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Abstract: The drastic increase of websites is one of the causes behind the recent information overload
on the internet. A recommender system (RS) has been developed for helping users filter information.
However, the cold-start and sparsity problems lead to low performance of the RS. In this paper,
we propose methods including the visual-clustering recommendation (VCR) method, the hybrid
between the VCR and user-based methods, and the hybrid between the VCR and item-based methods.
The user-item clustering is based on the genetic algorithm (GA). The recommendation performance
of the proposed methods was compared with that of traditional methods. The results showed
that the GA-based visual clustering could properly cluster user-item binary images. They also
demonstrated that the proposed recommendation methods were more efficient than the traditional
methods. The proposed VCR2 method yielded an F1 score roughly three times higher than the
traditional approaches.

Keywords: recommender system; data clustering; visual-clustering method; genetic algorithm; top-N
recommendation; E-commerce

1. Introduction

There has been an explosion, in recent years, of the number of websites available on the internet.
This can result in the user being inundated by a great number of websites to view, highlighting the
subject matter and providing reams of information, most of which will be irrelevant for the users’ needs.
To solve this problem, the recommender system (RS) has been developed to filter the information on
the internet by choosing only the most appropriate information for the user. There are some helpful
surveys in the literature. The details of several methods and algorithms involved in content-based
recommender systems were provided in [1]. The details of methods including their limitations in
content-based, collaborative and hybrid recommendation systems were described in [2].

The main methods of the RS can be classified into several groups, such as, content-based [3,4],
collaborative filtering [3–9], feature-based [10–13], demographic-based algorithms [14], etc.
The collaborative filtering is widely applied in the area of the RS [3,4,6,7,15,16]. This algorithm
may be classified into two categories including the user-based and item-based algorithms. In the
user-based algorithm, the system generates the top-N recommendation based on similarity among
users. On the other hand, in the item-based algorithm, the system generates the top-N recommendation
based on similarity among items. There have been some attempts made to improve the RS
performance. The hybrid between collaborative filtering and sequential pattern analysis yielded better
recommendation performance [17]. The personal models achieve better personalized RSs [18–20].
User-created tags were also exploited to improve the performance of collaborative filtering [21]. It was
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found that sequential bias in product reviews was harmful to the RS performance and should be
removed before performing the recommendation [22]. Local and global features of a social graph were
used in the calculation of a transitive node-similarity measure in online social networks to enhance
friend recommendations [23]. The best subset of a user’s friend, i.e. the inferred circles of friends,
was used in the online social network recommendation system [24]. The ensemble learning of several
recommendation systems, e.g., SVD, Neighborhood-Based Approaches, Restricted Boltzmann Machine,
Asymmetric Factor Model and Global Effects was utilized to produce the final recommendation
result [25].

Although there are many recommendation algorithms developed to improve the performance
of the RS, they still need to overcome the cold-start and sparsity problems [26]. The cold-start
problem occurs when the RS does not have enough information about a new user and/or a new item.
The sparsity problem occurs when the frequency of the purchased items is too small. There are many
algorithms used to address the cold-start problem. A probabilistic graph was used to represent an
implicit social network and then probabilistic graph-based measure was used to produce the final
prediction in the social network recommender system [27]. The predictive feature-based regression
based on the pairwise user preferences was used to leverage all available user and item information [28].
The hybrid taxonomy-based recommender (HTR) was built based on the assumption that there was
a relation between users’ item preferences and taxonomy preferences [29]. The cold-start hybrid
taxonomy-based recommender (CSHTR) based on the closest taxonomic preferences cluster was built
accordingly to cope with the cold-start problem. To solve the new user problem, the item-based
collaborative filtering [7], feature-based [11], fuzzy-based [30], and behavior-based [31] methods were
proposed. Furthermore, the fuzzy-based and feature-based methods were used to solve the new
product problem [11,30,31]. Prediction of missing information was applied prior to the collaborative
filtering to ease the cold-start problem [32]. In addition, combining the collaborative filtering with
personal agents [26], using the fuzzy-based method [30], and combining the collaborative and
content-based filtering methods [4] were applied to solve the sparsity problem.

