symmetry MoPY

Article
Symmetry-Based Conflict Detection and Resolution
Method towards Web3D-based Collaborative Design

Mingjiu Yu !, Hongming Cai 2%, Xiaoming Ma 2 and Lihong Jiang 2

1 Department of Industrial Design, Northwestern Polytechnical University, Shaanxi, Xi’an 710072, China;

yumingjiu@nwpu.edu.cn

2 School of Software, Shanghai Jiaotong University, Shanghai 200240, China; xinj2012sjtu@sjtu.edu.cn (X.M.);
jiang-lh@cs.sjtu.edu.cn (L.J.)

* Correspondence: hmcai@sjtu.edu.cn; Tel.: +86-21-3420-5153; Fax: +86-21-3420-5145

Academic Editor: Yuhua Luo
Received: 30 March 2016; Accepted: 30 April 2016; Published: 11 May 2016

Abstract: In the process of web3D-based collaborative design, it is necessary to completely prevent
operation conflicts among designers due to distributed environments and complex 3D models.
Therefore, conflict detection and conflict resolution are of great significance to attain an acceptable
result. In order to facilitate effective and smooth design work, a symmetry-based collaborative
design framework is proposed using the X3D operation models. Combined considerations cover
both models and operations, while different operation strategies are utilized for conflict resolution
in web-based collaborative design. The strategy can achieve automatic operation, real-time conflict
detection based on dynamically adjustable time, and conflict auto-detection and resolution with
designers’ customization. A proof-of-concept system is developed for verification. The proposed
resolution shows good performance, scalability and interactivity in a case study.

Keywords: web3D Collaborative design; conflict Detection; conflict Resolution; X3D; symmetry

1. Introduction

It is very difficult for one person to accomplish entire work in large-scale projects such as
large-sized industrial equipment design, architecture design, aircraft design, etc. Therefore, web-based
collaborative design provides an effective and visual manner for different designers to work together
so as to archive complex task. Compared with traditional client applications, web-based collaborative
design has some advantages. The development of cloud-computing has provided web applications
with better infrastructure services [1,2]; for instance, web-based collaborative word editing systems
like Google docs and Microsoft office web version provide users with more convenience and
portability [3,4]. Using WebGL, which has been developed and is supported by new versions of
browsers like Mozilla Firefox, Apple Safari, Chrome, and so on, it is possible to display 3D models
in browsers without plugins [5,6]. Since X3D conforms to XML structure, supports multi-level
operations and can easily be converted to HTML format, we use X3D format models as design
resource. As a consequence, building a web-based X3D collaborative design platform is very feasible
both for requirements and technology.

However, when more than one designer operates the same 3D model in a large-scale environment,
operations conflict may appear. How to detect and resolve conflict is a crisis task for cooperative
application. In order to prevent the accumulation of conflicts, every designer needs to be timely
informed whether his/her operations conflict with those of others, and the hope is that the conflicts
can be resolved by the system automatically and quickly if there is any conflict. Thus, it is necessary
to ensure the interactivity and real-time performance of this design platform. In this platform,
Conlflict detection (CD) [7] and conflict resolution (CR) [8,9] are important [10-14]. This paper studies

Symmetry 2016, 8, 35; d0i:10.3390/sym8050035 www.mdpi.com/journal /symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/journal/symmetry

Symmetry 2016, 8, 35 2 of 15

how to solve conflicts by editing operations to atomic X3D models or sub-scenarios. Additionally,
decomposing task, which satisfies symmetry properties, will help to control cooperative distributed
systems smoothly [15], while some evolutionary symmetry algorithms are proposed to search the
space of symmetries effectively [16]. These examples prove that symmetry is useful to design and
control complex distributed systems.

Therefore, a novel web-based X3D collaborative design framework is proposed, which focus on
conflict detection and resolution to the symmetric designers. It can deal with automatic operation
delivery, real-time CD and automatic CR. Its performance, scalability and design interactivity are
demonstrated by experiments and analysis.

2. Related Work

The current solutions to collaborative design problems can be mainly divided into three types,
namely, authority type, operation transformation, and other synchronous or asynchronous ones.
These three types can be treated as pessimistic or optimistic according to their attitude towards
conflicts (Table 1). Authority type is pessimistic and does not take conflicts into consideration, while
the other two are optimistic and allow conflicts to arise and then they resolve them.

Table 1. Conventional solutions to collaborative problems.

Type Collaboration Mechanism Problem resolved

Lock Mechanism
Traffic Light Mechanism

Authority Type Request Application Mechanism Conflict Avoidance

Right Mechanism

Floor Mechanism

Sequence Transformation Real-time Conflict Resolution in Word
Operation Transformation =~ ABT Mechanism Editing System

3D Operation Transformation 3D Model Dependency Conflict Resolution

Semi-Synchronous
Conflict Awareness
Creative conflict resolution

Conflict Detection or Resolution with
Designer Participation

Other Synchronous or
Asynchronous

For most of the authority mechanisms, e.g., lock mechanism, traffic light mechanism and floor
mechanism [17-25], designers must apply for system’s permissions before modifying collaborative
models, so they can make all the operations execute sequentially and ensure data consistency among
all workstations. However, these methods also reduce designer experience, and lead to deadlock.

