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Abstract: Using the q-integral representation of Sears’ nonterminating extension of the q-Saalschütz
summation, we derive a reduction formula for a kind of double q-integrals. This reduction formula
is used to derive a curious double q-integral formula, and also allows us to prove a general q-beta
integral formula including the Askey–Wilson integral formula as a special case. Using this double
q-integral formula and the theory of q-partial differential equations, we derive a general q-beta
integral formula, which includes the Nassrallah–Rahman integral as a special case. Our evaluation
does not require the orthogonality relation for the q-Hermite polynomials and the Askey–Wilson
integral formula.
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1. A Double q-Integral Formula

Throughout the paper, we assume that 0 < q < 1. For a ∈ C, we define the q-shifted
factorials as follows:

(a; q)0 = 1, (a; q)n =
n−1

∏
k=0

(1− aqk), n = 0, 1, 2, · · · ,

and

(a; q)∞ = lim
n→∞

(a; q)n =
∞

∏
k=0

(1− aqk).

If n is an integer or ∞, the multiple q-shifted factorials are defined as:

(a1, a2, ..., am; q)n = (a1; q)n(a2; q)n . . . (am; q)n.

The q-binomial coefficients are the q-analogs of the binomial coefficients, which are defined by[
n
k

]
q
=

(q; q)n

(q; q)k(q; q)n−k
.

Definition 1. For x = cos θ, we define h(x; a) and h(x; a1, a2, . . . , am) as follows:

h(x; a) = (aeiθ , ae−iθ ; q)∞ =
∞

∏
k=0

(1− 2qkax + q2ka2),

h(x; a1, a2, . . . , am) = h(x; a1)h(x; a2) · · · h(x; am).
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Definition 2. For simplicity, we use ∆(u, v) to denote the theta function:

(1− q)v(q, u/v, qv/u; q)∞.

As usual, the basic hypergeometric series or q-hypergeometric series rφs is defined by:

rφs

(
a1, a2, ..., ar

b1, b2, ..., br
; q, z

)
=

∞

∑
n=0

(a1, a2, ..., ar; q)n

(q, b1, b2, ..., bs; q)n

(
(−1)nqn(n−1)/2

)1+s−r
zn.

Now, we introduce the definition of the Thomae–Jackson q-integral in q-calculus, which was
introduced by Thomae [1] and Jackson [2].

Definition 3. Given a function f (x), the Thomae–Jackson q-integral is defined by:

∫ b

a
f (x)dqx = (1− q)

∞

∑
n=0

[b f (bqn)− a f (aqn)]qn.

Using the q-integral notation, one can write some q-formulas in more compact forms.
On making use of the q-exponential operator method, we [3] proved the following proposition

(some misprints have been corrected here):

Proposition 1. For max{|au|, |bu|, |cu|, |av|, |bv|, |cv|, |d/b|} < 1, we have:

∫ v

u

(qx/u, qx/v, dx; q)∞

(ax, bx, cx; q)∞
dqx =

∆(u, v)(abuv, bcuv, d/b; q)∞

(au, av, bu, bv, cu, cv; q)∞

× 3φ2

(
bu, bv, abcuv/d

abuv, bcuv
; q,

d
b

)
.

When d = abcuv in Proposition 1, upon noting that (1; q)k = δ0,k, the 3φ2 series in the
proposition reduces to 1 and thus the proposition becomes the Al-Salam–Verma formula, which is
the q-integral representation of Sears’ nonterminating extension of the q-Saalschütz summation [4],
see also [5] (p. 52).

Proposition 2. If there are no zero factors in the denominator of the integral and
max{|au|, |av|, |bu|, |bv|, |cu|, |cv|} < 1, then we have:

∫ v

u

(qx/u, qx/v, abcuvx; q)∞

(ax, bx, cx; q)∞
dqx =

∆(u, v)(abuv, acuv, bcuv; q)∞

(au, bu, cu, av, bv, cv; q)∞
.

When c = 0, this q-integral formula reduces to the following q-integral formula due to Andrews
and Askey [6], which can be derived from Ramanujan 1ψ1 summation.

Proposition 3. If there are no zero factors in the denominator of the integral and max{|au|, |av|, |bu|, |bv|} < 1,
then we have: ∫ v

u

(qx/u, qx/v; q)∞

(ax, bx; q)∞
dqx =

∆(u, v)(abuv; q)∞

(au, bu, av, bv; q)∞
.

The main purpose of this paper is to study double q-integrals. There are not many studies on this
subject, and it is difficult to find the definition of the double q-integrals in the literature. We now give
the definition of the double q-integral of a two-variable function f (x, y) over the rectangular region.
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Definition 4. If f (x, y) is a two variable function, the double q-integral of f over [a, b] × [c, d] is
formally defined as: ∫∫

[a,b]×[c,d]
f (x, y)dqxdqy

= (1− q)2
∞

∑
m,n=0

(bd f (bqm, dqn) + ac f (aqm, cqn)) qm+n

− (1− q)2
∞

∑
m,n=0

(bc f (bqm, cqn) + ad f (aqm, dqn)) qm+n.

