
instance) is related to a “cyclotron frequency” we by we o ;- B.

However, according to the rules of the game, the distinction between particle properties and
“external” fields requires a reason, an explanation. Especially as it is physically meaningless for
macroscopic coupled oscillators. In References [32,33] this nomenclature was used in a merely formal
way, namely to find a descriptive scheme to order the symplectic generators, so to speak an equivalent
circuit to describe the general possible coupling terms for two-dimensional coupled linear optics as
required for the description of charged particles beams.

Here we play the reversed modeling game: Instead of using the EMEQ as an equivalent circuit
to describe ensembles of oscillators, we now use ensembles of oscillators as an equivalent circuit
to describe point particles. The motivation for Equation (82) is nevertheless similar, i.e., it follows
from the formal structure of the Dirac Clifford algebra. The grouping of the coefficients comes along
with the number of vector- and bi-vector-elements, 4 and 6, respectively. The second criterium is to
distinguish between generators of rotations and boost, i.e., between symmetric and skew-symmetric
symplices, which separates energy from momentum and electric from magnetic elements. Third of all,
we note that even (Even k-vectors are those with even k = 2 m, where m is a natural number) elements
(scalar, bi-vectors, 4-vectors etc.) of even-dimensional Clifford algebras form a sub-algebra. This means
that we can generate the complete Clifford algebra from the vector-elements by matrix multiplication
(this is why we call them generators), but we can not generate vectors from bi-vectors by multiplication.
And therefore the vectors are the particles (which are understood as the sources of fields) and the
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bi-vectors are the fields, which are generated by the objects and influence their motion. The full Dirac
symplex-algebra includes the description of a particle (vector) in a field (bi-vector). But why would the
field be external? Simply, because it is impossible to generate bi-vectors from a single vector-type object,
since any single vector-type object written as £ 7y + P - § squares to a scalar. Therefore, the fields must
be the result of interaction with other particles and hence we call them “external”. This is in some way
a “first-order” approach, since there might be higher order processes that we did not consider yet. But
in the linear approach (i.e., for second-order Hamiltonians), this distinction is reasonable and hence a
legitimate move in the game.

Besides the Hamiltonian structure (symplices vs. co-symplices) and the Clifford algebraic structure
(distinguishing vectors, bi-vectors, tri-vectors etc.) there is a third essential symmetry, which is
connected to the real matrix representation of the Dirac algebra and to the fact that it describes the
general Hamiltonian motion of coupled oscillators: To distinguish the even from the odd elements
with respect to the block-diagonal matrix structure. We used this property in Reference [33] to develop
a general geometrical decoupling algorithm (see also Section 6.2).

Now it may appear that we are cheating somehow, as relativity is usually “derived” from the
constancy of the speed of light, while in our modeling game, we did neither introduce spatial notions
nor light at all. Instead we directly arrive at notions of quantum electrodynamics (QED). How can this
be? The definition of “velocity” within wave mechanics usually involves the dispersion relation of
waves, i.e., the velocity of a wave packet is given by the group velocity 7,, defined by

and the so-called phase velocity v, defined by

| 8

Uph = (93)

It is then typically mentioned that the product of these two velocities is a constant vg, v, = c?. By the
use of the EMEQ and Equation (29), the eigenvalues of F can be written as:

Ky = —Tr(F?)/4

Ky = Tr(F*)/16—K3/4

w, = Ki+2vKp

wy = \/K1—2\/K2

2,2 2 (4)

wiws; = Ki—4K; = Det(F)

Ky, = &2 +B-E*-P?

K, = (EB+ExPR—(E-B2—(P-B)

Since symplectic transformations are similarity transformations, they do not alter the eigenvalues of
the matrix F and since all possible evolutions in time (which can be described by the Hamiltonian)
are symplectic transformations, the eigenvalues (of closed systems) are conserved. If we consider a
“free particle”, the we obtain from Equation (94):

Wiy = +1/E2 — P2 (95)

As we mentioned before both, energy and momentum, have (within this game) the unit of frequencies.
If we take into account that wy, = m is fixed, then the dispersion relation for “the energy” £ = w is

E=w=1\/m24 P2 (96)
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which is indeed the correct relativistic dispersion. But how do we make the step from pure oscillations
to waves? (The question if Quantum theory requires Planck’s constant i, has been answered negative
by John P. Ralston [35]).

6.1. Moments and The Fourier Transform

In case of “classical” probability distribution functions (PDFs) ¢(x) we may use the Taylor terms
of the characteristic function ¢x(t) = (expit x)y, which is the Fourier transform of ¢(x), at the origin.
The k-th moment is then given by

(x) =*$0(0) (97)

where ¢(*) is the k-th derivative of ¢y (t).