Operation transformation (OT) is optimistic in that it transforms conflicting operations to enable
them to be executed sequentially, which is commonly used in collaborative word editing system
(CWES) [6,26-29]. However, this requires complex computations to transform operations to 3D models,
and in 3D collaborative design only one type of conflicting operations can be restored, which is totally
different from CWES. In addition, we propose a novel OT solution to deal with the dependency
conflicts among 3D models [30]. Note that dependency conflicts are similar to the position conflicts
in CWES, which cannot resolve the collaborative editing conflicts of 3D models. The rest of the
solutions are primarily designers motivated synchronous ones, by which designers submit their
operations autonomously [31,32], then the system makes CD based on versions and conducts CR by
means of conflict combination [12], automatic conflict resolution with designer customization [33],
creative conflict resolution [34], collaborative conflict resolution [35], conflict awareness [36], etc.
However, if the time interval between two adjacent submissions were too long/short, the possibility
of potential /missing conflicts will be very high. Moreover, both operation submissions and conflict
resolution require designers’ frequent participation, which would disturb the design work pace.
Besides, the automatic conflict resolution does not provide detailed configuration parameters [37].

Symmetry 2016, 8, 35 3o0f15

In short, these approaches only focus on operations or models; however, cooperative conflicts
could the result of both models and operations. An effective method should cover both elements of
models and operations so as to archive web-based cooperative work.

3. A Framework of Conflict Detection and Resolution in Web-based Collaborative Design

We propose a framework to deal with dynamic time related real-time conflicts detect and
automatic conflicts resolution with detailed configuration parameters, based on the above analyzed
problems. As Figure 1 shows, different designers use 3D interface or browser to operate a local 3D scene,
but since they have the same symmetric properties, they usually put forward symmetric requirements
to designer with symmetric operation, and the server uses a global scene, which stores all the completed
3D scenes. In the proposed symmetric framework, 3D browser and service-side architecture are
presented symmetrically to design, implement and deploy relevant components. With storage-type
and data processing-type cloud platforms, we divide the service-side into several modules, being
responsible for designer management, real-time CD, automatic CR, version controlling and sending
processed operation outcomes to all the connected browsers; while browsers are responsible for
performing compatible operations, undoing conflicting operations and updating local version number.

Design Scene Operations

0@

<html> Operation List: %
sbody= —» oper1
<X3D> [—*oper2 Vi1 De';lgnel Desigper 1B Design4gr nA Signer nB
<Scene> o
<Navigationinfo/> operi operations operations operations operations
<Viewpoint/> operi+
<Transform> .
<shape> - V2 i i i
</shape> | operj
</Transform> .
<Transform> ORET CompOpers
<shape> - vn
</shape>

</Transform>

</Scene>
</X3D>
</body>
</html>

CompOperList:
{ operm, opern . . . opers }

Global Scene

Version number: V1...Vn

CompOpers: operations with conflicts handled
Operations: operation by designer
CompOperList: compatible operation list
ConfClassList: conflict operation cluster list

ConfClassList:

{ operoo, opero1 . . . operox }
{ oper10, oper11 . . . operly }

[Calor] { operto, opert1 . . . opertz }

A A Geomet I

Feature B

Geometry = L |
Node Behavior

Figure 1. The symmetric framework of cooperative design model based on X3D structure.

Figure 1 shows the data view between browsers and service-side during design process. In order
to minimize the data transfer volume between browsers and service-side, and to satisfy the need to
undo conflicting operations, we adopt the operation-based mode of data representation compared
with state-based and change-based modes [38]. Besides, we use symmetric replica design structure in
which each browser side maintains the same history operation lists and version number as service-side,
thus designers can edit models without constraints.

4. Basic Conceptions and Conflict Detection

First of all, some basic elements such as design resource and operations should be described, and
then conflict detection could be carried out based on operation comparison.

Symmetry 2016, 8, 35 4 0f 15

4.1. Design Resource Representation Based on X3D

3D model: We use X3D format models (Figure 1) as design resource for their rich sources and
XML schema. First, X3D structure can be converted to HTML structure and edited easily in a manner
very similar to editing HTML format files. Second, just like XML, X3D also has extensibility and
supports customization [37]. Based on these characteristics, all X3D models in a HTML file can be
abstracted into an X3D tree with many nodes, and any updates on X3D models can be reflected to X3D
document object model (DOM) tree [37].

Since X3D DOM tree has hierarchical structure, designers can modify all kinds of nodes
collaboratively, such as the same nodes or the different nodes, and the parent or child nodes. In this
paper, we mainly make CD and CR for operations to atomic models and sub-scenarios.

4.2. Operation Description

We would like to introduce some basic concepts so that our work can be better comprehended,
including Operation Type, Concurrent Operations, Causal Operations, Operation Will, and
Conflicting Operations.

Operation Type: Considering characteristics of X3D atomic models and sub-scenarios, we come
up with X3D design system’s operation types based on those in graphic editing system [34]; thus,
the five operation types are Add, Delete, Modify_Position, Modify_Color and Modify_Size. Since some
simple models have only one kind of color to be modified, we use Modify_Color to represent this
operation type. To minimize the data transfer volume further, we use JaSON object with necessary
data items (Table 2) as the Operation format. Besides, to provide designers with choices of custom
fields depending on their future needs, we make all operation types’ data fields scalable. The operation
formats are found in Table 3.

Table 2. The description of data fields in operations.