Proposition 4. If for any x ∈ [a, b] and y ∈ [c, d], the double series,

∞

∑
m,n=0

f (xqm, yqn)qm+n

is absolutely convergent, then it is equal to each of the two iterated q-integrals, namely,

∫∫
[a,b]×[c,d]

f (x, y)dqxdqy =
∫ b

a
dqx

∫ d

c
f (x, y)dqy =

∫ d

c
dqy

∫ b

a
f (x, y)dqx.

Proof. If the conditions of the proposition are satisfied, then the q-double integral of f (x, y) represents
an absolutely convergent double series, and we can interchange the order of summation to complete
the proof of Proposition 4.

In order to determine the absolute convergence of double series, one can use the ratio test for
double series (see, for example, [7] (Corollary 7.35)):

Proposition 5. Let (ak,l) be a double sequence of nonzero real numbers such that either |ak,l+1|/|ak,l | → a or
|ak+1,l |/|ak,l | → ã as (k, l) → (∞, ∞), where a, ã ∈ R ∪∞. If each row-series as well as each column-series
corresponding to ∑k,l ak,l is absolutely convergent and a < 1 or ã < 1, then ∑k,l ak,l is absolutely convergent.

The principal result of this paper is the following general iterated q-integral formula:

Theorem 1. Suppose that f (y) is a function of y which satisfies,

lim
n→∞

| f (yqn)/ f (yqn−1)| ≤ 1.

Then, we have the iterated q-integral identity,

∫ v

u

(qx/u, qx/v; q)∞

(ax, bx; q)∞
dqx

∫ d

c

f (y)(qy/c, qy/d, abuvxy; q)∞

(xy; q)∞
dqy

=
∆(u, v)(abuv; q)∞

(au, av, bu, bv; q)∞

∫ d

c

f (y)(qy/c, qy/d, auvy, buvy; q)∞

(uy, vy; q)∞
dqy.

Proof. For simplicity, we use I(u, v, c, d) to denote the following q-double integral:

∫∫
[u,v]×[c,d]

f (y)(qx/u, qx/v, qy/c, qy/d, abuvxy; q)∞

(ax, bx, xy; q)∞
dqxdqy.

Using the ratio test for double series in Proposition 5, we can prove that I(u, v, c, d) is
absolutely convergent.
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Interchanging the order of the iterated integral on the left-hand side of the equation in Theorem 1,
we find that: ∫ d

c
(qy/c, qy/d; q)∞ f (y)dqy

∫ v

u

(qx/u, qx/v, abuvxy; q)∞

(ax, bx, xy; q)∞
dqx.

On replacing c by y in the Al-Salam–Verma integral in Proposition 2, we immediately find that

∫ v

u

(qx/u, qx/v, abuvxy; q)∞

(ax, bx, xy; q)∞
dqx =

∆(u, v)(abuv, auvy, buvy; q)∞

(au, av, bu, bv, uy, vy; q)∞
.

Combining these two equations, we complete the proof of Theorem 1.

Theorem 1 can be used to derive some double q-integral evaluation formulas in Theorems 2–7,
some of whose proofs are given in the later sections.

Theorem 2. For maxs∈{a,b,c,d}{|su|, |sv|, |cw|, |dw|, |r/w|} < 1, we have:

∫ v

u

(qx/u, qx/v; q)∞

(ax, bx; q)∞
dqx

∫ d

c

(qy/c, qy/d, abuvxy, ry; q)∞

(auvy, buvy, xy, wy; q)∞
dqy

=
∆(u, v)∆(c, d)(abuv, cduw, cdvw, r/w; q)∞

(au, av, bu, bv, cu, cv, du, dv, cw, dw; q)∞

× 3φ2

(
cw, dw, cduvw/r

cduw, cdvw
; q,

r
w

)
.

When r = cduvw, the 3φ2 series in the above equation reduces to 1, and hence we have the
following curious double q-integral formula.

Proposition 6. For max{|a|, |b|, |c|, |d|, |u|, |v|, |w|} < 1, we have:

∫ v

u

(qx/u, qx/v; q)∞

(ax, bx; q)∞
dqx

∫ d

c

(qy/c, qy/d, abuvxy, cduvwy; q)∞

(auvy, buvy, xy, wy; q)∞
dqy

=
∆(u, v)∆(c, d)(abuv, cduv, cduw, cdvw; q)∞

(au, av, bu, bv, cu, cv, du, dv, cw, dw; q)∞
.

Using Theorem 1, we can prove the following general q-beta integral formula that includes the
Askey–Wilson integral as a special case.

Theorem 3. Suppose that f (y) is a function of y that satisfies:

lim
n→∞

| f (yqn)/ f (yqn−1)| ≤ 1.

Then, we have the following general q-beta integral formula:

∫ π

0

h(cos 2θ; 1)
h(cos θ; a, b)

(∫ d

c

f (y)(qy/c, qy/d, wy; q)∞

h(cos θ; y)(ry; q)∞
dqy
)

dθ

=
2π

(q, ab; q)∞

∫ d

c

f (y)(qy/c, qy/d, wy; q)∞

(ay, by, ry; q)∞
dqy.