However, all aforementioned methods have limitations. In the fuzzy-based method,
the performance of the method depends on the expert who creates the fuzzy rule base. The personal
information is difficult to collect in the combination between collaborative filtering and personal
agent’s methods. When using the combining collaborative and content-based filtering method and
the feature-based method, the attributes (features) of items have to be chosen properly. Different
types of items, such as books, movies, songs, etc. usually have a different set of useful attributes.
Therefore, the RS of each type of item has to be developed separately. Above all, the algorithms still
have problems when the cold-start and sparsity problems occur together. These problems lead to low
performance in recommendations in the real-world data sets.

Some methods based on matrix manipulation were proposed for recommendation problems.
The social matrix factorization was proposed for the recommendation system [33]. A matrix
factorization was applied to perform a recommendation in social networks [34]. It can handle the
transitivity of trust and trust propagation. Multiple collaborative filtering tasks in different domains
were considered [35]. The rating in each domain was modeled by the probabilistic matrix factorization.
The knowledge was transferred across different domains using the correlation between domains.
Multi-scale spectral decomposition method (MSEIGS) was utilized in inductive matrix completion
(IMC) to find the top-k eigenvectors or top-k result in recommender systems [36]. The MSEIGS
provides a comparable result with the other methods with smaller computation time. An extension
of matrix factorization called tensor factorization (TF), an N-dimensional tensor of user-item-context,
allowed additional dimensions of different context-type representations [37]. Information (blog)
was represented as a vertex of a hypergraph while blogs in the same set were represented by
hyperedges [38]. The proposed multilevel clustering algorithm is utilized to segment a hypergraph.
To achieve a final optimized recommender set, the authors utilized some optimization methods.
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The objective of this research is to solve the cold-start and sparsity problems using the
visual-clustering method. The visual-clustering method (VCM) was initially proposed by our research
group to cluster data in binary images [39]. Its clustering performance was not investigated numerically.
Besides the initial clustering results, our clustering method was not utilized in any problem. In this
present work, we describe the VCM in more detail and apply it to the recommendation problem.
Six methods for the RS are proposed. The first is the visual-clustering recommendation (VCR1) method.
The idea behind this method is to apply the clustering technique to cluster the users and items in a
binary image. Then, we use the information in the derived clusters to generate the top-N recommended
items to an active user. The second method is the hybrid between the VCR1 and user-based methods,
namely the VCR-UB1. The third method is the hybrid between the VCR1 and item-based methods,
the VCR-IB1. The other three proposed methods are derived similarly with a new fitness function
during cluster generation. We test the clustering performance on three synthetic and two real-world
data sets. The performances of the top-N RSs are tested on two real-world data sets by using the
precision, recall, and F1 scores as evaluation measures. The proposed methods are also compared
with three traditional methods including the frequency-based, user-based, and item-based methods.
In previous works, recommendation performances were usually evaluated on entire data sets. That
means the entire data sets were used as the training set and the test was performed on the training set.
This leads to doubt about the generalization of the previous results. Hence, in this work, the ten-fold
cross-validation is chosen to cope with this problem.

This paper is organized as follows. In Section 2, we review and describe related methods.
The framework of the experiments is given in Section 3. The experimental results on synthetic and
real-world data sets and the respective discussions are presented in Section 4. The conclusion is drawn
in Section 5.

2. Methodology

2.1. Proposed Genetic Algorithm-Based Visual-Clustering Method

As a heuristic search algorithm that mimics the process of natural evolution, the genetic algorithm
(GA) has been widely applied to many applications in different RSs [5,39–42]. In the process of the GA,
there are five parts: the initial population, evaluation, reproduction, crossover operation, and mutation
operation. The population of the GA is a group of chromosomes consisting of genes (an array of values).
By mimicking the natural selection, the chromosomes with a high fitness value are selected into a
mating pool. The reproduction process occurs in the pool by copying individual chromosomes to the
next generation. The crossover operation creates children from the parents based on the pairing process.
The mutation operation aims to maintain genetic diversity from one generation of the population to
the next.

The model of the proposed top-N recommendation systems is shown in Figure 1. In the proposed
methods, the process can be divided into three parts. Firstly, we create the user-item table from the
purchased transaction as shown in Figure 2a. Then the user-item table is mapped into a binary image
as respectively shown in Figure 2b. Secondly, we propose a method to cluster the users and items in
the binary image. Finally, we develop methods for the RS based on the clustered image to recommend
items to an active user.