Item Description
Id unique ID of an operation
scene_id unique ID of a scene
user_id unique ID of a designer
Type operation type, Add or Delete, etc.
version_no version the operation is based on
Params added or deleted models array
Model added or deleted model
scene_model_id unique ID of a model in a scene
Name model name
Style model style
Trans model position
Color model color
Size model size
Before attribute value before modified
After attribute value after modified

Table 3. Conlflict relation between operations when editing the same scene model (except Add).

Operation Type Add Delete Modify Size Modify Position Modify Color
Add Compatible ~ Compatible Compatible Compatible Compatible
Delete - Conflict Conflict Conflict Conflict
Modify_Size - - Conflict Compatible Compatible
Modify_Position - - - Conflict Compatible
Modify_Color - - - - Conflict

Symmetry 2016, 8, 35 50f 15

Add or Delete: [1 type, version_no, params: [{model:{scene_model_id, name, style, trans, color, size ...] ... }]}.

Modify_Position, Modify_Color and Modify_Size: [1 type, version_no, params: [{model: {scene_model_id,
before, after ...] ...}1}.

Concurrent operations: They refer to those operations based on the same version [12,13,39].

Causal Operations: The operations that are upon different versions are called Causal Operations [12,13,39].

Operation Will: It refers to the model state that a designer wants to achieve by operation [40].
When a designer edits a model, he/she has no idea what others are editing, no matter whether his/her
operation is before or after their operations in time. Therefore, we assume they are timeless. However,
designers have the right to ignore this feature and suppose concurrent operations are time-related.

Conflicting Operations: When the designers modify the same model for similar attributes [12,13,40],
it is often the case that their operations may be conflicting with another one (Table 3). We need to deal
with different cases as follows: when designers A and B delete the same model, or modify a specific
model for similar attribute to make them remain the same value, or make either of them have the same
effect, we have to reserve both of them and regard them as contradictory to each other; this is due to
the fact that the corresponding designers may have different authority values which can be used as
a basis to make automatic CR. However, when a designer modifies the same attribute of one model
repeatedly, we just keep the last one, because this will not influence the CR result.

4.3. Conflict Detection Based on Symmetry Operation Comparison

All conflicting operations can only happen among concurrent operations, so we simply need to
conduct CD for concurrent operations. However, when to start and how to make CD are the issues we
need to resolve in this section. As mentioned above, we intend to realize real-time CD to balance the
calculation loads, so the specific CD process is described as follows:

When the system receives the first operation, it just puts it into the compatible operation list
(ComOL); but after receiving the second operation, the system compares it with the first for conflicts
since they are concurrent and symmetric, different processing is carried out based on comparison
result (Figure 2). For the subsequent operations, the system first compares them with operations in
ComOL, then the operations in ConOL one by one.

Input: ConOL
Qutput: CR result list: resOL
foreach operList in ConOL
foreach oper in operList

Integer prol=0, pro2=0, pro3=0, pro4=0;

If paraml.isChecked //compute authority
factor

prol= oper.getAuthValue*paraml.prop

if param?.isChecked //compute time order
factor

pro2= oper.getOrValue*param?2.prop

if param3.isChecked //compute oper type
factor

pro3= oper.getProp*param3.prop

if param3.isChecked //compute oper type

factor
prod= oper.getComVal*paramd.prop

Integer tota/=prol+pro2+pro3+prod
end
add the operation with biggest total value to resOL
end

return resOL

Figure 2. The description of operation comparison process.

Symmetry 2016, 8, 35 6 of 15

5. Multiply Strategies for Conflict Resolution

In this section, we introduce an automatic CR method by describing parameter strategy and time
strategy, and then fill the remaining leak.
5.1. Conflict Resolution Method

Then conflict resolution is carried out which involves different factors such as authority, time
order and operation types. Different strategies can thus be constructed. Then, a formal description of
automatic CR process is given as Figure 3.

Input: current JaSon format operation
cuOper
Output: ComOL, ConOL.
//make conflict detetion
foreachoper in ComOL
ifcuOper.type==oper.type{
if
Oper.scene_model id==oper.scene_model
id{
ifcuOper.user_id==oper.user_id}
delete oper in ComOL
add cuOper to ComOL
return ComOL, ConOL.}
ifcuOper.after==oper.after{
tempList=new List()
add cuOper&oper to tempList
add tempList to ConOL
return ComQL, ConOL.
} Jelse
continue
end
for each operList in ConOL
for each oper in operList
as above

end

Figure 3. The formal description of automatic CR process

5.2. Parameter Strategy

In conventional CR ways [17], the design work pace is easily disrupted, so it is better to authorize
designers to customize the CR parameters and resolve conflicts automatically. In making automatic
CR process, the system first calculates priorities for every conflicting operation and then selects the
first symmetry type as the CR result.

Taking different designers’ technical competences, design experiences, different operation type,
and the style of models into consideration, we give authorized designers four CR parameters to use.
They express their intention to make CR by checking and assigning different proportions to each
parameter. Besides, we also support parameter expansion to satisfy the design needs in the future.
Through establishing integrated parameter basis, parameter initialization and calculation mechanisms,
authorized designers can create their new parameters to make automatic CR. The four parameters
are as follows.

Symmetry 2016, 8, 35 7 of 15

Designer Authority: Every registered designer in our system will be allocated an authority value
corresponding to his or her technical competence and design experience. The higher capability and
richer experience, the bigger authority value will be assigned to him or her. If the authorized designer
selects this parameter and assign a proportion to it, we can compute the influence factor of this
parameter by multiplying this designer’s authority value and this proportion.