Using this theorem and the theory of q-partial differential equations developed recently by us,
we can prove the following general q-beta integral formula, which includes the Nassrallah–Rahman
integral as a special case. Our evaluation does not require the orthogonality relation for the q-Hermite
polynomials and the Askey–Wilson integral formula.
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Theorem 4. For {|a|, |b|, |c|, |d|, |u|, |abs/t|} < 1, we have the q-formula:

∫ π

0

h(cos 2θ; 1)h(cos θ; w)

h(cos θ; a, b, c, d, u) 3φ2

(
teiθ , te−iθ , t/s

at, bt
; q,

abs
t

)
dθ

=
2π(w/c, w/d; q)∞

∆(c, d)(q, cd, au, bu, abs/t; q)∞

×
∫ d

c

(qy/c, qy/d, wy, absuy/t; q)∞

(ay, by, uy, wy/cd; q)∞
3φ2

(
t/s, t/u, t/y

at, bt
; q,

absuy
t

)
dqy.

Upon taking s = t in this theorem and upon noting that (1; q)k = δ0,k, the two 3φ2 series in
the above Theorem both have the value 1; thus, we obtain the following integral formula due to the
Nassrallah and Rahman [5] (pp. 157–158).

Theorem 5. For max{|a|, |b|, |c|, |d|, |u|} < 1, we have:

∫ π

0

h(cos 2θ; 1)h(cos θ; w)

h(cos θ; a, b, c, d, u)
dθ

=
2π(w/c, w/d; q)∞

∆(c, d)(q, ab, au, bu, cd; q)∞

∫ d

c

(qy/c, qy/d, wy, abuy; q)∞

(ay, by, uy, wy/cd; q)∞
dqy.

The proof of this formula given in [5] (pp. 157–158) needs to know the Askey–Wilson integral
formula in advance.

Theorem 6. (Nassrallah–Rahman Integral). For max{|a|, |b|, |c|, |d|, |u|} < 1, we have:

∫ π

0

h(cos 2θ; 1)h(cos θ; abcdu)dθ

h(cos θ; a, b, c, d, u)

=
2π(abcu, abcd, abdu, acdu, bcdu; q)∞

(q, ab, ac, ad, au, bc, bd, bu, cd, cu, du; q)∞
.

Proof. Setting w = abcdu in Theorem 5, we immediately deduce that:

∫ π

0

h(cos 2θ; 1)h(cos θ; abcdu)
h(cos θ; a, b, c, d, u)

dθ

=
2π(abcu, abdu; q)∞

∆(c, d)(q, ab, au, bu, cd; q)∞

∫ d

c

(qy/c, qy/d, abcduy; q)∞

(ay, by, uy; q)∞
dqy.

Using the Al-Salam–Verma integral in Proposition 2, we immediately have:

∫ d

c

(qy/c, qy/d, abcduy; q)∞

(ay, by, uy; q)∞
dqy =

∆(c, d)(abcd, acdu, bcdu; q)
(ac, ad, bc, bd, cu, du; q)∞

.

Combining these two equations, we complete the proof of the theorem.

Putting t = u, then the 3φ2 series on the right-hand side of the equation in Theorem 4 reduces
to 1. Hence, we arrive at the following proposition.
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Theorem 7. For {|a|, |b|, |c|, |d|, |u|, |abs/u|} < 1, we have the q-formula:

∫ π

0

h(cos 2θ; 1)h(cos θ; w)

h(cos θ; a, b, c, d, u) 3φ2

(
teiθ , te−iθ , u/s

at, bt
; q,

abs
u

)
dθ

=
2π(w/c, w/d; q)∞

∆(c, d)(q, cd, au, bu, abs/u; q)∞

×
∫ d

c

(qy/c, qy/d, wy, absy; q)∞

(ay, by, uy, wy/cd; q)∞
dqy.

The remainder of the paper is organized as follows: Section 2 is devoted to the proof of
Theorem 2, and Theorem 3 is proved in Section 3. Theorem 4 is established in Section 4. In Section 5,
we give a general double q-integral formula.

2. The Proof of Theorem 2

Proof. If f (y) = (ry; q)∞/(auvy, buvy, wy; q)∞, then, it is easily seen that:

f (qny)
f (qn−1y)

=
(1− auvyqn−1)(1− buvyqn−1)(1− wyqn−1)

(1− ryqn−1)
.

It follows that limn→∞ | f (yqn)/ f (yqn−1)| = 1. Thus, we can choose:

f (y) = (ry; q)∞/(auvy, buvy, wy; q)∞

in Theorem 1 to obtain:∫ v

u

(qx/u, qx/v; q)∞

(ax, bx; q)∞
dqx

∫ d

c

(qy/c, qy/d, abuvxy, ry; q)∞

(auvy, buvy, wy, xy; q)∞
dqy

=
∆(u, v)(abuv; q)∞

(au, av, bu, bv; q)∞

∫ d

c

(qy/c, qy/d, ry; q)∞

(uy, wy, vy; q)∞
dqy.

