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Abstract: In this work, after reviewing two different ways to solve Riccati systems, we are able
to present an extensive list of families of integrable nonlinear Schrödinger (NLS) equations with
variable coefficients. Using Riccati equations and similarity transformations, we are able to reduce
them to the standard NLS models. Consequently, we can construct bright-, dark- and Peregrine-type
soliton solutions for NLS with variable coefficients. As an important application of solutions for
the Riccati equation with parameters, by means of computer algebra systems, it is shown that the
parameters change the dynamics of the solutions. Finally, we test numerical approximations for the
inhomogeneous paraxial wave equation by the Crank-Nicolson scheme with analytical solutions
found using Riccati systems. These solutions include oscillating laser beams and Laguerre and
Gaussian beams.

Keywords: generalized harmonic oscillator; paraxial wave equation; nonlinear schrödinger-type
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1. Introduction

In modern nonlinear sciences, some of the most important models are the variable coefficient
nonlinear Schrödinger-type ones. Applications include long distance optical communications, optical fibers
and plasma physics, (see [1–25] and references therein).

In this paper, we first review a generalized pseudoconformal transformation introduced in [26]
(lens transform in optics [27] see also [28]). As the first main result, we will use this generalized lens
transformation to construct solutions of the general variable coefficient nonlinear Schrödinger equation
(VCNLS):

iψt = −a (t)ψxx + (b (t) x2 − f (t) x + G(t))ψ− ic (t) xψx − id (t)ψ + ig (t)ψx + h (t) |ψ|2s ψ, (1)

extending the results in [1]. If we make a(t) = Λ/4πn0, Λ
being the wavelength of the optical source generating the beam,
and choose c(t) = g(t) = 0, then Equation (1) models a beam propagation inside of a planar
graded-index nonlinear waveguide amplifier with quadratic refractive index represented by
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b (t) x2 − f (t) x + G(t), and h (t) represents a Kerr-type nonlinearity of the waveguide amplifier,
while d (t) represents the gain coefficient. If b (t) > 0 [11] (resp. b (t) < 0, see [13]) in the low-intensity limit,
the graded-index waveguide acts as a linear defocusing (focusing) lens.

Depending on the selections of the coefficients in Equation (1), its applications vary in very specific
problems (see [16] and references therein):

• Bose-Einstein condensates: b(·) 6= 0, a, h constants and other coefficients are zero.
• Dispersion-managed optical fibers and soliton lasers [9], [14] and [15]: a(·), h(·), d(·) 6= 0

are respectively dispersion, nonlinearity and amplification, and the other coefficients are zero.
a(·) and h(·) can be periodic as well, see [29].

• Pulse dynamics in the dispersion-managed fibers [10]: h(·) 6= 0, a is a constant and other
coefficients are zero.

In this paper, to obtain the main results, we use a fundamental approach consisting of the use
of similarity transformations and the solutions of Riccati systems with several parameters inspired
by the work in [30]. Similarity trasformations have been a very popular strategy in nonlinear optics
since the lens transform presented by Talanov [27]. Extensions of this approach have been presented
in [26] and [28]. Applications include nonlinear optics, Bose-Einstein condensates, integrability of NLS
and quantum mechanics, see for example [3], [31], [32] and [33], and references therein. E. Marhic
in 1978 introduced (probably for the first time) a one-parameter {α(0)} family of solutions for the
linear Schrödinger equation of the one-dimensional harmonic oscillator, where the use of an explicit
formulation (classical Melher’s formula [34]) for the propagator was fundamental. The solutions
presented by E. Marhic constituted a generalization of the original Schrödinger wave packet with
oscillating width.

In addition, in [35], a generalized Melher’s formula for a general linear Schrödinger equation
of the one-dimensional generalized harmonic oscillator of the form Equation (1) with h(t) = 0 was
presented. For the latter case, in [36], [37] and [38], multiparameter solutions in the spirit of Marhic
in [30] have been presented. The parameters for the Riccati system arose originally in the process of
proving convergence to the initial data for the Cauchy initial value problem Equation (1) with h(t) = 0
and in the process of finding a general solution of a Riccati system [38] and [39]. In addition, Ermakov
systems with solutions containing parameters [36] have been used successfully to construct solutions
for the generalized harmonic oscillator with a hidden symmetry [37], and they have also been used to
present Galilei transformation, pseudoconformal transformation and others in a unified manner, see
[37]. More recently, they have been used in [40] to show spiral and breathing solutions and solutions
with bending for the paraxial wave equation. In this paper, as the second main result, we introduce
a family of Schrödinger equations presenting periodic soliton solutions by using multiparameter
solutions for Riccati systems. Furthermore, as the third main result, we show that these parameters
provide a control on the dynamics of solutions for equations of the form Equation (1). These results
should deserve numerical and experimental studies.