Time Order: The time here refers to the time when the system receives an operation. By checking
and setting this parameter, we can deactivate the timelessness of concurrent operations mentioned
above, and emphasize the importance of time order when making automatic CR.

Operation Type: Conflicting operations may happen between modifying operations, or modifying
operation and deleting operation. Because the models can no longer be edited once deleted, the deleting
operations may have greater influences than other types. Based on the type difference designer can
assign different priorities to different operation types to show their protection degree for them.

Model Compatibility: Most 3D models have attributes of color, texture, style, etc. In this cooperative
design framework, for example, symmetric designers A and B collaboratively change a chair’s color
to red and gray, respectively, which can promote the better operation result. For instance, the gray is
more coherent with the desk’s color, so we tend to protect the more coherent operation by checking
the parameter.

5.3. Time Strategy

ComOL and ConOL are the results that can be obtained from CD; and the version number will
remain the same if no CR is made. Moreover, the size of ComOL and ConOL will become bigger and
bigger, and CD is made more time-consuming. Thus, the system needs to choose an appropriate time
as the trigger point to make automatic CR, and limits the sizes of ComOL and ConOL to a proper range.

A law needs to be presented before presenting the time strategy.

LAW 1: The real-time performance will get worse if the selected time is too long, which is because
the designer does not have a chance to know whether his/her operations have already been sent
to service-side in a timely manner or not, which may have conflicts with others. If this is the case,
the designer has to perform more conflicting operations because the conflicts cannot be resolved in
time. On the other hand, if the time is too short, the system may mistake concurrent operations as
causal operations more often, and result in missing some conflicting operations and poor protection of
designers’ operation will.

It is almost impossible to find a fixed time used for CR due to many factors such as the uncertainties
of designers’ number, operation habits, network conditions and so forth. For instance, if there are more
than two designers, the time should be set longer since the system needs plenty of time to deal with
the concurrent operations. Therefore, we assume the time should be dynamically adjustable to solve
this problem. Furthermore, we also provide designers an opportunity to customize new time strategy.
Next, we introduce the time plan by answering the following three questions:

Question 1: How can you tell if the selected time is too long or short?

Different situations caused by time selection have been introduced by LAW 1. Therefore, our
system can tell the time by identifying these two different situations. Here, two indexes are applied to
calculate at the end of each version period to indicate them roughly. They are Avoidable Conflict No.
and Late Operation No.

Avoidable Conflict No. refers to the number of conflict operations that could have been avoided if
an appropriate time is selected. It is used to represent the situation where the selected time is too long.
Contflict operations will accumulate continuously and some unnecessary conflicting operations may
appear if the time to make automatic CR is delayed.

Late Operation No. refers to the number of operations that maybe received late by the system, and
it is usually used to represent the situation in which the selected time is too short. The server may not
start CR timely, and miss quite a lot of concurrent operations if the time is too short; and when CR
is accomplished, the version number will be updated, and the system may receive operations with a

Symmetry 2016, 8, 35 8 of 15

smaller version number than the existing one. Nevertheless, whenever the server makes CR, the late
operations cannot always be easily avoided since it is difficult to predict designers’ operation time.
Despite this, the index can help us to know more about the present situation.

Question 2: How do you initialize the time?

We are determined to start CR when the first avoidable conflict operation is detected or the
total operation number is equal to the number of designers. We then apply this time interval as the
selected time in next version period, with many uncertain factors taken into account before actual
design begins.

Question 3: How do you update the time before entering next version period?

We can predict whether the selected time is too long or short by the two indexes, and decide
whether to decrease or increase it so as to keep these indexes in the least possible range. We would
like to cope with this problem on the basis of our experimental data. Experiments show that it takes
an average processing time of two milliseconds for one operation. Suppose there are one hundred
designers operating the same scene and each designer sends an operation at the same time, the total
time would be two hundred milliseconds. However, in the actual cases, it is almost impossible for
all the designers to operate simultaneously, so it often takes more than two hundred milliseconds.
Thus, we assume the time is no less than two milliseconds, taking the number of product designers
into consideration to ensure all the designers’ operation will.

Actually, compared with avoidable Conflict No., late Oper No. is more difficult to reduce by
adjusting the selected time, and this problem is solved in next subsection. However, avoidable conflicts
make worse influences than late operations, so we give priority to reducing avoidable Conflict No., and
meanwhile reduce late Oper No. as far as possible. In order to reduce avoidable Conflict No. quickly,
when avoidable Conflict No. is not equal to zero, we cut the time in half until the time is less than
two milliseconds; when avoidable Conflict No. is equal to zero, we add the time by 50 until reaching
500 milliseconds. This time is the mean value of the time interval between two operations sent by a
designer and is adjustable depending on real situation. We will verify this time strategy by experiments
in next section.

5.4. Leak Filling

There still may be a problem even though the time is dynamically adjustable due to the many
uncertain factors discussed above; that is, the system may receive operations that are on former
versions after the version has been updated. To further ensure designers’ operation will, we have to
remedy this problem. The solution is as follows.

The system will restore the CR result for one or more version periods (according to different
designer settings) after the version number is updated; and the system will compare them with the
reserved operations for conflicts individually after receiving the late operations. Then there are two
possible results: First, the system will ignore the conflicts and ask the browser ends to handle them if
there are conflicts because corresponding browser end has already performed this operation before it
is sent to service-side; and if this operation has conflicts with the result operations sent by the system,
then the browser end would undo this operation automatically, so there is no need to handle them.
Second, if there is no conflict, the system changes the operation’s version number to the present one,
treating it as concurrent operation and continues processing. By this solution, this problem is well
solved and designers’ operation will is also well protected.