If we use I to denote the q-integral in the right-hand side of the above equation, then, appealing
to Proposition 1, we find that:

I =
∆(c, d)(cduw, cdvw, r/w; q)∞

(cu, du, cv, dv, cw, dw; q)∞
3φ2

(
cw, dw, cduvw/r

cduw, cdvw
; q,

r
w

)
.

Combining these two equations, we complete the proof of Theorem 2.

3. The Proof of Theorem 3 and the Askey–Wilson Integral

Proof. If f (y) is replaced by f (y)(wy; q)∞/(auvy, buvy, ry; q)∞ in Theorem 1, then, we deduce that:

∫ v
u
(qx/u, qx/v; q)∞

(ax, bx; q)∞
dqx

∫ d
c

f (y)(qy/c, qy/d, abuvxy, wy; q)∞

(auvy, buvy, xy, ry; q)∞
dqy

=
∆(u, v)(abuv; q)∞

(au, av, bu, bv; q)∞

∫ d
c

f (y)(qy/c, qy/d, wy; q)∞

(uy, vy, ry; q)∞
dqy.

(1)

Noting the definition of ∆(u, v) in Definition 2 and by a direct computation, we deduce that:

(eiθ − e−iθ)∆(eiθ , e−iθ) = (1− q)(q; q)∞h(cos 2θ; 1).
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Keeping this in mind and replacing (u, v) by (eiθ , e−iθ) in (1), we conclude that:

(eiθ − e−iθ)
∫ e−iθ

eiθ (qxeiθ , qxe−iθ ; q)∞ I(x)dqx

=
(1− q)(q, ab; q)∞h(cos 2θ; 1)

h(cos θ; a, b)
∫ d

c
f (y)(qy/c, qy/d, wy; q)∞

h(cos θ; y)(ry; q)∞
dqy,

(2)

where

I(x) :=
1

(ax, bx; q)∞

∫ d

c

f (y)(qy/c, qy/d, abxy, wy; q)∞

(ay, by, xy, ry; q)∞
dqy.

It is easily seen that I(x) is analytic near x = 0. Thus, there exists a sequence {ak}∞
k=0 independent

of x such that:

I(x) = a0 +
∞

∑
k=1

akxk.

By setting x = 0 in the above equation, we immediately conclude that:

a0 =
∫ d

c

f (y)(qy/c, qy/d, wy; q)∞

(ay, by, ry; q)∞
dqy. (3)

Using the definition of the q-integral, we find that the left-hand side of (2) equals:

(1− q)(1− e−2iθ)
∞

∑
n=0

(qn+1; q)∞(qn+1e−2iθ ; q)∞ I(qne−iθ)qn

+ (1− q)(1− e2iθ)
∞

∑
n=0

(qn+1; q)∞(qn+1e2iθ ; q)∞ I(qneiθ)qn.

Inspecting the first series in the above equation, we see that this series can be expanded in terms
of the negative powers of {e−kiθ}∞

k=0, and the constant term of the Fourier expansion of this series is
(1− q)a0, since

∞

∑
n=0

(qn+1; q)∞qn =
∞

∑
n=0

(q; q)∞

(q; q)n
qn =

(q; q)∞

(q; q)∞
= 1

by the binomial theorem (see, for example [5] (1.3.15)). Thus, there exists a sequence {αk}∞
k=1

independent of θ such that the first series equals

(1− q)a0 +
∞

∑
k=1

αke−ikθ .

On replacing θ by −θ, we immediately find that the second series is equal to

(1− q)a0 +
∞

∑
k=1

αkeikθ .

It follows that:

(eiθ − e−iθ)
∫ e−iθ

eiθ
(qxeiθ , qxe−iθ ; q)∞ I(x)dqx

= 2(1− q)a0 + 2
∞

∑
k=1

αk cos kθ.
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Comparing this equation with (2), we are led to the Fourier series expansion

2(1− q)a0 + 2
∞

∑
k=1

αk cos kθ

=
(1− q)(q, ab; q)∞h(cos 2θ; 1)

h(cos θ; a, b)

∫ d

c

f (y)(qy/c, qy/d, wy; q)∞

h(cos θ; y)(ry; q)∞
dqy.

If we integrate this equation with respect to θ over [−π, π], using the well known fact∫ π

−π
(cos kθ)dθ = 2πδk,0,

and noting that the integrand is an even function of θ, we immediately deduce that

2πa0

(q, ab; q)∞
=
∫ π

0

h(cos 2θ; 1)
h(cos θ; a, b)

∫ d

c

(
f (y)(qy/c, qy/d, wy; q)∞

h(cos θ; y)(ry; q)∞
dqy
)

dθ

Substituting (3) into the left-hand side of this equation, we complete the proof of Theorem 3.

Theorem 3 can be used to give a very simple derivation of the Askey–Wilson integral [8].

Theorem 8. If max{|a|, |b|, |c|, |d|} < 1, then we have:

∫ π

0

h(cos 2θ; 1)
h(cos θ; a, b, c, d)

dθ =
2π(abcd; q)∞

(q, ab, ac, ad, bc, bd, cd; q)∞
.