We initially proposed the visual-clustering method (VCM) and found that it was able to
cluster data in binary images [39]. However, the analytical evaluation of clustering performance
and the usefulness of the clustered images were not investigated. In this work, the VCM is
described in more detail. We also apply the VCM to more data sets and extend it to cope with
the recommendation problem.

The idea of the VCM is to search for possible clusters in a binary image by interchanging
positions of rows and columns. One may think about using the exhaustive search to solve the
problem. Unfortunately, the complexity of exhaustive search method is I! ˆ J! in the scenario of I users
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and J items which is way too large. Meanwhile, the complexity of the GA in this problem is O(n(I + J)),
where n is the number of the chromosomes in population (binary images in this case). This is the
reason that the GA is selected to find the optimized clusters in this research. The five steps of typical
GA, i.e., the initial population, evaluation, reproduction, crossover, and mutation, are applied here.
The detailed information is as follows.

In the process of initial population, the positions of rows and columns in a binary image are
randomly interchanged to generate each chromosome. There are two genes in a chromosome, i.e.,
the first gene represents the users (rows) and the second gene represents the items (columns). Figure 3
shows an example of the initial population in the five-user four-item scenario.
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The process of evaluation selects the chromosomes with high fitness values into the mating pool.
In our previous work, we clustered objects in images but further applications, like recommendation,
had never been performed [39]. In the previous work, the number of clusters and the compactness of
objects in the image were used to determine the fitness value, i.e.,

Fitnessi “ a1 p1´αiq ` a2βi (1)

αi “
Ni

max
j
pNjq

, i, j “ 1, 2..., n (2)

and
βi “

Ci
max

j
pCjq

, i, j “ 1, 2..., n (3)

where Fitnessi is the fitness function calculated for the ith binary image. Parameters a1 and a2 are
weight parameters. αi is the normalized number of clusters, βi is the normalized compactness, Ni is
the number of clusters, and Ci is the average compactness in the ith binary image. The compactness of
a cluster (connected component) is defined as:

Compactness “
pcluster perimeterq2

4πpcluster areaq
(4)

n is the number of the binary images, i.e., the number of chromosomes in population. This fitness
function is high for the image with a small number of clusters and the shape of each cluster is close to
the circle.

In this research, a new fitness function is proposed for clustering. The idea is to improve the
weakness of the previous fitness function in [39] for the recommendation problem. We found that
compactness in the previous function might not be a good indicator of a well-grouped cluster in this
problem. For the recommendation problem, a well-grouped cluster can be of any shape, either circle,
rectangle, elongated, etc., with many four-connected pixels. Therefore we discard the compactness in
this research, but add three more factors and the new fitness function is

Fitnessi “ a1p1´αiq ` a2p1´βiq ` a3γi ` a4δi (5)

βi “
Ns,i

max
j
pNs,jq

, i, j “ 1, 2..., n (6)

γi “
Pl,i

max
j
pPl,jq

, i, j “ 1, 2..., n (7)
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δi “
Ps,i

max
j
pPs,jq

, i, j “ 1, 2..., n (8)

αi is defined as in Equation (2) to deal with the number of clusters. βi is used to deal with the number
of small clusters. The number of small clusters in the ith image is denoted by Ns,i. We do not want to
have many small clusters, therefore Ns,i should be small. In this research, the clusters with less than
four pixels are considered as small clusters. The size of a large cluster (though it does not need to be the
largest cluster) is taken into account in γi. Pl,i denotes the number of pixels in the large cluster in the
ith image. In this research, Pl,i is the number of pixels of the third largest cluster in the image. Similarly,
the size of a small cluster (though not necessarily the smallest) is taken into account in δi. Ps,i denotes
the number of pixels in the small cluster in the ith image. In this research, Ps,i is the number of pixels
of the smallest cluster with larger than three pixels. It is worth noting that the values of Pl,i and Ps,i
are not from the largest and smallest clusters, but the order-statistics are utilized instead. This is to
provide more robustness in term of the size variation. The bottom line is that the fitness value will
be large when pixels in the image are well-clustered (small αi), the number of small clusters is small
(small βi), the third largest cluster is large (large γi), and the smallest cluster with more than three
pixels is large (large δi).

Reproduction is the process of matching in individual chromosomes which are copied according
to the fitness values. The chromosomes with higher fitness values have higher probability to be selected.
Table 1 shows the sample chromosomes, fitness values, and corresponding probabilities in the five-user
four-item scenario and the number of chromosomes in population (n) equals four. Two chromosomes
are selected from the mating pool of nk chromosomes to produce two new chromosomes, where nk is
the number of the surviving chromosomes which is set to be half of n in this research. This reproduction
process is repeated until n ´ nk chromosomes are generated.