6. Analysis and Evaluation

In this section, we will verify the framework by case study and analysis.

6.1. System Implementation and Case Study

A web-based cooperative design system is implemented, which acts as an indoor design modules
in a real estate enterprise. By means of web-based indoor decorative module, the preferences and

Symmetry 2016, 8, 35 9of 15

requirement of users are collected for further disposing. The end-users could interact with designer or
other users to make their requirement clearly. A scenario is given to verification as follows. Designer A
edits a scene model carpet in his or her web page (Figure 4), and the corresponding operation is sent to
CD module automatically, then this module makes conflict comparison between this operation and the
precious ones on the same version of X3D scene, and puts it into different operation list according to
operation comparison result. Meanwhile, the CR module decides whether to start conflict resolution
based on dynamic adjustable time, and it automatically resolves conflicts according to the configured
parameters, refines the dynamic time and updates scene version; then the designer management
service module sends the results to other designer in the cooperation, and the storage-type service
module saves the result operations. After receiving the result operations and message tips sent by
server, every browser cancels his/her local conflicting operations, performs compatible operations
automatically and updates the local version number of scene. Even though the conflicting operations
are undone, he or she can still decide whether to remake the conflicting operations on new scene
version again.

23A19ETD-81E7-4CT

Plane 001

Cube 013_Cube014__ v

018 147 115

0.00 .00

¥ 0% 080 090

File Scene Edit Add View RVC Window Help File Scene Edit Add View RVC Window Help

= homeDesign * homeDesign
o livingroom < livingroom
= sofa = sofa
= carpet = table
= table = carpet
= side_table1 = side_table1
= side_table2 = side_table2
= lamp = lamp
= wall_left = wall_left
= wall_right = wall_right
= wall_front = wall_front
= wall_back = wall_back
=« door = door
= handle = handle

(a) (b)

Figure 4. Editing conflict in web-based X3D collaborative design: (a) designer A’s concept view based
on X3D; and (b) designer B’s concept view based on X3D.

The concept view based on X3D is given in Figure 4, and conflict detection will find a structure
conflict. The conflict resolution is based on dynamic mechanism. If Designer A uses related operation
to composite Picture with wall-right by position parameter, and Designer B uses Group operation to
composite wall-right with Floor, dependency conflicts will happen. Therefore, priority of Designer A,
Designer B and the Operation List combined Designer A and Designer B will be calculated by DP
mechanism, then the result will return to Designer A and Designer B. Models transformation is limited
by only related compatible operations but not all the models in different local scenes (Figure 5).

Symmetry 2016, 8, 35

File Scene

Edit Add View

+ homeDesign

o Kitchen

cupboard

= cupboard2
= sofa

Edit Add View

o kitchen
» cupboard
» cupboard2
« sofa

« table_side1(P)

- table_side1(P)
= table_side2(P) = table_side2(P)
. lamp = lamp
= chair = chair
= chandalier1 = chandalier1
= chandalier2 = chandalier2
= wall_left = wall_left
= wall_right() = wall_right(P)
= floor = floor(P)
= ceiling = ceiling
= carpet = carpet
= table(P) « table(P)
= wall_front = wall_front
= picturg(P) = picture
(a) (b)

C Window

Help

10 of 15

Figure 5. Collaborative dependency conflict: (a) concept view of designer A; and (b) concept view of
designer B.

6.2. Evaluation

As mentioned above, the proposed framework is implemented and run as an instance in
collaborative interior design. Avoidable Conflict No. and late Operation No. are applied to measure
protection degree of a designer’s operation will, and operation processing time is used to demonstrate
system responding performance.

We use threads to simulate designers, and the suspended time of threads to simulate the operating
time interval of designers or network delay, to make a more real simulation of collaborative design
work. In our study, we simulate two groups of designers with a number of fifty and eighty, respectively,
and produce operations for each group by combining the five operation types according to the
requirements of different scenarios.

Here, we give each thread ten operations, and make each of them send operations at time intervals
from 150 to 1150 milliseconds randomly; the number of conflicting operations is also from naught to
an enormous value, and we use designer authority parameter to make automatic CR. According to the
test scenarios described above, we run the instance and collect running results, and then we organize
them into histograms (Figures 6 and 7).

The first scenario is with 50 designers and 10 operations for each of them. These operations have
five types, and have conflicts among them (except for Add) by modifying the same model’s same
attribute to different values, so avoidable conflicts will happen; besides, the operations from different
designers also have many conflicts within some of them. The selected time is from 100 to infinity;
and will be cut in half or added by 50 depending on running results in each version period (Figure 6).
The second scenario is also with 50 designers and 10 operations for each of them. However, none of
the operations have conflicts with each other (Figure 6).

Symmetry 2016, 8, 35 110f15

M]1latelperilol WavoidableCordlictNol Mtotal timel
W latelperMoZ WavoidableCordlictNoZ Mtotal timel

36

mmber or time(s)

Figure 6. Fifty designers, many conflict operations (1) and no conflict operations (2).

M latedperlol W avoidableConflictNol Mtotal timel
W latetperlo? WavoidableConflictNo? Mtotal timeZ
120
1aa
W 80
—
1
B0+
g
E 40
20 A
o4
1 2 3 4 5 i1 T 8 a 10
times

Figure 7. Eighty designers, many conflict operations (2) or no conflict operations (1).