Proof. Choosing f (y) = (ry; q)∞/(wy; q)∞ in Theorem 3, we conclude that

∫ π

0

h(cos 2θ; 1)
h(cos θ; a, b)

(∫ d

c

(qy/c, qy/d; q)∞

h(cos θ; y)
dqy
)

dθ

=
2π

(q, ab; q)∞

∫ d

c

(qy/c, qy/d; q)∞

(ay, by; q)∞
dqy.

Appealing to the Andrews–Askey integral in Proposition 3, we arrive at

∫ d

c

(qy/c, qy/d; q)∞

h(cos θ; y)
dqy =

∆(c, d)(cd; q)∞

h(cos θ; c, d)
,

∫ d

c

(qy/c, qy/d; q)∞

(ay, by; q)∞
dqy =

∆(c, d)(abcd; q)∞

(ac, ad, bc, bd; q)∞
.

Combining these three equations, we complete the proof of Theorem 8.

For other proofs of this integral formula, see [9–18].

Theorem 9. For max{|a|, |b|, |c|, |d|} < 1, we have the q-beta integral formula:

∫ π

0

h(cos 2θ; 1)h(cos θ; w)

h(cos θ; a, b, c, d)
dθ

=
2π(w/c, w/d; q)∞

∆(c, d)(q, ab, cd; q)∞

∫ d

c

(qy/c, qy/d, wy; q)∞

(ay, by, wy/cd; q)∞
dqy.
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Proof. Choosing f (y) = (ry; q)∞/(wy/cd; q)∞ in Theorem 3, we arrive at

∫ π

0

h(cos 2θ; 1)
h(cos θ; a, b)

(∫ d

c

(qy/c, qy/d, wy; q)∞

h(cos θ; y)(wy/cd; q)∞
dqy
)

dθ

=
2π

(q, ab; q)∞

∫ d

c

(qy/c, qy/d, wy; q)∞

(ay, by, wy/cd; q)∞
dqy.

On using the Al-Salam–Verma integral in Proposition 2, we conclude that

∫ d

c

(qy/c, qy/d, wy; q)∞

h(cos θ; y)(wy/cd; q)∞
dqy =

∆(c, d)h(cos θ; w)(cd; q)∞

h(cos θ; c, d)(w/c, w/d; q)∞
.

Combining the above two equations, we complete the proof of Theorem 9.

4. The Rogers–Szegő Polynomials and the Proof Theorem 4

4.1. The Rogers–Szegő Polynomials and q-Hermite Polynomials

The Rogers–Szegő polynomials play an important role in the theory of orthogonal polynomials,
which are defined by (see, for example, [19] (Definition 1.2)):

hn(a, b|q) =
n

∑
k=0

[
n
k

]
q
akbn−k.

By multiplying two copies of the q-binomial theorem (see, for example,
[5] (p. 8, Equation (1.3.2))), we readily find that

∞

∑
n=0

hn(a, b|q) tn

(q; q)n
=

1
(at, bt; q)∞

, |at| < 1, |bt| < 1. (4)

The continuous q-Hermite polynomials Hn(cos θ|q) is defined by:

Hn(cos θ|q) := hn(e−iθ , eiθ |q) =
n

∑
k=0

[
n
k

]
q
ei(n−2k)θ .

Using (4), one can easily find the following generating function for the q-Hermite
polynomials [16] (Equation (5.3)):

∞

∑
n=0

Hn(cos θ|q) tn

(q; q)n
=

1
(teiθ , te−iθ ; q)∞

=
1

h(cos θ; t)
, for |t| < 1. (5)

Proposition 7. For |t| < 1, the following series converges uniformly on 0 ≤ θ ≤ π:

∞

∑
n=0

Hn(cos θ|q) tn

(q; q)n
,

and we also have
1

|(teiθ ; te−iθ ; q)∞|
≤ 1

(|t|; q)2
∞

.

Proof. It is easily seen that |Hn(x|q)| ≤ Hn(1|q) for −1 ≤ x ≤ 1, and the series in (5) converges at
x = 1. Thus, the series in (5) converges for |t| < 1 uniformly on θ ∈ [−π, π].
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Using |Hn(x|q)| ≤ Hn(1|q) for −1 ≤ x ≤ 1, we easily find that for any |t| < 1,∣∣∣∣ 1
(teiθ ; te−iθ ; q)∞

∣∣∣∣ ≤ ∞

∑
n=0

Hn(1|q)
|t|n

(q; q)n
=

1
(|t|; q)2

∞
.

Proposition 8. If k is an non-negative integer, then, for max{|a|, |b|, |c|, |d|, |u|} < 1, Ak(θ) is bounded on
[−π, π], where Ak(θ) is given by:

Ak(θ) =
h(cos 2θ; 1)h(cos θ; w)(teiθ ; te−iθ ; q)k

h(cos θ; a, b, c, d, u)
.

Proof. On applying the inequality in Proposition 7, we immediately deduce that∣∣∣∣ 1
h(cos θ; a, b, c, d, u)

∣∣∣∣ ≤ 1
(|a|, |b|, |c|, |d|, |u|; q)2

∞
.