A similar method would be of interest for our modeling game. Since a (phase space-) density is
positive definite, we can always take the square root of the density instead of the density itself: ¢ = /p.
The square root can also defined to be a complex function, so that the density is p = ¢¢* = ||¢||> and,
if mathematically well-defined (convergent), we can also define the Fourier transform of the complex
root, i.e.,

¢(w, k) =N /cp(t, X) exp (iwt —ikx) dt d°x (98)

and vice versa:

¢, %) =N /qb(w,ié) exp (—iwt + i k%) dwdk (99)

In principle, we may define the density no only by real and imaginary part, but by an arbitrary number
of components. Thus, if we consider a four-component spinor, we may of course mathematically define
its Fourier transform. But in order to see, why this might be more than a mathematical “trick”, but
physically meaningful, we need to go back to the notions of classical statistical mechanics. Consider that
we replace the single state vector by an “ensemble”, where we leave the question open, if the ensemble
should be understood as a single phase space trajectory, averaged over time, or as some (presumably
large) number of different trajectories. It is well-known, that the phase space density p() is stationary,
if it depends only on constants of motion, for instance if it depends only on the Hamiltonian itself.
With the Hamiltonian of Equation (12), the density could for example have the form

p(H) xexp (—BH) =exp(—BpAp/2) (100)

which corresponds to a multivariate Gaussian. But more important is the insight, that the density
exclusively depends on the second moments of the phase space variables as given by the Hamiltonian,
i.e., in case of a “free particle” it depends on £ and P. And therefore we should be able to use energy
and momentum as frequency w and wave-vector k.

But there are more indications in our modeling game that suggest the use of a Fourier transform
as we will show in the next section.

6.2. The Geometry of (De-)Coupling

In the following we give a (very) brief summary of Reference [33]. As already mentioned,
decoupling is meant-despite the use of the EMEQ-first of all purely technical-mathematical. Let us
delay the question, if the notions that we define in the following have any physical relevance. Here we
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refer first of all to block-diagonalization, i.e., we treat the symplex F just as a “Hamiltonian” matrix.
From the definition of the real Dirac matrices we obtain F in explicit 4 x 4 matrix form:

~Ey  E.+B, E,—B B,

F — E, — By E, —By —E, —B;
Ey + B, B, E, E, — By
—By —Ey—i—Bz E, +By —E, (101)
—P, E— P, 0 Py
" —& — Py P, Py 0
0 Py —P, E+ Py
Py 0 —& + Py P,

If we find a (sequence of) symplectic similarity transformations that would allow to reduce the
4 x 4-form to a block-diagonal form, then we would obtain two separate systems of size 2 x 2 and we
could continue with the transformations of Section 5.1.

Inspection of Equation (101) unveils that F is block-diagonal, if the coefficents E,, Py, By and B,
vanish. Obviously this implies that E - B = 0 and P - B = 0. Or vice versa, if we find a symplectic
method that transforms into a system in which E - B = 0 and P - B = 0, then we only need to apply
appropriate rotations to achieve block-diagonal form. As shown in Reference [33] this can be done
in different ways, but in general it requires the use of the “phase rotation” 7y and “phase boosts”
¥. Within the conceptional framework of our game, the application of these transformations
equals the use of “matter fields”. But furthermore, this shows that block-diagonalization has also
geometric significance within the Dirac algebra and, with respect to the Fourier transformation, the
requirement P - B = 0 indicates a divergence free magnetic field, as the replacement of P by V yields
V - B = 0. The additional requirement E - B = 0 also fits well to our physical picture of e.m. waves.
Note furthermore, that there is no analogous requirement to make P - E equal to zero. Thus (within this
analogy) we can accept V - E # 0.

But this is not everything to be taken from this method. If we analyze in more detail, which
expressions are required to vanish and which may remain, then it appears that P-Bis explicitely
given by

PeBini 1213+ Py Bymamam+ EBamm = (P-B)mo
ExBxvama1s+EyByrssm+EzB:vem2 = (E-B)yu (102)
PyEx 17473 +PyEy 129571+ P2Ez 137672 = —(P-E)70

That means that exactly those products have to vanish which yield cosymplices. This can be interpreted
via the structure preserving properties of symplectic motion. Since within our game, the particle type
can only be represented by the structure of the dynamics, and since electromagnetic processes do not
change the type of a particle, then they are quite obviously structure preserving which then implies
the non-appearance of co-symplices. Or-in other words-electromagnetism is of Hamiltonian nature.
We will come back to this point in Section 6.4.