Table 1. Sample chromosomes and fitness values.

I Chromosome Fitness Pi

1 1 4 2 3 5 | 1 2 3 4 0.10 0.075
2 4 3 1 2 5 | 3 2 4 1 0.62 0.466
3 3 5 4 1 2 | 4 1 3 2 0.39 0.293
4 2 4 3 1 5 | 2 3 1 4 0.22 0.166

Crossover operation is the creation of children from the parents which are selected in the
pairing process [39,41,43]. We design the crossover operation to only cross the values within a gene.
For example, consider chromosome 1 (Parent 1) and chromosome 2 (Parent 2), if these are selected
from the population in Table 1:

Parent 1 “ 1 4 2 3 5 | 1 2 3 4

Parent 2 “ 4 3 1 2 5 | 3 2 4 1

then, the chromosomes are randomly selected to process numbers 3, 1, and 2 from gene 1 and 1, 2, and
4 from gene 2, i.e.,

Parent 1 “ 1 4 2 3 5 | 1 2 3 4

Parent 2 “ 4 3 1 2 5 | 3 2 4 1

Child 1 “ _ 4 _ _ 5 | _ _ 3 _

Child 1 “ 3 4 1 2 5 | 2 4 3 1

Child 2 “ 4 _ _ _ 5 | 3 _ _ _

Child 2 “ 4 1 2 3 5 | 3 1 2 4
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Finally, the parents are replaced with new children; for example, Child 1 is _ 4 _ _ 5 | _ _ 3 _.
Based on encountering a missing process number, the missing data from Parent 2 are filled in by Child
1. The outcomes of the crossover process are Child 1 = 3 4 1 2 5 | 2 4 3 1 and Child 2 = 4 1 2 3 5 | 3 1 2 4.

In the mutation operation, it is designed to allow interchanging of the positions only within the
same gene. To replace the selected point, another point within the same gene is randomly selected.
For example, according to the value in column 5 (value is 5) in chromosome 2 (Table 1), after mutation,
the values of the new chromosome are 5 3 1 2 4 | 3 2 4 1.

2.2. Recommendation Engine

The detailed information of the user-based and item-based collaborative filtering is widely
available in the literature. Therefore, the following methods are briefly described. In the user-based
top-N recommendation algorithm (UB), the top-N recommended items are produced by calculating the
similarity between an active user with other users who had made similar purchase [15]. To generate a
recommendation, the user-based collaborative filtering algorithm creates the top-N recommendations
from a neighborhood of users by using the most frequent item recommendation technique. On the
other hand, in the item-based top-N recommendation algorithm (IB), the RS produces the top-N items
to an active user by calculating the similarity between items [44]. This algorithm uses item-to-item
similarity to compute the relation between the items. The frequency-based method (FB) is another
basic method. The RS sorts the frequency count of the purchased items and produces the N most
frequent items that have not yet been purchased to an active user.

The recommendation engine is the main process of the RS and we have developed six of them.
The first recommendation engine, the visual-clustering recommendation (VCR), directly uses the
information in the clusters derived from the VCM to generate the top-N items to an active user.
The top-N most frequent items in the derived clusters that the active user’s purchased items belong to
will be recommended. It is worth noting that the active user can initially purchase items in different
clusters. In this case, we recommend items by considering frequencies of purchased items in all
related clusters. The second recommendation engine generates the top-N most frequent items in a
similar manner but by using the union of the VCR and IB outputs from the derived clusters. The third
recommendation engine performs similarly, though it uses the union of the VCR and UB outputs
from the derived clusters. The other three engines are derived similarly but use the fitness function in
Equation (5) to generate the clusters.