This paper is organized as follows: In Section 2, by means of similarity transformations and using
computer algebra systems, we show the existence of Peregrine, bright and dark solitons for the family
Equation (1). Thanks to the computer algebra systems, we are able to find an extensive list of integrable
VCNLS, in the sense that they can be reduced to the standard integrable NLS, see Table 1. In Section
3, we use different similarity transformations than those used in Section 3. The advantage of the
presentation of this section is a multiparameter approach. These parameters provide us a control on
the center axis of bright and dark soliton solutions. Again in this section, using Table 2 and by means
of computer algebra systems, we show that we can produce a very extensive number of integrable
VCNLS allowing soliton-type solutions. A supplementary Mathematica file is provided where it is
evident how the variation of the parameters change the dynamics of the soliton solutions. In Section 4,
we use a finite difference method to compare analytical solutions described in [41] (using similarity
transformations) with numerical approximations for the paraxial wave equation (also known as linear
Schrödinger equation with quadratic potential).
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Table 1. Families of NLS with variable coefficients.

# Variable Coefficient NLS Solutions (j = 1, 2, 3)

1
iψt = l0ψxx − bmtm−1+b2t2m

4l0
x2ψ

−ibtmxψx − λl0e
−btm+1

m+1 |ψ|2 ψ
ψj(x, t) = 1√

e
−btm+1

m+1

ei
(

btm
4 l0x2

)
uj(x, t)

2
iψt = l0ψxx − t−2

2l0
x2ψ

+i 1
t xψx − λl0t |ψ|2 ψ

ψj(x, t) = 1√
t
ei(−1

4t l0x2)uj(x, t)

3
iψt = l0ψxx −

(
c2

4 l0
)

x2ψ

+icxψx − λl0ect |ψ|2 ψ
ψj(x, t) = 1√

ect ei(−c
4 l0x2)uj(x, t)

4
iψt = l0ψxx − b2

4l0
tkx2ψ

+ibxψx − λl0ebt |ψ|2 ψ
ψj(x, t) = 1√

ebt
ei(−b

4 l0x2)uj(x, t)

5
iψt = l0ψxx − abebt+a2e2bt

4l0
x2ψ

−iaebtxψx − λl0e
a−aebt

b |ψ|2 ψ
ψj(x, t) = 1√

e
a−aebt

b

e
i
(

aebt
4 l0x2

)
uj(x, t)

6
iψt = l0ψxx − 1

4l0
x2ψ

−icoth(t)xψx − λl0csch(t) |ψ|2 ψ
ψj(x, t) = 1√

csch(t)
ei
(

coth(t)
4 l0x2

)
uj(x, t)

7
iψt = l0ψxx − 1

4l0
x2ψ

−itan(t)xψx − λl0cos(t) |ψ|2 ψ
ψj(x, t) = 1√

cos(t)
ei
(

tan(t)
4 l0x2

)
uj(x, t)

8 iψt = l0ψxx − bt−1+b2ln2(t)
4l0

x2ψ

−ibln(t)xψx − λl0t−btebt |ψ|2 ψ
ψj(x, t) = 1√

−t−btebt ei
(

bln(t)
4 l0x2

)
uj(x, t)

9
iψt = l0ψxx +

1
4l0

x2ψ + icot(−t)xψx

−λl0csc(t) |ψ|2 ψ
ψj(x, t) = 1√

csc(t)
ei
(
−cot(−t)

4 l0x2
)

uj(x, t)

10
iψt = l0ψxx +

1
4l0

x2ψ− itan(−t)xψx

−λl0sec(t) |ψ|2 ψ
ψj(x, t) = 1√

sec(t)
ei
(

tan(−t)
4 l0x2

)
uj(x, t)

11
iψt = l0ψxx − 2abtebt2+a2e2bt2

4l0
x2ψ

−iaebt2
xψx − λl0e

−a
2

√
π
b er f i(

√
bt) |ψ|2 ψ

ψj(x, t) = 1√
e
−a
2
√

π
b er f i(

√
bt)

e
aebt2

4 l0x2
uj(x, t)

12
iψt = l0ψxx +

atanh2(bt)(b−a)−ab
4l0

x2ψ

−iatanh(bt)xψx − λl0 |cosh(bt)|
a
b |ψ|2 ψ

ψj(x, t) = 1√
|cosh(bt)|

a
b

ei
(

atanh(bt)
4 l0x2

)
uj(x, t)

13
iψt = l0ψxx +

acoth2(bt)(b−a)−ab
4l0

x2ψ

−iacoth(bt)xψx − λl0 |sinh(bt)|
a
b |ψ|2 ψ

ψj(x, t) = 1√
|sinh(bt)|

a
b

ei
(

acoth(bt)
4 l0x2

)
uj(x, t)