6.3. The Lorentz Force

In the previous section we constituted the distinction between the “mechanical” elements
P = £ 9 + 7 - P of the general matrix F and the electrodynamical elements F = 0 ¥ - E 4 71470 ¥ - B.
Since the matrix S = X 7y is a symplex, let us assume to be equal to P and apply Equation (25). We then
find (with the appropriate relative scaling between P and F as explained above):

dP

@ _p_ 1 _
- =P=5 _(EP—PF) (103)

which yields written with the coefficients of the real Dirac matrices:
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@& _ 49p.7
TE EPE_’ - -
£ — 1 (€E+PxB) (104)

where 7 is the proper time. If we convert to the lab frame time t using dt = %T Equation (103) yields
(setting ¢ = 1):

v = q97E

’yfi—f = % m’yE—l—m’yZ'J’XB)

iE _ 5. F (105)
a = 90 _

9 = q(E+9xE)

which is the Lorentz force. Therefore the Lorentz force acting on a charged particle in 3 spatial
dimensions can be modeled by an ensemble of 2-dimensional CHOs. The isomorphism between the
observables of the perceived 3-dimensional world and the second moments of density distributions in
the phase space of 2-dimensional oscillators is remarkable.

In any case, Equation (103) clarifies two things within the game. Firstly, that both, energy &
and momentum g, have to be interpreted as mechanical energy and momentum (and not canonical),
secondly the relative normalization between fields and mechanical momentum is fixed and last, but
not least, it clarifies the relation between the time related to mass (proper time) and the time related to
7o and energy, which appears to be the laboratory time.

6.4. The Maxwell Equations

As we already pointed out, waves are (within this game) the result of a Fourier transformation
(FT). But there are different ways to argue this. In Reference [16] we argued that Maxwell’s equations
can be derived within our framework by (a) the postulate that space-time emerges from interaction,
i.e., that the fields E and B have to be constructed from the 4-vectors. X = tyg +X-7,] = py0 + f ¥
and A = ® v + A - ¥ with (b) the requirement that no co-symplices emerge. But we can also argue
with the FT of the density (see Section 6.1).

If we introduce the 4-derivative

0= —0ty0+0x71+9y72+0:73 (106)

The non-abelian nature of matrix multiplication requires to dlstmgulsh d1fferent1al operators acting to

the right and to the left, i.e., we have 0 as defined in Equation (106), 8 and 8 which is written to the
right of the operand (thus indicating the order of the matrix multiplication) so that

-
Ho = —-oHy+oxHy+9d,Hy+0:Hs
By (107)
JH = —7OBtH+718xH+728yH+7382H

The we find the following general rules (see Equation (35)) that prevent from non-zero cosymplices:

1 (= —
5 <8 vector — vector 0 = bi-vector

— —
% d bi-vector — bi-vector 0 = vector
— —
% d bi-vector + bi-vector 0 = axial vector =0 (108)

1 (= —
5 <8 vector + vector 0 = scalar =0
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Application of these derivatives yields:

— —
F = } aA—A8>
— —
4ny = 3 8F—F8>
— —
0 = J0F+Fo (109)
— —
0 =} aA+Aa)
— —
0 =1 aJ+Ja>

The first row of Equation (109) corresponds to the usual definition of the bi-vector fields from a vector
potential A and is (written by components) given by

= —V¢—0A
= VxA

oeTlluslt

(110)

The second row of Equation (109) corresponds to the usual definition of the 4-current J as sources
of the fields and the last three rows just express the impossibility of the appearance of cosymplices.
They explicitely represent the homogenuous Maxwell equations

V-B = 0
- = 111
VXE+dB = 0 (11D
the continuity equation
o +V-j=0 (112)
and the so-called “Lorentz gauge”
9P+V-A=0 (113)

The simplest idea about the 4-current within QED is to assume that it is proportional to the
“probability current”, which is within our game given by the vector components of § = X .

7. The Phase Space

Up to now, our modeling game referred to the second moments and the elements of S are second
moments such that the observables are given by (averages over) the following quadratic forms:

£ o« Yp=gi+pi+a3+p;

pr < —q;+pi+a;— P

py < 2(q192 —p1p2)

p: < 2(q1p1+4q2p2)

Ex « 2(q1p1—492p2)

Ey « =2(q1p2+q2p1) (114)
E; « qi—pi+4q3—p3

By o 2(q192+pip2)

B, o qi+pi—q;— P

B, o 2(q1p2—p142)

If we analyze the real Dirac matrix coefficents of S = ¢ T 7¢ in terms of the EMEQ and evaluate the
quadratic relations between those coefficients, then we obtain:
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13’2 E’Z_B'Z_SZ

0 = E2-B

£ = (B+B)

EP = ExB

S 11

& = P-(ExB) (115
m? o« E2-P2=0
P-E = E-B=P-B=0

Besides a missing renormalization these equations describe an object without mass but with the
geometric properties of light as decribed by electrodynamics, e.g., by the electrodynamic description
of electromagnetic waves, which are E-B=0,P «E x B, E2 = B2 and so on. Hence single spinors are
light-like and can not represent massive particles.