2.3. Evaluation Measures

In this study, we evaluate the performance of the RS by using precision, recall, and F1 score
because they have been widely used to evaluate the performance of the top-N RS [15,31,44–46].
Precision is defined as the ratio of the number of elements in the hit set to the number of elements in
the recommendation set, i.e.,

precision “
#of hits

#of recommended items
(9)

Recall is defined as the ratio of the number of the elements in the hit set to the number of purchased
items, i.e.,

recall “
#of hits

#of purchased items
(10)

The F1 score or F-measure can be derived from precision and recall, i.e.,

F1 “
2ˆ precisionˆ recall

precision` recall
(11)
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3. Experimental Framework

There are two parts of the experiments. The first part was designed to investigate the clustering
performance. Both synthetic and real-world data sets were used to test the proposed clustering
methods. In the second part, recommendation performance of the proposed methods was investigated.
Two real-world data sets were exploited. As mentioned earlier, precision, recall, and F1 score were
applied to evaluate the performance of the top-N RSs.

3.1. Data Descriptions

The data sets used in the experiments can be divided into two groups, i.e., the synthetic data
sets and real-world data sets. In the synthetic data set, three original images are generated. The three
images have the size of 20 ˆ 20, 34 ˆ 34, and 48 ˆ 48. There are three, five, and seven clusters in the
three images, respectively. Each cluster in the images contains 24 pixels. For each image, the rows
are randomly interchanged. The process is repeated with the columns. The derived images are the
row-interchanged and column-interchanged version of the corresponding original ones.

There are four real-world data sets used in the experiments. The first data set is the transaction
of purchasing from Gazelle.com, legwear and legcare e-tailer collected by Blue Martini Software on
KDD-CUP2000 (KDD). In this data set, there are 3465 purchases in total by 1831 customers. However,
a great deal of important data is missing, including the customer ID, item ID, the number of purchases
in some transactions. Hence, after removing those incomplete transactions, there are 1697 customers
and 247 items. However, there are only 271, 110, and 14 customers who purchased at least two, three,
and four items, respectively. Moreover, there are only 102 items that were purchased at least twice.
The second data set is our private data. It is the transaction of purchasing at Thaiherbs-Thaimassage
shop (TTS) [47]. The data set consists of 371 customers and 175 items. However, there are only 112 and
55 customers who purchased at least two and three items, respectively. There are only 95 items that
were purchased at least twice.

The third data set is the restaurant and consumer data set (RCM) collected by the Department of
Computer Science, National Center for Research and Technological Development in Mexico. This data
set contains 1161 ratings for 130 restaurants rated by 138 users. The fourth data set is the transaction
of visiting the entree Chicago restaurant (ECR), collected by the Department of Information and
Computer Science, the University of California, Irvine. We chose only the transactions recorded
in the 4th quarter of 1996. Each user is presented by a session of user interaction with the system.
There are 1786 users (sessions) and 674 restaurants. These four data sets have the sparsity problem, i.e.,
the frequency of the purchased items is too small. Therefore, they are suitable for the recommendation
performance evaluation of the proposed methods.

As we know, it is impossible to evaluate the recommendation performance using the information
of customers who purchased only one item in total. To make the recommendation possible, we use only
110 customers who purchased at least three items in the KDD data set and use only 112 customers who
purchased at least two items in the TTS data set. We selected 115 users who rated at least four times for
the RCM data set. For the ECR data set, we selected 611 users who visited at least five times. Hence,
the size of the KDD data set is 110 customers and 247 items, whereas that of the TSS data set is 112
customers and 175 items. For the RCM and ECR data sets, the sizes are 115 customers/130 restaurants
and 611 customers/386 restaurants, respectively. After the selection, the sparsity levels of the KDD,
TTS, RCM, and ECR data sets are very high at 0.986, 0.969, 0.939, and 0.983 respectively.

3.2. Parameter Setting

From extensive experiments, the related parameters are chosen as follows. In the GA parameter
setting, we set up the parameters as follows: size of population is 80, mutation rate is 0.01, and crossover
rate is 0.6. The weights of our previously proposed fitness function (see Equation (1)) are set to 0.5
for both a1 and a2. For the presently proposed fitness function (see Equation (5)), the weights a1,
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a2, a3 and a4 are set to 0.2, 0.2, 0.3, and 0.3, respectively. In the RSs, the neighborhood size of the
user-based and item-based top-N RSs is limited to ten. The number N of the top-N RSs is set to five
(i.e., top-5 recommendation).