Using the triangle inequality, we easily find that |h(cos 2θ; 1)| ≤ 4(−q; q)2
∞, and

|h(cos θ; w)| ≤ (−|w|; q)2
∞, |(teiθ ; te−iθ ; q)k| ≤ (−|t|; q)2

∞. (6)

It follows that Ak(θ) is bounded on [−π, π]. This completes the proof of the proposition.

Proposition 9. If k is an non-negative integer, then, for max{|a|, |b|, |c|, |d|, |u|} < 1,
∫ π

0 Ak(θ)dθ is an
analytic function of a, b, c, d, u.

Proof. From Proposition 7, we know that, for |a| < 1, the following series is convergent uniformly
on 0 ≤ θ ≤ π:

∞

∑
n=0

Hn(cos θ|q) an

(q; q)n
=

1
(aeiθ , ae−iθ ; q)∞

.

Thus, for |a| < 1, the integrand of the integral in Proposition 9 can be expanded into the
following series, which is convergent uniformly on 0 ≤ θ ≤ π:

∞

∑
n=0

an Hn(cos θ|q)h(cos 2θ; 1)h(cos θ; w)(teiθ ; te−iθ ; q)k
h(cos θ; b, c, d, u)(q; q)n

.

On replacing the integrand of the integral in Proposition 9 by this series and then integrating
term by term, one can see that the resulting series is of the form

∞

∑
n=0

an

(q; q)n

∫ π

0

Hn(cos θ|q)h(cos 2θ; 1)h(cos θ; w)(teiθ ; te−iθ ; q)k
h(cos θ; b, c, d, u)

dθ. (7)

Using the triangle inequality and inequalities in Proposition 7 and (6), we find that∣∣∣∣∣ ∞

∑
n=0

an

(q; q)n

∫ π

0

Hn(cos θ|q)h(cos 2θ; 1)h(cos θ; w)(teiθ ; te−iθ ; q)k
h(cos θ; b, c, d, u)

dθ

∣∣∣∣∣
≤ 4π(−q,−|w|,−|t|; q)2

∞
(|a|, |b|, |c|, |d|, |u|; q)2

∞
.

It follows that the infinite series in (7) is uniformly and absolutely convergent. Thus, the integral
in Proposition 9 is an analytic function of a for |a| < 1. By symmetry, we know that the integral is also
analytic for b, c, d, u.
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Proposition 10. For max{|a|, |b|, |c|, |d|, |u|, |abs/t|} < 1, the following integral is an analytic function of a
and b: ∫ π

0

h(cos 2θ; 1)h(cos θ; w)

h(cos θ; a, b, c, d, u) 3φ2

(
teiθ , te−iθ , t/s

at, bt
; q,

abs
t

)
dθ.

Proof. Using the definition of Ak(θ) in Proposition 8, we find that the integrand of the integral in
Proposition 10 can be written as:

∞

∑
k=0

(t/s; q)k
(q, at, bt; q)k

(
abs
t

)k
Ak(θ). (8)

By the ratio test, we easily find that the following series is absolutely convergent for |abs/t| < 1 :

∞

∑
k=0

(t/s; q)k
(q, at, bt; q)k

(
abs
t

)k
.

Thus, the series in (8) is absolutely and uniformly convergent on [−π, π]. Substituting the series
in (8) into the integral in Proposition 10 and then integrating term by term, we obtain

∞

∑
k=0

(t/s; q)k
(q, at, bt; q)k

(
abs
t

)k ∫ π

0
Ak(θ)dθ.

The above series is uniformly convergent and every term is an analytic function of a and b, so the
series converges to an analytic function of a and b. This completes the proof of the proposition.

Using the same argument used in Proposition 10, we can prove the following proposition.

Proposition 11. The following q-integral is an analytic function of a and b at (0, 0) ∈ C2:

∫ d

c

(qy/c, qy/d, wy, absuy/t; q)∞

(ay, by, uy, wy/cd; q)∞
3φ2

(
t/s, t/u, t/y

at, bt
; q,

absuy
t

)
dqy.

4.2. q-Partial Differential Equations

For any function f (x) of one variable, the q-derivative of f (x) with respect to x, is defined as:

Dq,x{ f (x)} = f (x)− f (qx)
x

,

and we further define D0
q,x{ f } = f , and for n ≥ 1, Dn

q,x{ f } = Dq,x{Dn−1
q,x { f }}.

Now, we give the definitions of the q-partial derivative and the q-partial differential equations.

Definition 5. A q-partial derivative of a function of several variables is its q-derivative with respect to
one of those variables, regarding other variables as constants. The q-partial derivative of a function f
with respect to the variable x is denoted by ∂q,x{ f }.

Definition 6. A q-partial differential equation is an equation that contains unknown multivariable
functions and their q-partial derivatives.