Consider the spinor as a vector in a four-dimensional Euclidean space. We write the symmetric
matrix A (or X, respectively) as a product in the form of a Gramian:

A=B"B (116)

or-componentwise:
Aij = L (BT By
= Lk Bri By (117)

The last line can be read such that matrix element .4;; is the conventional 4-dimensional scalar product
of column vector B; with column vector B;.

From linear algebra we know that Equation (116) yields a non-singular matrix .4, iff the
column-vectors of the matrix B are linearily independent. In the orthonormal case, the matrix A
simply is the pure form of a non-singular matrix, i.e., the unit matrix. Hence, if we want to construct a
massive object from spinors, we need several spinors to fill the columns of B. The simplest case is the
orthogonal case: the combination of four mutual orthogonal vectors. Given a general 4-component
Hamiltonian spinor ¢ = (41, p1,92, p2), how do we find a spinor that is orthogonal to this one?
In 3 (i.e., odd) space dimensions, we know that there are two vectors that are perpendicular to any
vector (x,y, z)T, but without fixing the first vector, we can’t define the others. In even dimensions
this is different: it suffices to find a non-singular skew-symmetric matrix like 7 to generate a vector
that is orthogonal to ¢, namely g ¢. As in Equation (3), it is the skew-symmetry of the matrix that
ensures the orthogonality. A third vector 7, ¢ must then be orthogonal to ¢ and to g 1. It must be
skew-symmetric and it must hold $T+] 99 = 0. This means that the product ] o must also be
skew-symmetric and hence that 7, must anti-commute with j:

o)t = W ve=—-vr
= Y+ v0=0 (118)
0 = o7 +7 0

Now let us for a moment return to the question of dimensionality. There are in general 21 (2n —1)/2
non-zero independent elements in a skew-symmetric square 2n X 2n matrix. But how many matrices
are there in the considered phase space dimensions, i.e.,in1+1,3 + 1 and 9 + 1 (etc.) dimensions which
anti-commute with 7¢? We need at least 2 — 1 skew-symmetric anti-commuting elements to obtain
a diagonal .\A. However, this implies at least N — 1 anticommuting elements of the Clifford algebra
that square to —1. Hence the ideal case is 2n = N, which is only true for the Pauli and Dirac algebra.
For the Pauli algebra, there is one skew-symmetric element, namely 7. In the Dirac algebra there
are 6 skew-symmetric generators that contain two sets of mutually anti-commuting skew-symmetric
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matrices: g, y10 and 14 on the one hand and 77, s and 9 on the other hand. The next considered
Clifford algebra with N = 9 + 1 dimensions requires a representation by 21 = 32 = v/210 -dimensional
real matrices. Hence this algebra may not represent a Clifford algebra with more than 10 unit
elements-certainly not 2n. Hence, we can not use the algebra to generate purely massive objects
(e.g., diagonal matrices) without further restrictions (i.e., projections) of the spinor .

But what exactly does this mean? Of course we can easily find 32 linearily independent spinors to
generate an orthogonal matrix B. So what exactly is special in the Pauli- and Dirac algebra? To see
this, we need to understand, what it means that we can use the matrix B of mutually orthogonal
column-spinors

B= (Y%7 714¢) (119)

This form implies that we can define the mass of the “particle” algebraically, and since wehave N —1 =3
anticommuting skew-symmetric matrices in the Dirac algebra, we can find a multispinor B for any
arbitrary point in phase space. This does not seem to be sensational at first sight, since this appears
to be a property of any Euclidean space. The importance comes from the fact that ¢ is a “point” in a
very special space-a point in phase space. In fact, we will argue in the following that this possibility to
factorize 1 and the density p is everything but self-evident.

If we want to simulate a phase space distribution, we can either define a phase space density
p() or we use the technique of Monte-Carlo simulations and represent the phase space by (a huge
number of random) samples. If we generate a random sample and we like to implement a certain exact
symmetry of the density in phase space, then we would (for instance) form a symmetric sample by
appending not only a column-vector to B, but also its negative —. In this way we obtain a sample
with an exact symmetry. In a more general sense: If a phase space symmetry can be represented by
a matrix 7, that allows to associate to an arbitrary phase space point ¥ a second point s ¢ where
vs is skew-symmetric, then we have a certain continuous linear rotational symmetry in this phase
space. As we have shown, phase-spaces are intrinsically structured by ¢ and insofar much more
restricted than Euclidean spaces. This is due to the distinction of symplectic from non-symplectic
transformations and due to the intrinsic relation to Clifford algebras: Phase spaces are spaces structured
by time. Within our game, the phase space is the only possible fundamental space.