14
iψt = l0ψxx −

(
a2+absinh(bt)+a2sinh2(bt)

4l0

)
x2ψ

−iacosh(bt)xψx − λl0e
−asinh(bt)

b |ψ|2 ψ
ψj(x, t) = 1√

e
−asinh(bt)

b

ei
(

acosh(bt)
4 l0x2

)
uj(x, t)

15
iψt = l0ψxx −

(
a2+absin(bt)−a2sin2(bt)

4l0

)
x2ψ

+iacos(bt)xψx − λl0e
asin(bt)

b |ψ|2 ψ
ψj(x, t) = 1√

e
asin(bt)

b

ei
(
−acos(bt)

4 l0x2
)

uj(x, t)

16
iψt = l0ψxx −

(
a2+abcos(bt)−a2cos2(bt)

4l0

)
x2ψ

−iasin(bt)xψx + λl0e
acos(bt)

b |ψ|2 ψ
ψj(x, t) = 1√

e
acos(bt)

b

ei
(
−asin(bt)

4 l0x2
)

uj(x, t)

17
iψt = l0ψxx − atan2(bt)(a+b)+ab

4l0
x2ψ

−iatan(bt)xψx − λl0 |cos(bt)|
a
b |ψ|2 ψ

ψj(x, t) = 1√
|cos(bt)|

a
b

ei
(

atan(bt)
4 l0x2

)
uj(x, t)

18
iψt = l0ψxx − acot2(bt)(a+b)+ab

4l0
x2ψ

+iacot(bt)xψx − λl0 |sin(bt)|
a
b |ψ|2 ψ

ψj(x, t) = 1√
|sin(bt)|

a
b

ei
(

acot(bt)
4 l0x2

)
uj(x, t)
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Table 2. Riccati equations used to generate the similarity transformations.

# Riccati Equation Similarity Transformation
from Table 1

1 y′x = axny2 + bmxm−1 − ab2xn+2m 1
2 (axn + b)y′x = by2 + axn−2 2
3 y′x = axny2 + bxmy + bcxm − ac2xn 3
4 y′x = axny2 + bxmy + ckxk−1 − bcxm+k − ac2xn+2k 1
5 xy′x = axny2 + my− ab2xn+2m 3
6 (axn + bxm + c)y′x = αxky2 + βxsy− αb2xk + βbxs 4
7 y′x = beµxy2 + acecx − a2be(µ+2c)x 5
8 y′x = aeµxy2 + cy− ab2e(µ+2c)x 3
9 y′x = aecxy2 + bnxn−1 − ab2ecxx2n 1

10 y′x = axny2 + bcecx − ab2xne2cx 8
11 y′x = axny2 + cy− ab2xne2cx 3

12 y′x =
[

a sinh2(cx)− c
]

y2 − a sinh2(cx) + c− a 6

13 2y′x = [a− b + a cosh(bx)] y2 + a + b− a cosh(bx) 7
14 y′x = a(ln x)ny2 + bmxm−1 − ab2x2m(ln x)n 1
15 xy′x = axny2 + b− ab2xn ln2 x 8
16 y′x =

[
b + a sin2(bx)

]
y2 + b− a + a sin2(bx) 9

17 2y′x = [b + a + a cos(bx)] y2 + b− a + a cos(bx) 10
18 y′x =

[
b + a cos2(bx)

]
y2 + b− a + a cos2(bx) 10

19 y′x = c(arcsin x)ny2 + ay + ab− b2c(arcsin x)n 3
20 y′x = a(arcsin x)ny2 + βmxm−1 − aβ2x2m(arcsin x)n 1
21 y′x = c(arccos x)ny2 + ay + ab− b2c(arccos x)n 3
22 y′x = a(arccos x)ny2 + βmxm−1 − aβ2x2m(arccos x)n 1
23 y′x = c(arctan x)ny2 + ay + ab− b2c(arctan x)n 3
24 y′x = a(arctan x)ny2 + bmxm−1 − ab2x2m(arctan x)n 1
25 y′x = c(arccot x)ny2 + ay + ab− b2c(arccot x)n 3
26 y′x = a(arccot x)ny2 + bmxm−1 − ab2x2m(arccot x)n 1
27 y′x = f y2 + ay− ab− b2 f 3
28 y′x = f y2 + anxn−1 − a2x2n f 1
29 y′x = f y2 + gy− a2 f − ag 3
30 y′x = f y2 + gy + anxn−1 − axng− a2 f x2n 1
31 y′x = f y2 − axngy + anxn−1 − a2x2n(g− f ) 1
32 y′x = f y2 + abebx − a2e2bx f 5
33 y′x = f y2 + gy + abebx − aebxg− a2e2bx f 5
34 y′x = f y2 − aebxgy + abebx + a2e2bx(g− f ) 5
35 y′x = f y2 + 2abxebx2 − a2 f e2bx2