3.3. Cross-Validation

When the data sets are not officially divided into the training and test sets but we need to
have training and test sets to evaluate generalization properties of the recommendation methods,
the cross-validation method is a standard solution of the aforementioned limitation. In our experiments,
the ten-fold cross-validation was performed. We briefly describe the cross-validation here. In the
ten-fold cross-validation, the entire data are divided into ten groups with approximately same size.
In the first validation, the first group is kept as the test set or validation set while the nine remaining
groups are used as the training set. In our case, the data in the training set are used to create the
clustered image. The derived clustered image is then used to provide recommended items to the
customers in the test set. The recommendation evaluation is performed on this test set. The process is
repeated with the remaining groups ten times. Hence, each data will be used as the test data whose
information has never been used in the training process. In this study, there will be ten values for each
evaluation measure from ten validations. For each evaluation measure, we report the results in terms
of the average of those ten values.

4. Experimental Results and Discussion

4.1. Clustering Results

4.1.1. Clustering Results on Synthetic Data Sets

In real-world data sets, it is extremely difficult or impossible to evaluate whether a clustering
method is able to properly cluster the users and items. Hence, three synthetic data sets were created
to represent the data sets with prior known ground truth. Figures 4a, 5a and 6a show the original
binary images containing three, five, and seven clusters, respectively. It should be noted that all three
original images are actually binary. The gray level versions are shown here so that we can visualize the
clustering performances. To indicate the elements in the same or different cluster, we label elements in
the same cluster using the same gray level. For the elements in different clusters, the gray levels are
different. Figures 4b, 5b and 6b show the corresponding images after randomly interchanging rows
and columns. After applying our previously proposed VCM [39], the clustering results are shown in
Figures 4c, 5c and 6c, respectively. Furthermore, the results using our presently proposed VCM are
shown in Figures 4d, 5d and 6d, respectively. It can be clearly seen that both VCMs achieve three, five,
and seven clusters, respectively. Although the shape and location of each cluster is different from the
original one due to changes of rows and columns, the members in each cluster are the same as that in
the original image. This emphasizes that the VCMs are able to properly cluster the users and items in
a binary image.

Even though the VCMs achieve the correct number of clusters and correct members in each
cluster, it is interesting to examine the value of compactness in each case. We consider the summation
of compactness values of all objects in each image before and after clustering. It should be noted
that, by the definition of compactness in Equation (4), the larger value implies a less compact object.
For the three-cluster data set, the total compactness value before clustering (Figure 4b) is 7.639. After
clustering, the total compactness values are 3.397 and 4.063 by using our previously proposed VCM
(Figure 4c) and the presently proposed VCM (Figure 4d), respectively. The results show that our
previously proposed VCM yields more overall compact clusters. It is not surprising to have these
results because we take into account the compactness in our previously proposed VCM, while it is
discarded in the presently proposed VCM. Likewise, for the five-cluster data set, the total compactness
values of the image before clustering, after clustering using the previously proposed, and presently
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proposed VCMs are 12.732, 6.448, and 9.376. The total compactness values for the seven-cluster data
set are 17.825, 7.808, and 8.062 for the three scenarios, respectively. All of the results suggest that the
compactness of the clusters in each image have been properly taken care of by the previously proposed
VCM. On the other hand, the presently proposed VCM yields less compact objects. However, as we
mentioned in Section 2.1, a good cluster in the RS is not necessarily compact. That is the idea of the
new fitness function in the presently proposed VCM. The recommendation results confirm the validity
of this idea as shown later on in Section 4.2.
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Figure 6. (a) Original 7-cluster binary image; (b) Row-column-interchanged binary image; (c) Result
of Figure 6b using our previously proposed VCM; (d) Result of Figure 6b using our presently
proposed VCM.

4.1.2. Clustering Results on Real-World Data Sets

The clustering results using the VCMs on the three synthetic data sets confirm that both proposed
VCMs are able to cluster the information in binary images. The VCMs are then applied to cluster the
users and items in the four real-world data sets. We show only the clustering results from the first
two data sets. Figure 7a shows the original KDD image. The clustering results using our previously
proposed VCM and the presently proposed VCM are shown in Figure 7b,c, respectively. Figure 8a
shows the original TTS image, whereas the corresponding clustering results using our previously
proposed VCM and the presently proposed VCM are shown in Figure 8b,c, respectively. The results
clearly show that the VCMs are able to cluster the users and items in the two real-world data sets
as the resulting images have much less numbers of clusters than those in the corresponding original
images. The information in the derived clusters can be used in the RSs.
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Figure 8. (a) Original TTS image; (b) Clustering result of Figure 8a using our previously proposed
VCM; (c) Clustering result of Figure 8a using our currently proposed VCM.