We may imprint the mentioned symmetry to an arbitrary phase space density p by taking all phase
space samples that we have so far and adding the same number of samples, each column multiplied
by <s. Thus, we have a single rotation in the Pauli algebra and two of them in the Dirac algebra:

By =1
Yo — Bi=(¥,709)
e — Ba= (¥, 7%, 714%, 11270 %) (120)
=W, 14¥,7109)
or:
By =1
7 = Bi=(¥,7¢)
8 = Ba= (79,79, 1877 ¢) (121)

=79, 789, —719%)

Note that order and sign of the column-vectors in B are irrelevant—at least with respect to the
autocorrelation matrix B BT. Thus we find that there are two fundamental ways to represent a positive
mass in the Dirac algebra and one in the Pauli-algebra. The 4-dimensional phase space of the Dirac
algebra is in two independent ways self-matched.
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Our starting point was the statement that 2 n linear independent vectors are needed to generate
mass. If we can’t find 2 1 vectors in the way described above for the Pauli and Dirac algebra, then this
does (of course) not automatically imply that there are not 2 n linear independent vectors.

But what does it mean that the dimension of the Clifford algebra of observables (N) does not match
the dimension of the phase space (2 7) in higher dimensions? There are different physical descriptions
given. Classically we would say that a positive definite 2 n-component spinor describes a system of n
(potentially) coupled oscillators with # frequencies. If B is orthogonal, then all oscillators have the same
frequency, i.e., the system is degenerate. But for n > 2 we find that not all eigenmodes can involve
the complete 2 n-dimensional phase space. This phenomenon is already known in 3 dimensions:
The trajectory of the isotropic three-dimensional oscillator always happens in a 2-dimensional plane,
i.e., in a subspace. If it did not, then the angular momentum would not be conserved. In this case the
isotropy of space would be broken. Hence one may say in some sense that the isotropy of space is the
reason for a 4-dimensional phase-space and hence the reason for the 3 4 1-dimensional observable
space-time of objects. Or in other words: higher-dimensional spaces are incompatible with isotropy,
i.e., with the conservation of angular momentum. There is an intimate connection of these findings
to the impossibility of Clifford algebras Cl,,; with p > 3 to create a homogeneous “Euclidean” space:
Let g represent time and -y, with k € [1,..., N — 1] the spatial coordinates. The spatial rotators are
products of two spatial basis vectors. The generator of rotations in the (1,2)-plane is 71 2. Then we
have 6 rotators in 4 “spatial” dimensions:

Y12 YIV3 YIVA Y23 V2 V4 Y3 V4 (122)

However, we find that some generators commute and while others anticommute and it can be taken
from combinatorics that only sets of 3 mutual anti-commuting rotators can be formed from a set of
symmetric anti-commuting 7. The 3 rotators

Y12, Y23, Y13 (123)

mutually anticommute, but y1 97 and 3 74 commute. Furthermore, in 9 4 1 dimensions, the spinors
are either projections into 4-dimensional subspaces or there are non-zero off-diagonal terms in A,
i.e., there is “internal interaction”.

Another way to express the above considerations is the following: Only in 4 phase space
dimensions we may construct a massive object from a matrix B that represents a multispinor ¥
of exactly N = 2n single spinors and construct a wave-function according to

Y =¢B (124)

where p = ¢? is the phase space density.

It is easy to prove and has been shown in Reference [16] that the elements -y, 19 and 714 represent
parity, time reversal and charge conjugation. The combination of these operators to form a multispinor,
may lead (with normalization) to the construction of symplectic matrices M. Some examples are:

M = (1¢,7%9% —vad,—70¢)/ VT ¢

MM =
M = (19,74 70970 $) /T (125)
My oMT = 99

M = (')’10 1/)/ -1 l,b/ —Y14 1/)/70 11[])/ V #]Tl)b
MyuMT = oy
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Hence the combination of the identity and CPT-operators can be arranged such that the multispinor
M is symplectic with respect to the directions of time 7y, 19 and y14, but not with respect to 7, ys
or 9. As we tried to explain, the specific choice of the skew-symmetric matrix g is determined by a
structure defining transformation. Since particles are nothing but dynamical structures in this game,
the 6 possible SUMs should stand for 6 different particle types. However, for each direction of time,
there are also two choices of the spatial axes. For ¢ we have chosen 71, 72 and <3, but we could have
used 74 = Y01, ¥5 = Y0 v2 and y6 = 9 73 as well.