Both the third and the fourth scenario are with 80 designers and 10 operations for each of them,
and the selected time is from 200 to 500 milliseconds. However, for the third scenario, none of the
operations have conflicts with each other, while for the fourth scenario, most of the operations have
conflicts with each other (Figure 7).

According to our experiment results, the avoidable conflict operations are well prevented and
the total time cost is acceptable based on designers’ operating habits; however, the number of late
operations is relatively high because we make the time interval between when the operations are sent
so tight as to increase the system’s request load. In fact, designers will not operate too frequently, so the
number of conflicting operations will not be so great and the hardware environment will run faster
too. Besides, most of the late operations can be well handled by the leak filling solution. Therefore, the
practical result of our solution will run better.

Moreover, compared with conventional solutions in Table 4, the advantages and disadvantages of
our framework are apparent. Among those comparative items, the number of redundant operations
in our framework is relatively high; thus, in order to minimize the computational complexity caused
by them, we combine the conflicting operations from the same designer once they are received by
service-side. Additionally, to ensure system interactivity and operation will, we also require that

Symmetry 2016, 8, 35 12 of 15

designers are online during collaborative design process. The proposed framework in this paper
provides designers with a scalable and efficient collaborative design model with high interactivity.

Table 4. The various comparison results of our framework with conventional solutions.

Item Our Framework Creative CR 3D Operation Transformation
Resolved Problems 3D Editing CD&CR 2D CD&CR 3D dependency conflict CD&CR
Network Requirement Online Online Online/Offline
Redundant Operation Much Little Little
Collaborative Design Efficiency High Low High
Interactivity & Operation Will High Low Low
Scalability High High Low

6.3. Discussion

6.3.1. Extensibility

Different from the conventional solution that require frequent participation of designers, this
collaborative design framework can define data fields of operation and set up new time strategy,
which ensures collaboration interactivity and timeliness. The framework also supports the designer
to configure the CR parameters and supply the system with automatic CR. For instance, designers
can activate a parameter by the following two means: setting its proportion to a nonzero value, or
deactivating a parameter by setting its proportion to zero. What is more, they can also create new
parameters according to their requirements and result in more choices. The designers in this distributed
system are always symmetric to finish the design task cooperatively, which can promote producing
the better operation result.

6.3.2. Interactivity and Efficiency

With the interactive help of this design frame, every designer can know the other’s operations
by selecting an appropriate CR time. The frame also tries to prevent potential conflicting operations,
which can save designers much time on resolving those conflicting operations. The case above also
verified that automatic CR makes the design work more efficient.

7. Conclusions

We propose a symmetric, efficient, and web-based X3D collaborative design framework, which
has realized real-time CD and automatic CR by dynamic adjustable time and configurable parameters.
Therefore, the solution can protect designers’ operation will, improve the design efficiency and provide
designers with better interactivity than conventional solutions. Besides, the framework is revised to be
more scalable in operation fields, time strategy, and parameter strategy in order to give designers more
choices according to their actual needs. In collaborative design process, we propose an innovative
method to analyze and define conflicts to enhance design practice and quality. The scene, 3D model,
operation type, and operation attribute are applied as design resources to provide the symmetric
designers, and in the process of allocation, the results can be compared under the same design resources
and symmetric designers, which is due to the interactivity of symmetric framework.

We also propose a solution to automatically detect and resolve conflicts under the symmetric
framework, and designer’s capability and experience, differences among operation types, operation
characters and comprehensive requirements of particular scenes are taken into consideration in the
dynamic and symmetric mechanism. A series of parameter criterions will be set out to solve the
conflicts existing in the above-mentioned collaborative design process by setting criterion weights.

Symmetry 2016, 8, 35 13 of 15

In this paper, we discussed the choice of time interval for service-side conflict detection and the
regular patterns among time range, undo operation, and potential conflict; however, the proposed
solution applies service-side detection and resolution, which cannot avoid the ignorance of some
problems and ensure designer’s operation will. It is necessary to explore other kinds of factors that
may influence the selection of time in future research. We mainly aim at solving conflicts of editing
operations to atomic X3D models or sub-scenarios, and did not consider multi-level operations in our
study. In fact, due to X3D model’s extensibility, multilevel operations are supported. Moreover, the time
strategy and parameter strategy are not perfect. We will consider and resolve them in future research.

Acknowledgments: This research is supported by the National Natural Science Foundation of China under
No. 61373030 and the 111 Project of China (B13044).

Author Contributions: Hongming Cai and Mingjiu Yu proposed the main idea, and Minghong Cai designed
its frame. Mingjiu Yu contributed to finish the main part of the manuscript, and Hongming Cai revised it.
The web-based cooperative design system was developed by Xiaoming Ma, and Lihong Jiang is responsible for
case study, result analysis and discussion. All of authors have approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Modi, C,; Patel, D.; Borisaniya, B.; Patel, H.; Patel, A.; Rajarajan, M. A survey of intrusion detection techniques
in cloud. J. Netw. Comput. Appl. 2013, 36, 42-57. [CrossRef]

2. Patel, A.; Taghavi, M.; Bakhtiyari, K.; Celestino Janior, J. An intrusion detection and prevention system in
cloud computing: A systematic review. J. Netw. Comput. Appl. 2013, 36, 25-41. [CrossRef]

3. Spaeth, A.D.; Black, R.S. Google docs as a form of collaborative learning. J. Chem. Educ. 2012, 89, 1078-1079.
[CrossRef]

4. Behles, J. The use of online collaborative writing tools by technical communication practitioners and students.
Tech. Commun. 2013, 60, 28-44.