It turns out that the q-partial differential equation methods are useful for deriving
q-formulas [16,19–21]. The following useful expansion theorem for q-series can be found in [19]
(Proposition 1.6).
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Theorem 10. If f (x, y) is a two-variable analytic function at (0, 0) ∈ C2, then f can be expanded in terms of
hn(x, y|q) if and only if f satisfies the q-partial differential equation ∂q,x{ f } = ∂q,y{ f }.

Proposition 12. If we use L(a, b, u, v, s, t) to denote

(av, bv, abstu/v; q)∞

(as, at, au, bs, bt, bu; q)∞
3φ2

(
v/s, v/t, v/u

av, bv
; q,

abstu
v

)
,

then L(a, b, u, v, s, t) satisfies the q-partial differential equation ∂q,a{L} = ∂q,b{L}.

Proof. If we set v = cst, then the q-integral formula in [19] (Proposition 13.8) becomes

∫ t

s

(qx/s, qx/t, abux; q)∞

(ax, bx, vx/st; q)∞
dqx =

∆(s, t)(av, bv, abstu/v; q)∞

(as, bs, at, bt, v/s, v/t; q)∞

× 3φ2

(
v/s, v/t, v/u

av, bv
; q,

abstu
v

)
.

It follows that

L(a, b, u, v, s, t) =
(v/s, v/t; q)∞

∆(s, t)(au, bu; q)∞

∫ t

s

(qx/s, qx/t, abux; q)∞

(ax, bx, vx/st; q)∞
dqx.

By a direct computation, we find that

∂q,a{L} = ∂q,b{L}

=
(v/s, v/t; q)∞

∆(s, t)(au, bu; q)∞

∫ t

s

(x + u− (a + b)ux)(qx/s, qx/t, abuxq; q)∞

(ax, bx, vx/st; q)∞
dqx.

This completes the proof of Proposition 12.

4.3. The Proof of Theorem 4

Proof. From Propositions 10 and 11, we know that both sides of the equation in Theorem 4 are all
analytic functions of a and b at (0, 0) ∈ C2.

Using the definition of L(a, b, u, v, s, t) in Proposition 12 and a simple calculation, we find that

L(a, b, s, t, eiθ , e−iθ)

=
(at, bt, abs/t; q)∞

(as, bs; q)∞h(cos θ; a, b) 3φ2

(
teiθ , te−iθ , t/s

at, bt
; q,

abs
t

)
L(a, b, u, t, s, y)

=
(at, bt, absyu/t; q)∞

(as, ay, au, bs, by, bu; q)∞
3φ2

(
t/s, t/y, t/u

at, bt
; q,

absuy
t

)
.

Using these two equations, the q-integral formula in Theorem 4 can be rewritten as:

∫ π
0

L(a, b, s, t, eiθ , e−iθ)h(cos 2θ; 1)h(cos θ; w)

h(cos θ; c, d, u)
dθ

=
2π(w/c, w/d; q)∞

∆(c, d)(q, cd; q)∞

∫ d
c L(a, b, u, t, s, y)

(qy/c, qy/d, wy; q)∞

(uy, wy/cd; q)∞
dqy.

(9)
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If we use f (a, b) to denote the left-hand side of (9), then it satisfies the partial q-differential
equation ∂q,a{ f } = ∂q,b{ f } by Proposition 12. Thus, there exists a sequence {αn} independent of a
and b such that

f (a, b) =
∞

∑
n=0

αnhn(a, b|q).

Setting b = 0 in this equation, using the obvious fact hn(a, 0|q) = an and the identity

L(a, 0, s, t, eiθ , e−iθ) =
(at; q)∞

(as; q)∞h(cos θ; a)

in the resulting equation, we immediately conclude that

f (a, 0) =
(at; q)∞

(as; q)∞

∫ π

0

h(cos 2θ; 1)h(cos θ; w)

h(cos θ; a, c, d, u)
dθ =

∞

∑
n=0

αnan. (10)

If we use g(a, b) to denote the right-hand side of (9), then it satisfies the partial q-differential
equation ∂q,a{g} = ∂q,b{g} by Proposition 12. Thus, there exists a sequence {βn} independent of
a and b such that

g(a, b) =
∞

∑
n=0

βnhn(a, b|q).

Putting b = 0 in this equation, substituting hn(a, 0|q) = an and the identity

L(a, 0, u, t, s, y) =
(at; q)∞

(as, ay, au; q)∞

in the resulting equation, we are led to the expansion formula

2π(w/c, w/d, at; q)∞

∆(c, d)(q, au, cd, as; q)∞

∫ d

c

(qy/c, qy/d, wy; q)∞

(ay, uy, wy/cd; q)∞
dqy =

∞

∑
n=0

βnan.

On replacing b by u in the equation in Theorem 9, we conclude that

∫ π

0

h(cos 2θ; 1)h(cos θ; w)dθ

h(cos θ; a, u, c, d)

=
2π(w/c, w/d; q)∞

∆(c, d)(q, au, cd; q)∞

∫ d

c

(qy/c, qy/d, wy; q)∞

(ay, uy, wy/cd; q)∞
dqy.

Combining these two equations, we deduce that

(at; q)∞

(as; q)∞

∫ π

0

h(cos 2θ; 1)h(cos θ; w)dθ

h(cos θ; a, u, c, d)
=

∞

∑
n=0

βnan.