Thus, there should be either 6 or 12 different types of structures (types of fermions) that can
be constructed within the Dirac algebra. The above construction allows for three different types
corresponding to three different forms of the symplectic unit matrix, further three types are expected
to be related to 7, yg and yg:

M = (1¢,—799, 189, —179)/ VT ¢

MyMI = oy
M = (1 Y, =8, —v7 9, —9 4’)/ \Y lPTIl] (126)
MysM? =

M = (79, -1¢,—7s¢, 19 9)/ VT ¢
MyMT = 19

These matrices describe specific symmetries of the 4-dimensional phase space, i.e., geometric objects
in phase space. Therefore massive multispinors can be described as volumes in phase space. If we
deform the figure by stretching parameters a, b, ¢, d such that

M= (alp,~byop, —cr1ah, —dy109)/ /9T (127)
then one obtains with f; taken from Equation (114):
. 9
MM = kgo Sk fe e/ VT
g0 = @+ +E+d
g1 = —g=g3=0a*—b*+c>—d? (128)
g4 = ~H=g=a>—b -+

g7 = gs=g9=a’>+b>—c*—d?

This result reproduces the quadratic forms fj of Equation (114), but furthermore the phase space radii
a, b, c and d reproduce the structure of the Clifford algebra, i.e., the classification into the 4 types of
observables £, P, E and B. This means that a deformation of the phase space “unit cell” represents
momenta and fields, i.e., the dimensions of the phase space unit cell are related to the appearance of
certain symplices:

(a=b)AND(c=d) = P=E=0
(a=c)AND(b=d) = E=B=0 (129)
(a=d)AND(b=c) = P=E=

while for a = b = ¢ = d all vectors but £ vanish. Only in this latter case, the matrix M is symplectic for
a =b = c¢ =d = 1. These relations confirm the intrinsic connection between a classical 4-dimensional
Hamiltonian phase space and Clifford algebras in dimension 3+1.
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8. Summary and Discussion

Based on three fundamental principles, which describe the form of physics, we have shown that
the algebraic structure of coupled classical degrees of freedom is (depending on the number of the
DOFs) isomorph to certain Clifford algebras that allow to explain the dimensionality of space-time,
to model Lorentz-transformations, the relativistic energy-momentum relation and even Maxwell’s
equations.

It is usually assumed that we have to define the properties of space-time in the first place:
“In Einstein’s theory of gravitation matter and its dynamical interaction are based on the notion of
an intrinsic geometric structure of the space-time continuum” [36]. However, as we have shown
within this “game”, it has far more explanatory power to derive and explain space-time from the
principles of interaction. Hence we propose to reverse the above statement: The intrinsic geometric
structure of the space-time continuum is based on the dynamical interaction of matter. A rigorous
consequence of this reversal of perspective is that “space-time” does not need to have a fixed and
unique dimensionality at all. It appears that the dimensionality is a property of the type of interaction.
However, supposed higher-dimensional space-times (see Reference [16]) would emerge in analogy
to the method presented here, for instance in nuclear interaction, then these space-times would not
simply be Euclidean spaces of higher dimension. Clifford algebras, especially if they are restricted by
symplectic conditions by a Hamiltonian function, have a surprisingly complicated intrinsic structure.
As we pointed out, if all generators of a Clifford algebra are symplices, then in 9 + 1 dimensions, we find
k-vectors with k € [0..10] but k-vectors generated from symplices are themselves symplices only for
ke [1,2,5,6,9,10,...]. However, if space-time is constraint by Hamiltonian motion, then ensembles
of oscillators may also clump together to form “objects” with 9 4 1 or 25 + 1-dimensional interactions,
despite the fact that we gave strong arguments for the fundamentality of the 3 + 1-dimensional
Hamiltonian algebra.

There is no a priori reason to exclude higher order terms-whenever they include constants of
motion. However, as the Hamiltonian then involves terms of higher order, we might then need to
consider higher order moments of the phase space distribution. In this case we would have to invent
an action constant in order to scale ¢.

Our game is based a few general rules and symmetry considerations. The math used in our
derivation-taken the results of representation theory for granted-is simple and can be understood
on an undergraduate level. And though we never intended to find a connection to string
theory, we found-besides the 3 + 1-dimensional interactions a list of possible higher-dimensional
candidates, two of which are also in the focus of string theories, namely 9 + 1 = 10-dimensional and
25 4+ 1 = 26-dimensional theories [37].