4.2. Top-5 Recommendation Results

In the recommendation experiments, the top-5 RSs were evaluated on the four real-world data sets.
We intentionally created the cold-start problem by considering the recommendation only for new users
with one or two items chosen in the baskets. This created the scenario that the RS does not have enough
information about its new users, i.e., the cold-start problem. Moreover, the ten-fold cross-validation
was performed to cope with the generalization of the results. It is worth noting that our previously
proposed VCM has never been applied to the recommendation problem. Hence, we investigate its
performance in the recommendation here. The RSs based on the derived clustered images using the
VCM in [39] and the presently proposed VCM are called VCR1 and VCR2, respectively. We also
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proposed the hybrid versions of both VCRs by combining each of them to the traditional user-based
(UB) and item-based (IB) RSs as described in Section 2.2. The combination of the VCR1 and UB is called
the VCR-UB1. Likewise, the combination of the VCR1 and IB is called the VCR-IB1. The terms VCR-UB2
and VCR-IB2 are derived by the same manner, but using the VCR2. We compared the performance of
all six proposed methods, i.e., VCR1, VCR-IB1, VCR-UB1, VCR2, VCR-IB2, and VCR-UB2, with the
traditional methods, i.e., FB, UB, and IB. Because the ten-fold cross-validation was applied, we report
the results using the average of each evaluation measure over all ten validations.

For the KDD data set, the customers who purchased at least three items were selected. Thus,
each item was randomly selected for addition into the basket of the active user. We considered two
scenarios here. Firstly, the user selected one item into the basket and we had to recommend other items.
Secondly, the user selected two items into the basket and we had to complete the recommendation.
Table 2 shows the average precision, average recall, and average F1 of the nine methods on the
KDD data set based on the two scenarios. The corresponding standard deviation from each ten-fold
cross-validation is also shown.

Table 2. Recommendation performance comparison on KDD data set when one and two
items are selected into the basket (average ˘ standard deviation, evaluated on test sets of
10-fold cross-validation).

Method
One Item Two Items

Precision Recall F1 Precision Recall F1

UB 0.03 ˘ 0.01 0.07 ˘ 0.02 0.04 ˘ 0.01 0.05 ˘ 0.02 0.11 ˘ 0.05 0.07 ˘ 0.02
IB 0.04 ˘ 0.02 0.07 ˘ 0.04 0.05 ˘ 0.02 0.04 ˘ 0.02 0.11 ˘ 0.05 0.06 ˘ 0.03
FB 0.02 ˘ 0.01 0.03 ˘ 0.01 0.02 ˘ 0.01 0.01 ˘ 0.01 0.05 ˘ 0.03 0.02 ˘ 0.01

VCR1 0.05 ˘ 0.03 0.08 ˘ 0.04 0.06 ˘ 0.05 0.07 ˘ 0.05 0.11 ˘ 0.06 0.09 ˘ 0.05
VCR-UB1 0.04 ˘ 0.03 0.08 ˘ 0.05 0.05 ˘ 0.04 0.06 ˘ 0.02 0.16 ˘ 0.05 0.09 ˘ 0.03
VCR-IB1 0.05 ˘ 0.04 0.12 ˘ 0.10 0.07 ˘ 0.05 0.07 ˘ 0.03 0.19 ˘ 0.07 0.10 ˘ 0.04

VCR2 0.07 ˘ 0.05 0.11 ˘ 0.10 0.09 ˘ 0.06 0.09 ˘ 0.05 0.19 ˘ 0.07 0.12 ˘ 0.05
VCR-UB2 0.05 ˘ 0.04 0.11 ˘ 0.10 0.07 ˘ 0.05 0.05 ˘ 0.04 0.15 ˘ 0.10 0.08 ˘ 0.05
VCR-IB2 0.05 ˘ 0.04 0.11 ˘ 0.10 0.07 ˘ 0.05 0.05 ˘ 0.03 0.17 ˘ 0.08 0.08 ˘ 0.04

For the TTS data set, we selected only the customers who purchased at least two items. Hence,
only one item was randomly selected into the basket of the active user, we then completed the
recommendation. Table 3 shows the average precision, average recall, and average F1 of the nine
methods on the TTS data set.

Table 3. Recommendation performance comparison on TTS data set when one item is selected into the
basket (average ˘ standard deviation, evaluated on test sets of 10-fold cross-validation).