11
36 y′x = f y2 − a tanh2(bx)(a f + b) + ab 12
37 y′x = f y2 − a coth2(bx)(a f + b) + ab 13
38 y′x = f y2 − a2 f + ab sinh(bx)− a2 f sinh2(bx) 14
39 y′x = f y2 − a2 f + ab sin(bx) + a2 f sin2(bx) 15
40 y′x = f y2 − a2 f + ab cos(bx) + a2 f cos2(bx) 16
41 y′x = f y2 − a tan2(bx)(a f − b) + ab 17
42 y′x = f y2 − a cot2(bx)(a f − b) + ab 18

2. Soliton Solutions for VCNLS through Riccati Equations and Similarity Transformations

In this section, by means of a similarity transformation introduced in [42], and using computer
algebra systems, we show the existence of Peregrine, bright and dark solitons for the family
Equation (1). Thanks to the computer algebra systems, we are able to find an extensive list of integrable
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variable coefficient nonlinear Schrödinger equations (see Table 1). For similar work and applications
to Bose-Einstein condensates, we refer the reader to [1]

Lemma 1. ([42]) Suppose that h(t) = −l0λµ(t) with λ ∈ R, l0 = ±1 and that c(t), α(t), δ(t), κ(t),
µ(t) and g(t) satisfy the equations:

α(t) = l0
c(t)

4
, δ(t) = −l0

g(t)
2

, h(t) = −l0λµ(t), (2)

κ(t) = κ(0)− l0
4

∫ t

0
g2(z)dz, (3)

µ(t) = µ(0)exp
(∫ t

0
(2d(z)− c(z))dz

)
µ(0) 6= 0, (4)

g(t) = g(0)− 2l0exp
(
−
∫ t

0
c(z)dz

) ∫ t

0
exp
(∫ z

0
c(y)dy

)
f (z)dz. (5)

Then,

ψ(t, x) =
1√
µ(t)

ei(α(t)x2+δ(t)x+κ(t))u(t, x) (6)

is a solution to the Cauchy problem for the nonautonomous Schrödinger equation

iψt − l0ψxx − b(t)x2ψ + ic(t)xψx + id(t)ψ + f (t)xψ− ig(t)ψx − h(t)|ψ|2ψ = 0, (7)

ψ(0, x) = ψ0(x), (8)

if and only if u(t, x) is a solution of the Cauchy problem for the standard Schrödinger equation

iut − l0uxx + l0λ|u|2u = 0, (9)

with initial data
u(0, x) =

√
µ(0)e−i(α(0)x2+δ(0)x+κ(0))ψ0(x). (10)

Now, we proceed to use Lemma 1 to discuss how we can construct NLS with variable coefficients
equations that can be reduced to the standard NLS and therefore be solved explicitly. We start
recalling that

u1(t, x) = A exp(2iA2t)
(

3 + 16iA2t− 16A4t2 − 4A2x2

1 + 16A4t2 + 4A2x2

)
, A ∈ R (11)

is a solution for (l0 = −1 and λ = −2)

iut + uxx + 2|u|2u = 0, t, x ∈ R. (12)

In addition,
u2(ξ, τ) = A tanh(Aξ)e−2iA2τ (13)

is a solution of (l0 = −1 and λ = 2)

iuτ + uξξ − 2|u|2u = 0, (14)

and
u3(τ, ξ) =

√
v sech(

√
vξ) exp(−ivτ), v > 0 (15)
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is a solution of (l0 = 1 and λ = −2),

iuτ − uξξ − 2|u|2u = 0. (16)

Example 1. Consider the NLS:

iψt + ψxx −
c2

4
x2ψ− icxψx ± 2ect |ψ|2 ψ = 0. (17)

Our intention is to construct a similarity transformation from Equation (17) to standard NLS
Equation (9) by means of Lemma 1. Using the latter, we obtain

b(t) =
c2

4
, c(t) = c, µ(t) = ect,

and
α(t) = − c

4
, h(t) = ±2ect.

Therefore,

ψ(x, t) =
e−i c

4 x2

√
ect

uj(x, t), j = 1, 2

is a solution of the form Equation (6), and uj(x, t) are given by Equations (12) and (13).

Example 2. Consider the NLS:

iψt + ψxx −
1

2t2 x2ψ− i
1
t

xψx ± 2t|ψ|2ψ = 0. (18)

By Lemma 1, a Riccati equation associated to the similarity transformation is given by

dc
dt

+ c(t)2 − 2t−2 = 0, (19)

and we obtain the functions

b(t) =
1

2t2 , c(t) = −1
t

, µ(t) = t,

α(t) = − 1
4t

, h1(t) = −2t, h2(t) = 2t.