Combining this equation with (10), we obtain the power series identity

∞

∑
n=0

αnan =
∞

∑
n=0

βnan.

It follows that αn = βn for n = 0, 1, . . ., which completes the proof of Theorem 4.

5. Conclusions

Using the same method used in the proof of Theorem 4, we can also prove the following double
q-integral formula.
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Theorem 11. If we use Φ(x, y) to denote the following function of x and y:

(abuvxy, rbuvxy, cduvwxy; q)∞

(auvy, buvy, xy, wy, ruvy; q)∞
3φ2

(
buvy, bx, xy

abuvxy, rbuvxy
; q, aruv

)
,

then, we have the double q-integral formula

∫ v

u

(qx/u, qx/v; q)∞

(ax, bx, rx; q)∞
dqx

∫ d

c
(qy/c, qy/d; q)∞Φ(x, y)dqy

=
∆(c, d)∆(u, v)(abuv, cduv, cduw, cdvw, rbuv; q)∞

(au, av, bu, bv, cu, cv, du, dv, ru, rv, cw, dw; q)∞
.

Next, we will use Proposition 12 and Theorem 10 to give a proof of the theorem.

Proof. Using the definition of L(a, b, u, v, s, t) in Proposition 12, we easily find that

L(a, r, x, buvxy, uvy, buv) (11)

=
(abuvxy, rbuvxy, aruv; q)∞

(ax, rx, abuv, rbuv, auvy, ruvy; q)∞
3φ2

(
buvy, bx, xy

abuvxy, rbuvxy
; q, aruv

)
.

For the sake of brevity, we temporarily use I(a, r, x, y) to denote the expression

(cduvwxy; q)∞

(buvy, xy, wy; q)∞
L(a, r, x, buvxy, uvy, buv).

Using this expression and (11), the q-integral formula in Theorem 11 can be rewritten as:

∫ v
u
(qx/u, qx/v; q)∞

(bx; q)∞
dqx

∫ d
c (qy/c, qy/d; q)∞ I(a, r, x, y)dqy

=
∆(c, d)∆(u, v)(cduv, cduw, cdvw, aruv; q)∞

(au, av, bu, bv, cu, cv, du, dv, ru, rv, cw, dw; q)∞
.

(12)

If we use f (a, r) to denote the right-hand of the above equation, then, using the same
method as that used in the proof of Proposition 10, we can prove that f (a, r) is analytic at
(0, 0) ∈ C2. By Proposition 12, one can show that f (a, r) satisfies the partial q-differential equation
∂q,a{ f } = ∂q,r{ f }. Hence, by Theorem 10, there exists a sequence {λn} independent of a and r

such that

f (a, r) =
∞

∑
n=0

λnhn(a, r|q).

Setting r = 0 in this equation, substituting the equations hn(a, 0|q) = an and

L(a, 0, x, buvxy, uvy, buv) =
(abuvxy; q)∞

(ax, auvy, abuv; q)∞

in the resulting equation, we conclude that

∫ v

u

(qx/u, qx/v; q)∞

(ax, bx; q)∞
dqx

∫ d

c

(qy/c, qy/d, abuvxy, cduvwxy; q)∞

(auvy, buvy, xy, wy; q)∞
dqy

= (abuv; q)∞

∞

∑
n=0

λnan.
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Using Proposition 6, we know that the left-hand side of the above equation equals

∆(u, v)∆(c, d)(abuv, cduv, cduw, cdvw; q)∞

(au, av, bu, bv, cu, cv, du, dv, cw, dw; q)∞
.

It follows that
∞

∑
n=0

λnan =
∆(u, v)∆(c, d)(cduv, cduw, cdvw; q)∞

(au, av, bu, bv, cu, cv, du, dv, cw, dw; q)∞
. (13)

If we use g(a, r) to denote the right-hand side of (12), then, by a direct computation, we find that

∂q,a{g(a, r)} = ∂q,r{g(a, r)} = u + v− (a + r)uv
1− aruv

g(a, r).

Thus, by Theorem 10, there exists a sequence {δn} independent of a and r such that

g(a, r) =
∞

∑
n=0

δnhn(a, r|q).

Setting r = 0 in this equation and using the fact hn(a, 0|q) = an, we arrive at

g(a, 0) =
∞

∑
n=0

δnan =
∆(u, v)∆(c, d)(cduv, cduw, cdvw; q)∞

(au, av, bu, bv, cu, cv, du, dv, cw, dw; q)∞
. (14)

Comparing Equations (13) and (14), we have the power series identity

∞

∑
n=0

λnan =
∞

∑
n=0

δnan.

Hence, we find for n = 0, 1, . . . , that λn = δn. This completes the proof of Theorem 11.

Remark 1. Proceedings through the same steps used to derive Theorem 3 from Theorem 1, setting
u = eiθ and v = e−iθ in the equation in Theorem 11, and then integrating both sides of the resulting
equation with respect to θ over [−π, π], we can give a new proof of Theorem 5.
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