We understand this modeling game as a contribution to the demystification (and unification) of
our understanding of space-time, relativity, electrodynamics and quantum mechanics. Despite the fact
that it has become tradition to write all equations of motion of QED and QM in a way that requires the
use of the unit imaginary, our model seems to indicate that it does not have to be that way. Though it
is frequently postulated that evolution in time has to be unitary within QM, it appears that symplectic
motion does not only suffice, but is superior as it yields the correct number of relevant operators.
While in the unitary case, one should expect 16 (15) unitary (traceless) operators for a 4-component
spinor, but the natural number of generators in the corresponding symplectic treatment is 10 as found
by Dirac himself in QED [2,38]. If a theory contains things which are not required, then we have added
something arbitrary and artificial. The theory as we described it indicates that in momentum space,
which is used here, there is no immediate need for the use of the unit imaginary and no need for more
than 10 fundamental generators. The use of the unit imaginary however appears unavoidable when
we switch via Fourier transform to the “real space”.

There is a dichotomy in physics. On the one hand all causes are considered to inhabit space-time
(local causality), but on the other hand the physical reasoning mostly happens in energy-momentum
space: There are no Feyman-graphs, no scattering amplitudes, no fundamental physical relations, that
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do not refer in some way to energy or momentum (-conservation). We treat problems in solid state
physics as well as in high energy physics mostly in Fourier space (reciprocal lattice).

We are aware that the rules of the game are, due to their rigour, difficult to accept. However,
maybe it does not suffice to speculate that the world might be a hologram (As t"Hooft suggested [39]
and Leonard Susskind sketched in his celebrated paper, Reference [40])-we really should play modeling
games that might help to decide, if and how it could be like that.

Conflicts of Interest: “The author declares no conflict of interest.”

Appendix A. Microcanonical Ensemble

Einstein once wrote that “A theory is the more impressive the greater the simplicity of its premises,
the more different kinds of things it relates, and the more extended its area of applicability. Hence the
deep impression that classical thermodynamics made upon me. It is the only physical theory of
universal content concerning which I am convinced that, within the framework of the applicability of
its basic concepts, it will never be overthrown [...]” [10]. We agree with him and we will try to show in
the following that this holds also for the branch of thermodynamics that is called statistical mechanics.

By the use of the EMEQ it has been shown, that the expectation values

Tr(3) -
fo= 0 oy (A1)

can be associated with energy £ and momentum 7 of and with the electric (magnetic) field E and B
as seen by a relativistic charged particle. It has also been shown that stable systems can always be
transformed in such a way as to bring H into a diagonal form:

0 w 0 0

—w; 0 0 0
F= A2
0 0 0 w (A2)

0 0 -w 0

In the following we will use the classical model of the microcanonical ensemble to compute some
phase space averages. Let the constant value of the Hamiltonian be H = U where U is some energy,
the volume in phase space ®* that is limited by the surface of constant energy U is given by [41]:

o* — / dqy dpy dgs dps (A3)
H<U

and the partition function w* is the derivative

*

Ao
W —

- du

(A4)

which is the phase space integral over all states of constant energy U. The average value of any phase
space function f(p, q) is then given by

d
f(P/‘I)Iéw / f(p,q)dq1dp1dqadps (A5)

H<U
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In case of a 2-dimensional harmonic oscillator, for instance, we may take the following parametrization
of the phase space:

q1 = rcos(a) cos(B)
p1 = rcos(a)sin(p)
g2 = rsin(a) cos(7y) (A6)
p2 = rsin(a) sin(7y)
Note that Equation (A6) describes a solution of the equations of motion
p=Fy (A7)
when we replace
B — —wit (A8)

¥ — —wyt

This means that the (normalized) integration over  and - is mathematically identical to an integration
over all times (time average). From Equation (A5) one would directly conclude

Fodl = e | fpa) R drdudpdy (A9)
H<U

where g is the Gramian determinant. However the relative amplitude controlled by the parameter
« can not be changed by symplectic transformations and hence remains constant in a closed system.
Therefore the phase space trajectory of the oscillator can not cover the complete 3-dim. energy surface,
but only a 2-dim. subset thereof. This is known very well in accelerator physics as the emittance
preservation of decoupled DOE. And we have shown in Reference [33] that all stable harmonic
oscillators are symplectically similar to a decoupled system. Consequently « has to be excluded from
the integration of a “single particle” average and has to be treated instead as an additional parameter
or “boundary condition”:

flpa) = du / f(p.q) Vg drdpdy (A10)

H<U

The Gramian determinant hence is given by:

¢ = Det(GTG)
91 91 o
or B oy

d I’} d
2 75 £ (A11)
92 9 I
Jar B Jy
92 9 92
ar 9B 9y
so that one finds
Vg = 1% cos () sin («) (A12)

Accordingly, Equation (A3) has to be written as

/ Vgdrdpdy (A13)

H<U
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We use the abbreviations

o = w1+wy
Ao = @@ (A14)
QO = @+ Awcos(2u)