Using uj(x, t), j = 1 and 2, given by Equations (12) and (13), we get the solutions

ψj(x, t) =
e−i 1

4t x2

√
t

ui(x, t). (20)

Table 1 shows integrable variable coefficient NLS and the corresponding similarity transformation
to constant coefficient NLS. Table 2 lists some Riccati equations that can be used to generate
these transformations.

Example 3. If we consider the following family (m and B are parameters) of variable coefficient NLS,

iψt + ψxx −
Bmtm−1 + Bt2m

4
x2ψ + iBtmxψx + γe−

Btm+1
m+1 |ψ|2ψ = 0, (21)

by means of the Riccati equation
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yt = Atny2 + Bmtm−1 − AB2tn+2m, (22)

and Lemma 1, we can construct soliton-like solutions for Equation (21). For this example, we restrict
ourselves to taking A = −1 and n = 0. Furthermore, taking in Lemma 1 l0 = −1, λ = −2, a(t) = 1,

b(t) = Bmtm−1+Bt2m

4 , c(t) = Btm, µ(t) = e−
Btm+1

m+1 , h(t) = −2e−
Btm+1

m+1 , and α(t) = −Btm/4, soliton-like
solutions to the Equation (21) are given by

ψj(x, t) = ei−Bx2tm
4 e

Btm+1
2(m+1) uj(x, t), (23)

where using uj(x, t), j = 1 and 2, given by Equations (12) and (15), we get the solutions. It is important
to notice that if we consider B = 0 in Equation (21) we obtain standard NLS models.

3. Riccati Systems with Parameters and Similarity Transformations

In this section, we use different similarity trasformations than those
used in Section 2, but they have been presented previously [26], [35],
[39] and [42]. The advantage of the presentation of this section
is a multiparameter approach. These parameters provide us with a control on the center axis
of bright and dark soliton solutions. Again in this section, using Table 2, and by means of computer
algebra systems, we show that we can produce a very extensive number of integrable VCNLS allowing
soliton-type solutions. The transformations will require:

dα

dt
+ b(t) + 2c(t)α + 4a(t)α2 = 0, (24)

dβ

dt
+ (c(t) + 4a(t)α(t))β = 0, (25)

dγ

dt
+ l0a(t)β2(t) = 0, l0 = ±1, (26)

dδ

dt
+ (c(t) + 4a(t)α(t))δ = f (t) + 2α(t)g(t), (27)

dε

dt
= (g(t)− 2a(t)δ(t))β(t), (28)

dκ

dt
= g(t)δ(t)− a(t)δ2(t). (29)

Considering the standard substitution

α(t) =
1

4a(t)
µ′(t)
µ(t)

− d(t)
2a(t)

, (30)

it follows that the Riccati Equation (24) becomes

µ′′ − τ(t)µ′ + 4σ(t)µ = 0, (31)

with

τ(t) =
a′

a
− 2c + 4d, σ(t) = ab− cd + d2 +

d
2

(
a′

a
− d′

d

)
. (32)

We will refer to Equation (31) as the characteristic equation of the Riccati system. Here, a(t), b(t),
c(t), d(t), f (t) and g(t) are real value functions depending only on the variable t. A solution of the
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Riccati system Equations (24)–(29) with multiparameters is given by the following expressions (with
the respective inclusion of the parameter l0) [26], [35] and [39]:

µ (t) = 2µ (0) µ0 (t) (α (0) + γ0 (t)) , (33)

α (t) = α0 (t)−
β2

0 (t)
4 (α (0) + γ0 (t))

, (34)

β (t) = − β (0) β0 (t)
2 (α (0) + γ0 (t))

=
β (0) µ (0)

µ (t)
w (t) , (35)

γ (t) = l0γ (0)− l0β2 (0)
4 (α (0) + γ0 (t))

, l0 = ±1, (36)

δ (t) = δ0 (t)−
β0 (t) (δ (0) + ε0 (t))

2 (α (0) + γ0 (t))
, (37)

ε (t) = ε (0)− β (0) (δ (0) + ε0 (t))
2 (α (0) + γ0 (t))

, (38)

κ (t) = κ (0) + κ0 (t)−
(δ (0) + ε0 (t))

2

4 (α (0) + γ0 (t))
, (39)

subject to the initial arbitrary conditions µ (0), α (0), β (0) 6= 0, γ(0), δ(0), ε(0) and κ(0). α0, β0, γ0, δ0,
ε0 and κ0 are given explicitly by:

α0 (t) =
1

4a (t)
µ′0 (t)
µ0 (t)

− d (t)
2a (t)

, (40)

β0 (t) = −
w (t)
µ0 (t)

, w (t) = exp
(
−
∫ t

0
(c (s)− 2d (s)) ds

)
, (41)

γ0 (t) =
d (0)
2a (0)