5. Leung, C; Salga, A. Enabling webgl. In Proceedings of the 19th International Conference on World Wide
Web, Raleigh, NC, USA, 26-27 April 2010.

6. Tarukawa, K,; Inoue, T.; Okada, K. Multi-view is useful for more accurate understanding of object in a virtual
soccer field. In Proceedings of the 17th IEEE International Conference on Computer Supported Cooperative
Work in Design (CSCWD), Whistler, BC, Canada, 27-29 June 2013.

7. Ma, X.; Cai, H.; Jiang, L. A creative approach to conflict detection in web-based 3D cooperative design.
In Cooperative Design, Visualization, and Engineering; Springer: Basel, Switzerland, 2014; pp. 261-268.

8. Beunza, J.-J. Conflict resolution techniques applied to interprofessional collaborative practice.]. Interprof. Care
2013, 27, 110-112. [CrossRef] [PubMed]

9. Guimaraes, M.L,; Silva, A.R. Improving early detection of software merge conflicts. In Proceedings of the
34th International Conference on Software Engineering, Zurich, Switzerland, 2-9 June 2012.

10. Koegel, M.; Helming, J.; Seyboth, S. Operation-based conflict detection and resolution. In Proceedings
of the 2009 ICSE Workshop on Comparison and Versioning of Software Models, Vancouver, BC, Canada,
17 May 2009.

11. Koegel, M.; Herrmannsdoerfer, M.; von Wesendonk, O.; Helming, J. Operation-based conflict detection.
In Proceedings of the 1st International Workshop on Model Comparison in Practice, Malaga, Spain, 1 July 2010.

12. Cai, X,; Li, X.; He, F; Han, S.; Chen, X. Flexible Concurrency control for legacy CAD to construct collaborative
CAD environment. J. Adv. Mech. Des. Syst. Manuf. 2012, 6, 324-339. [CrossRef]

13. Estler, H.C.; Nordio, M.; Furia, C.A.; Meyer, B. Unifying configuration management with merge conflict
detection and awareness systems. In Proceedings of the 22nd Australasian Conference on Software
Engineering (ASWEC), Melbourne, Australia, 4-7 June 2013.

14. Alonso-Ayuso, A.; Escudero, L.E; Olaso, P,; Pizarro, C. Conflict avoidance: 0-1 linear models for conflict
detection & resolution. Top 2011, 21, 485-504.

15. Karimadini, M.; Lin, H. Synchronized task decomposition for two cooperative agent. In Proceedings of the
IEEE Conference on Robotics Automation and Mechatronics (RAM), Singapore, 28-30 June 2010.

http://dx.doi.org/10.1016/j.jnca.2012.05.003
http://dx.doi.org/10.1016/j.jnca.2012.08.007
http://dx.doi.org/10.1021/ed200708p
http://dx.doi.org/10.3109/13561820.2012.725280
http://www.ncbi.nlm.nih.gov/pubmed/23030633
http://dx.doi.org/10.1299/jamdsm.6.324

Symmetry 2016, 8, 35 14 of 15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Lincke, J.; Krahn, R.; Ingalls, D.; Réder, M.; Hirschfeld, R. The lively partsbin—A cloud-based repository
for collaborative development of active web content, System Science (HICSS). In Proceedings of the 45th
Hawaii International Conference, Maui, HI, USA, 4-7 January 2012.

Jing, S.-X.; He, FE-Z.; Han, S.-H.; Cai, X.-T.; Liu, H.-]. A method for topological entity correspondence in a
replicated collaborative CAD system. Comput. Ind. 2009, 60, 467—475. [CrossRef]

Cai, X.T;; Li, W.D.; He, FZ; Li, X.X. Customized Encryption of Computer Aided Design Models for
Collaboration in Cloud Manufacturing Environment. J. Manuf. Sci. Eng. Trans. ASME 2015, 137, 1-10.
[CrossRef]

Baldwin, C.; von Hippel, E. Modeling a paradigm shift: From producer innovation to user and open
collaborative innovation. Organ. Sci. 2011, 22, 1399-1417. [CrossRef]

Chellali, A.; Jourdan, F.; Dumas, C. VR4D: An immersive and collaborative experience to improve the interior
design process. In Proceedings of the 5th Joint Virtual Reality Conference of EGVE and EuroVR, JVRC, Paris,
France, 11-13 December 2013.

Juntunen, T.; Kostakos, V.; Perttunen, M.; Ferreira, D. Web tool for traffic engineers: Direct manipulation
and visualization of vehicular traffic using google maps. In Proceedings of the 16th International Academic
MindTrek Conference, Tampere, Finland, 3-5 October 2012.