The Hamilton function is given in the new coordinates by

2
@)
H="22 (A15)
2
so that the condition H < U translates into
r < \/E (Al6)

where ¢ = U/Q). The integration over  and 7 is taken from 0 to 2 77. The complete integration
results in

_ 21 2u\%/?
®* = = sin(2a) <ﬁ> (A17)
— 3
w* — 5 @*
The following average values are computed from Equation (A10):
H = U
H? u?
€ for k=0
i = ecos(2a) for k=38
0 for ke {1-7,9} (A18)
_ JTk2 for k=0,8
2 = 1e2(1+cos?(2a)) for ke {1,3,4,6}
1 €2 sin? (2a) for k€ {2,579}

Hence we find that fj (energy), fs (one spin component) and H (mass) are “sharp” (i.e., operators
with an eigenvalue), while the other “expectation values” have a non-vanishing variance. The fact
that spin always has a “direction of quantization”, i.e., that only one single “sharp” component, can
therefore be modelled within our game. It is a consequence of symplectic motion. Note also that the
squared expectation values of all even (y1, y3, y4 and 7y, except yg and 7yg) and all odd (72, 5, y7 and
7Y9) operators are equal (The even Dirac matrices are block-diagonal, the odd ones not. There are six
even symplices and four odd (2, 5, v7 and -y9) ones [32]. Obviously this pattern is the reason for the
grouping in Equation (A18)).

Consider the coordinates are given by the fields (Exx) Q= (fa, f5, f6)T and the momenta as
usual by P = (f1, fa, f3)7, then the angular momentum L should be given by I. = Q x P. We obtain
the following expectation values from the microcanonical ensemble:

2 = ng = 1 ¢t sin? (2a) (A19)
L, = € cos (2a)
L2 = e* cos? (2a)

That is-up to a common scale factor of ¢ (or €2, respectively)-we have the same results as in
Equation (A18). Consider now the quantum mechanical postulate that the spin component of a
fermion is s, = &5 = &4 and 5> = 52 + sﬁ +52 = s(s+1) = 3. We can “derive” this result
(up to a factor) from an isotropy requirement for the 4th order moments, i.e., from the condition that
(P2) = (Pf) = (P2):

sin? (2a) = 2 cos® (2a) (A20)
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so that .
= 5 arctan V2 = 27.3678° (A21)
or equivalently with
143 cos? (2a) =0 (A22)
we obtain ;
cos(2a) =+— A23
(2a) /3 (A23)

With respect to the symplex F as defined in Equation (A2), we have
F=a7+AMwys (A24)
so that with Equation (A18) one finds
fs/fo = fs/fo = cos (2a) (A25)

The total spin would then be given by the 4th order moments as 52 = 2, so that for a spin—%—particle

we would have to normalize to 2 = (s(s + 1))i* = 3 h? and hence fg = \/g h % = % However, the

mass formula (Equation (94)), refers to the second moments, so that in linear theory we would have

/ 1 4
:wO\/f§+f§:wo £2+3€2:w0\/g£:w0h (A26)

In order to relate this to a frequency difference, we use Equation (A25):

fs . Aw _ wi—wy __ 1
f—g = Ww—wiwi—cos(sz)—\ﬁ
=

A27
Qo= 2443 (A27)
O = 4Aw—7

Then from r = v/2 ¢ and Equation (A15) we find

_ 0 3p 4 5
M = SP=ca=iro=\/ingae (A28)
= 2hw =nh(w; 4+ w»)

To conclude, classical statistical mechanics allows for a description of spin, if the rules of symplectic
motion are taken into account. This alone is remarkable. Secondly, assumed that the microcanonical
ensemble is the right approach, then the isotropy of the emergent 3+1-dimensional space-time
(with respect to 4th-order moments) apparently requires a certain ratio between the frequencies
and amplitudes of the two coupled oscillators, i.e., an asymmetry on the fundamental level.

Appendix A.1. Entropy and Heat Capacity

The entropy S of the microcanonical ensemble can be written as [41]:
S =k log ®* (A29)
The temperature T of the system is given by

oS

d(k log®*) k w*
au -

k: Toou [ (A30)

‘w'ﬂ\*—‘

N
<
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so that energy as a function of temperature is
3
u= 3 kT (A31)
and the heat capacity Cy = aa—LTI is (per particle)

Cy = 3 k (A32)
This important result demonstrates—according to statistical mechanics— that the 3-dimensionality of
the “particle” as the energy per DOF is kTT: a two-dimensional harmonic oscillator of fundamental
variables is equivalent to an free 3-dimensional “point particle”. To our knowledge this is the first real
physical model of a relativistic point particle.
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