+
1

2µ1 (0)
µ1 (t)
µ0 (t)

, (42)

δ0 (t) =
w (t)
µ0 (t)

∫ t

0

[(
f (s)− d (s)

a (s)
g (s)

)
µ0 (s) +

g (s)
2a (s)

µ′0 (s)
]

ds
w (s)

, (43)

ε0 (t) = −2a (t)w (t)
µ′0 (t)

δ0 (t) + 8
∫ t

0

a (s) σ (s)w (s)(
µ′0 (s)

)2 (µ0 (s) δ0 (s)) ds (44)

+2
∫ t

0

a (s)w (s)
µ′0 (s)

[
f (s)− d (s)

a (s)
g (s)

]
ds,

κ0 (t) =
a (t) µ0 (t)

µ′0 (t)
δ2

0 (t)− 4
∫ t

0

a (s) σ (s)(
µ′0 (s)

)2 (µ0 (s) δ0 (s))
2 ds (45)

−2
∫ t

0

a (s)
µ′0 (s)

(µ0 (s) δ0 (s))
[

f (s)− d (s)
a (s)

g (s)
]

ds,

with δ0 (0) = g0 (0) / (2a (0)), ε0 (0) = −δ0 (0), κ0 (0) = 0. Here, µ0 and µ1 represent the fundamental
solution of the characteristic equation subject to the initial conditions µ0(0) = 0, µ′0(0) = 2a(0) 6= 0
and µ1(0) 6= 0, µ′1(0) = 0.

Using the system Equations (34)–(39), in [26], a generalized lens transformation is presented.
Next, we recall this result (here we use a slight perturbation introducing the parameter l0 = ±1 in
order to use Peregrine type soliton solutions):
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Lemma 2 (l0 = 1, [26]). Assume that h(t) = λa(t)β2(t)µ(t) with λ ∈ R. Then, the substitution

ψ(t, x) =
1√
µ(t)

ei(α(t)x2+δ(t)x+κ(t))u(τ, ξ), (46)

where ξ = β (t) x + ε (t) and τ = γ (t), transforms the equation

iψt = −a(t)ψxx + b(t)x2ψ− ic(t)xψx − id(t)ψ− f (t)xψ + ig(t)ψx + h(t)|ψ|2ψ

into the standard Schrödinger equation

iuτ − l0uξξ + l0λ|u|2u = 0, l0 = ±1, (47)

as long as α, β, γ, δ, ε and κ satisfy the Riccati system Equations (24)–(29) and also Equation (30).

Example 4. Consider the NLS:

iψt = ψxx −
x2

4
ψ + h(0) sech(t)|ψ|2ψ. (48)

It has the associated characteristic equation µ′′ + aµ = 0, and, using this, we will obtain the functions:

α(t) =
coth(t)

4
− 1

2
csch(t) sech(t), δ(t) = − sech(t), (49)

κ(t) = 1− tanh(t)
2

, µ(t) = cosh(t), (50)

h(t) = h(0) sech(t), β(t) =
1

cosh(t)
, (51)

ε(t) = −1+ tanh(t), γ(t) = 1− tanh(t)
2

. (52)

Then, we can construct solution of the form

ψj(t, x) =
1√
µ(t)

ei(α(t)x2+δ(t)x+κ(t))uj

(
1− tanh(t)

2
,

x
cosh(t)

− 1+ tanh(t)
)

, (53)

with uj, j = 1 and 2, given by Equations (12) and (13).

Example 5. Consider the NLS:

iψt(x, t) = ψxx(x, t) +
h(0)β(0)2µ(0)
1+ α(0)2c2t

|ψ(x, t)|2ψ(x, t).

It has the characteristic equation µ′′ + aµ = 0, and, using this, we will obtain the functions:

α(t) =
1
4t
− 1

2+ α(0)4c2
2t2

, δ(t) =
δ(0)

1+ α(0)2c2t
, (54)

κ(t) = κ(0)− δ(0)2c2t
2+ 4α(0)c2t

, h(t) =
h(0)β(0)2µ(0)
1+ α(0)2c2t

, (55)

µ(t) = (1+ α(0)2c2t)µ(0), β(t) =
β(0)

1+ α(0)2c2t
,
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γ(t) = γ(0)− β(0)2c2t
2+ 4α(0)c2t

, ε(t) = ε(0)− β(0)δ(0)c2t
1+ 2α(0)c2t

.

Then, we can construct a solution of the form

ψj(t, x) =
1√
µ(t)

ei(α(t)x2+δ(t)x+κ(t))

uj

(
γ(0)− β(0)2c2t

2+ 4α(0)c2t
,

β(0)x
1+ α(0)2c2t

+ ε(0)− β(0)δ(0)c2t
1+ 2α(0)c2t

)
, (56)

with uj, j = 1 and 2, Equations (12) and (13).