Sun, H.; Fan, W.; Shen, W.; Xiao, T. Ontology fusion in high-level-architecture-based collaborative engineering
environments. IEEE Trans. Syst. Man Cybern. Syst. 2013, 43, 2-13. [CrossRef]

Hepworth, A ; Staves, D.; Hill, L.; Tew, K.; Jensen, C.G.; Red, W.E. Enhancements for improved topological
entity identification performance in multi-user CAD. Comput. Aided Des. Appl. 2015, 12, 1-12. [CrossRef]
Turrin, M.; von Buelow, P.; Stouffs, R. Design explorations of performance driven geometry in architectural
design using parametric modeling and genetic algorithms. Adv. Eng. Inform. 2011, 25, 656-675. [CrossRef]
Kang, J.; Park, J.; Suk, S. Design of a distributed personal information access control scheme for secure
integrated payment in NFC. Symmetry 2015, 7, 935-948. [CrossRef]

Li, D,; Li, R. An admissibility-based operational transformation framework for collaborative editing systems.
Comput. Support. Coop. Work (CSCW) 2010, 19, 1-43. [CrossRef]

Shao, B.; Li, D.; Gu, N. A sequence transformation algorithm for supporting cooperative work on mobile
devices. In Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work, Savannah,
GA, USA, 6-10 February 2010.

Shao, B,; Li, D.; Lu, T.; Gu, N. An operational transformation based synchronization protocol for web 2.0
applications. In Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work,
Hangzhou, China, 19-23 March 2011.

Sun, D.; Sun, C.; Xia, S.; Shen, H. Creative conflict resolution in collaborative editing systems. In Proceedings
of the ACM 2012 Conference on Computer Supported Cooperative Work, Seattle, WA, USA, 11-15 February 2012.
Sun, C.; Xu, D. Operational transformation for dependency conflict resolution in real-time collaborative 3D
design systems. In Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work,
Seattle, WA, USA, 11-14 February 2012.

Oehrn, C.R.; Hanslmayr, S.; Fell, J.; Deuker, L.; Kremers, N.A.; Do Lam, A.T.; Elger, C.E.; Axmacher, N.
Neural communication patterns underlying conflict detection, resolution, and adaptation. J. Neurosci. 2014,
34,10438-10452. [CrossRef] [PubMed]

Trappey, A.J.; Trappey, C.V.; Wu, C.-Y,; Fan, C.Y;; Lin, Y.-L. Intelligent patent recommendation system for
innovative design collaboration. J. Netw. Comput. Appl. 2013, 36, 1441-1450. [CrossRef]

Gu, N.; Kim, M.J.; Maher, M.L. Technological advancements in synchronous collaboration: The effect of
3D virtual worlds and tangible user interfaces on architectural design. Autom. Constr. 2011, 20, 270-278.
[CrossRef]

Jung, J.J. Computational reputation model based on selecting consensus choices: An empirical study on
semantic wiki platform. Expert Syst. Appl. 2012, 39, 9002-9007. [CrossRef]

Brosch, P; Seidl, M.; Wieland, K.; Wimmer, M.; Langer, P. We can work it out: Collaborative conflict resolution
in model versioning. In Ecscw 2009; Springer: Vienna, Austria, 2009; pp. 207-214.

Ahmed-Nacer, M.; Urso, P; Balegas, V.; Preguica, N. Concurrency control and awareness support for
multi-synchronous collaborative editing, Collaborative Computing. In Proceedings of the 9th IEEE
International Conference on Collaborative Computing: Networking, Applications and Worksharing, Austin,
TX, USA, 20-23 October 2013.

http://dx.doi.org/10.1016/j.compind.2009.02.005
http://dx.doi.org/10.1115/1.4030592
http://dx.doi.org/10.1287/orsc.1100.0618
http://dx.doi.org/10.1109/TSMCA.2012.2190138
http://dx.doi.org/10.1080/16864360.2015.1014742
http://dx.doi.org/10.1016/j.aei.2011.07.009
http://dx.doi.org/10.3390/sym7020935
http://dx.doi.org/10.1007/s10606-009-9103-1
http://dx.doi.org/10.1523/JNEUROSCI.3099-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/25080602
http://dx.doi.org/10.1016/j.jnca.2013.02.035
http://dx.doi.org/10.1016/j.autcon.2010.10.004
http://dx.doi.org/10.1016/j.eswa.2012.02.035

Symmetry 2016, 8, 35 15 of 15

37. Behr, J.; Eschler, P; Jung, Y.; Zollner, M. X3DOM: A DOM-based HTML5/X3D integration model.
In Proceedings of the 14th International Conference on 3D Web Technology, Darmstadt, Germany, 16-17
June 2009.

38. Holyoak, V.L.; Red, E.; Jensen, G. Effective collaboration through multi user cax by implementing new
methods of product specification and management. Comput. Aided Des. Appl. 2014, 11, 560-567. [CrossRef]

39. Goldman, M.; Little, G.; Miller, R.C. Real-time collaborative coding in a web ide. In Proceedings of the
24th annual ACM symposium on User interface software and technology, Santa Barbara, CA, USA, 16-19
October 2011.

40. Wang, X,; Love, PE.D.; Kim, M.].; Wang, W. Mutual awareness in collaborative design: An augmented reality
integrated telepresence system. Comput. Ind. 2014, 65, 314-324. [CrossRef]

® © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/16864360.2014.902689
http://dx.doi.org/10.1016/j.compind.2013.11.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	A Framework of Conflict Detection and Resolution in Web-based Collaborative Design
	Basic Conceptions and Conflict Detection
	Design Resource Representation Based on X3D
	Operation Description
	Conflict Detection Based on Symmetry Operation Comparison

	Multiply Strategies for Conflict Resolution
	Conflict Resolution Method
	Parameter Strategy
	Time Strategy
	Leak Filling

	Analysis and Evaluation
	System Implementation and Case Study
	Evaluation
	Discussion
	Extensibility
	Interactivity and Efficiency

	Conclusions