Following Table 2 of Riccati equations, we can use Equation (24) and Lemma 2 to construct
an extensive list of integrable variable coefficient nonlinear Schrödinger equations.

4. Crank-Nicolson Scheme for Linear Schrödinger Equation with Variable Coefficients
Depending on Space

In addition, in [35], a generalized Melher’s formula for a general linear Schrödinger equation
of the one-dimensional generalized harmonic oscillator of the form Equation (1) with h(t) = 0 was
presented. As a particular case, if b = λ ω2

2 ; f = b, ω > 0, λ ∈ {−1, 0, 1}, c = g = 0, then the evolution
operator is given explicitly by the following formula (note—this formula is a consequence of Mehler’s
formula for Hermite polynomials):

ψ(x, t) = UV(t) f :=
1√

2iπµj(t)

∫
Rn

eiSV(x,y,t) f (y)dy, (57)

where

SV(x, y, t) =
1

µj(t)

(
x2

j + y2
j

2
lj(t)− xjyj

)
,

{µj(t), lj(t)} =


{

sinh(ωjt)
ωj

, cosh(ωjt)
}

, if λj = −1

{t, 1}, if λj = 0{
sin(ωjt)

ωj
, cos(ωjt)

}
, if λj = +1

. (58)

Using Riccati-Ermakov systems in [41], it was shown how computer algebra systems can
be used to derive the multiparameter formulas (33)–(45). This multi-parameter study was used
also to study solutions for the inhomogeneous paraxial wave equation in a linear and quadratic
approximation including oscillating laser beams in a parabolic waveguide, spiral light beams, and
more families of propagation-invariant laser modes in weakly varying media. However, the analytical
method is restricted to solve Riccati equations exactly as the ones presented in Table 2. In this
section, we use a finite differences method to compare analytical solutions described in [41] with
numerical approximations. We aim (in future research) to extend numerical schemes to solve more
general cases that the analytical method exposed cannot. Particularly, we will pursue to solve equations
of the general form:

iψt = −∆ψ + V(x, t)ψ, (59)

using polynomial approximations in two variables for the potential function V(x, t) (V(x, t) ≈ b(t)(x2
1 +

x2
2)+ f (t)x1 + g(t)x2 + h(t)). For this purpose, it is necessary to analyze stability of different methods

applied to this equation.
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We also will be interested in extending this process to nonlinear Schrödinger-type equations with
potential terms dependent on time, such as

iψt = −∆ψ + V(x, t)ψ + s|ψ|2ψ. (60)

In this section, we show that the Crank-Nicolson scheme seems to be the best method to deal with
reconstructing numerically the analytical solutions presented in [41].

Numerical methods arise as an alternative when it is difficult to find analytical solutions of the
Schrödinger equation. Despite numerical schemes not providing explicit solutions to the problem,
they do yield approaches to the real solutions which allow us to obtain some relevant properties of
the problem. Most of the simplest and often-used methods are those based on finite differences.

In this section, the Crank-Nicolson scheme is used for linear Schrödinger equation in the case of
coefficients depending only on the space variable because it is absolutely stable and the matrix of the
associate system does not vary for each iteration.

A rectangular mesh (xm, tn) is introduced in order to discretize a bounded domain Ω× [0, T] in
space and time. In addition, τ and h represent the size of the time step and the size of space step,
respectively. xm and h are in R if one-dimensional space is considered; otherwise, they are in R2.

The discretization is given by the matrix system(
I +

iaτ

2h2 ∆ +
iτ
2

V(x)
)

ψn+1 =

(
I − iaτ

2h2 ∆− iτ
2

V(x)
)

ψn, (61)

where I is the identity matrix, ∆ is the discrete representation of the Laplacian operator in space,
and V(x) is the diagonal matrix that represents the operator of the external potential depending on x.

The paraxial wave equation (also known as harmonic oscillator)

2iψt + ∆ψ− r2ψ = 0, (62)

where r = x for x ∈ R or r =
√

x2
1 + x2

2 for x ∈ R2, describes the wave function for a laser beam [40].
One solution for this equation can be presented as Hermite-Gaussian modes on a rectangular domain:

ψnm(x, t) = Anm
exp [i(κ1 + κ2) + 2i(n + m + 1)γ]√

2n+mn!m!π
β

× exp
[
i(αr2 + δ1x1 + δ2x2)− (βx1 + ε1)

2/2− (βx2 + ε2)
2/2
]

(63)

× Hn(βx1 + ε1)Hm(βx2 + ε2),

where Hn(x) is the n-th order Hermite polynomial in the variable x, see [40] and [41].
In addition, some solutions of the paraxial equation may be expressed by means of

Laguerre–Gaussian modes in the case of cylindrical domains (see [43]):

ψm
n (x, t) = Am

n

√
n!

π(n + m)!
β

× exp
[
i(αr2 + δ1x1 + δ2x2 + κ1 + κ2)− (βx1 + ε1)

2/2− (βx2 + ε2)
2/2
]

(64)

× exp [i(2n + m + 1)γ] (β(x1 ± ix2) + ε1 ± iε2)
m

× Lm
n ((βx1 + ε1)

2 + (βx2 + ε2)
2),

with Lm
n (x) being the n-th order Laguerre polynomial with parameter m in the variable x.

α, β, γ, δ1, δ2, ε1, ε2, κ1 and κ2 given by Equations (34)–(39) for both Hermite-Gaussian and
Laguerre-Gaussian modes.
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Figures 1 and 2 show two examples of solutions of the one-dimensional paraxial equation with
Ω = [−10, 10] and T = 12. The step sizes are τ = 10

200 and h = 10
200 .

(a) (b)

Figure 1. (a) corresponding approximation for the one-dimensional Hermite-Gaussian beam with

t = 10. The initial condition is
√

2
3
√

π
e(

2
3 x)

2
/2; (b) the exact solution for the one-dimensional

Hermite-Gaussian beam with t = 10, An = 1, µ0 = 1, α0 = 0, β0 = 4
9 , n0 = 0, δ0 = 0, γ0 =

0, ε0 = 0, κ0 = 0.

(a) (b)

Figure 2. (a) corresponding approximation for the one-dimensional Hermite-Gaussian beam with

t = 10. The initial condition is
√

2
3
√

π
e(

2
3 x)

2
/2+ix; (b) the exact solution for the one-dimensional

Hermite-Gaussian beam with t = 10, An = 1, µ0 = 1, α0 = 0, β0 = 4
9 , n0 = 0, δ0 = 1, γ0 = 0, ε0 =

0, κ0 = 0.

Figure 3 shows four profiles of two-dimensional Hermite-Gaussian beams considering Ω =

[−6, 6]× [−6, 6] and T = 10. The corresponding step sizes are τ = 10
40 and h =

(
12
48 , 12

48

)
.
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(a)

(b)

(c)

(d)

Figure 3. (Left): corresponding approximations for the two-dimensional Hermite-Gaussian beams

with t = 10. The initial conditions are (a) 1√
8π

e−(x2+y2); (b) 1√
2π

e−(x2+y2)x; (c)
√

2
π e−(x2+y2)xy;

(d) 1
4
√

32π
e−(x2+y2) (8x2− 2

) (
8y2− 2

)
. (Right): the exact solutions for the two-dimensional

Hermite-Gaussian beams with t = 10 and parameters Anm = 1
4 , α0 = 0, β0 =

√
2, δ0,1 =

1, γ0,1 = 0, ε0,1 = 0, κ0,1 = 0. For (a) n = 0 and m = 0, for (b) n = 1 and m = 0, for (c) n = 1
and m = 1, for (d) n = 2 and m = 2.
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Figure 4 shows two profiles of two-dimensional Laguerre–Gaussian beams considering
Ω = [−6, 6]× [−6, 6] and T = 10. The corresponding step sizes are τ = 10

40 and h =
(

12
48 , 12

48

)
.

(a)

(b)

Figure 4. (Left): corresponding approximations for the two-dimensional Laguerre–Gaussian

beams with t = 10. The initial conditions are (a) 1√
4π

e−(x2+y2) (x + iy); (b)
1√
2π

e−(x2+y2) (x + iy)
(
1− x2 − y2). (Right): the exact solutions for the two-dimensional

Laguerre–Gaussian beams with t = 10 and parameters Am
n = 1

4 , α0 = 0,
β0 =

√
2, δ0,1 = 1, γ0,1 = 0, ε0,1 = 0, κ0,1 = 0.

5. Conclusions

Rajendran et al.in [1] used similarity transformations introduced in [28] to show a list of
integrable NLS equations with variable coefficients. In this work, we have extended this list,
using similarity transformations introduced by Suslov in [26], and presenting a more extensive list of
families of integrable nonlinear Schrödinger (NLS) equations with variable coefficients (see Table 1 as
a primary list. In both approaches, the Riccati equation plays a fundamental role. The reader can
observe that, using computer algebra systems, the parameters (see Equations (33)–(39)) provide a
change of the dynamics of the solutions; the Mathematica files are provided as a supplement for the
readers. Finally, we have tested numerical approximations for the inhomogeneous paraxial wave
equation by the Crank-Nicolson scheme with analytical solutions. These solutions include oscillating
laser beams and Laguerre and Gaussian beams. The explicit solutions have been found previously
thanks to explicit solutions of Riccati-Ermakov systems [41].

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/8/5/38/s1,
Mathematica supplement file.
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