Method Precision Recall F1

UB 0.13 ˘ 0.08 0.24 ˘ 0.15 0.17 ˘ 0.10
IB 0.09 ˘ 0.04 0.19 ˘ 0.13 0.12 ˘ 0.06
FB 0.07 ˘ 0.03 0.16 ˘ 0.10 0.10 ˘ 0.05

VCR1 0.14 ˘ 0.08 0.21 ˘ 0.12 0.16 ˘ 0.09
VCR-UB1 0.15 ˘ 0.06 0.30 ˘ 0.14 0.18 ˘ 0.10
VCR-IB1 0.15 ˘ 0.07 0.28 ˘ 0.15 0.18 ˘ 0.10

VCR2 0.28 ˘ 0.13 0.40 ˘ 0.17 0.33 ˘ 0.15
VCR-UB2 0.18 ˘ 0.06 0.42 ˘ 0.18 0.24 ˘ 0.08
VCR-IB2 0.19 ˘ 0.06 0.44 ˘ 0.20 0.25 ˘ 0.09

For the RCM and ECR data sets, we considered the scenarios that one to five restaurants were
chosen. The average precision, average recall, and average F1 of the nine methods on the RCM and
ECR data sets are shown in Tables 4 and 5.
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Table 4. Recommendation performance comparison on RCM data set when one to three restaurants are selected (average ˘ standard deviation, evaluated on test sets
of 10-fold cross-validation).

Method
One Restaurant Two Restaurants Three Restaurants

Precision Recall F1 Precision Recall F1 Precision Recall F1

UB 0.21 ˘ 0.11 0.19 ˘ 0.10 0.20 ˘ 0.09 0.14 ˘ 0.04 0.17 ˘ 0.06 0.16 ˘ 0.04 0.12 ˘ 0.08 0.16 ˘ 0.07 0.14 ˘ 0.07
IB 0.19 ˘ 0.10 0.17 ˘ 0.08 0.18 ˘ 0.09 0.18 ˘ 0.10 0.20 ˘ 0.11 0.19 ˘ 0.10 0.14 ˘ 0.09 0.14 ˘ 0.08 0.14 ˘ 0.08
FB 0.14 ˘ 0.07 0.08 ˘ 0.04 0.10 ˘ 0.05 0.12 ˘ 0.07 0.08 ˘ 0.05 0.09 ˘ 0.06 0.12 ˘ 0.10 0.08 ˘ 0.05 0.10 ˘ 0.07

VCR1 0.22 ˘ 0.07 0.38 ˘ 0.10 0.28 ˘ 0.08 0.17 ˘ 0.08 0.25 ˘ 0.14 0.20 ˘ 0.09 0.15 ˘ 0.04 0.20 ˘ 0.09 0.17 ˘ 0.06
VCR-UB1 0.22 ˘ 0.11 0.31 ˘ 0.13 0.26 ˘ 0.11 0.15 ˘ 0.09 0.24 ˘ 0.14 0.18 ˘ 0.10 0.13 ˘ 0.10 0.21 ˘ 0.12 0.16 ˘ 0.11
VCR-IB1 0.20 ˘ 0.11 0.29 ˘ 0.13 0.24 ˘ 0.11 0.19 ˘ 0.13 0.33 ˘ 0.18 0.24 ˘ 0.14 0.14 ˘ 0.09 0.25 ˘ 0.15 0.18 ˘ 0.10

VCR2 0.22 ˘ 0.10 0.34 ˘ 0.15 0.27 ˘ 0.11 0.21 ˘ 0.06 0.32 ˘ 0.08 0.25 ˘ 0.05 0.17 ˘ 0.06 0.25 ˘ 0.09 0.20 ˘ 0.06
VCR-UB2 0.20 ˘ 0.11 0.28 ˘ 0.16 0.23 ˘ 0.12 0.16 ˘ 0.07 0.25 ˘ 0.12 0.20 ˘ 0.08 0.13 ˘ 0.11 0.25 ˘ 0.15 0.17 ˘ 0.11
VCR-IB2 0.20 ˘ 0.11 0.30 ˘ 0.15 0.24 ˘ 0.12 0.19 ˘ 0.08 0.32 ˘ 0.15 0.24 ˘ 0.10 0.15 ˘ 0.12 0.29 ˘ 0.20 0.20 ˘ 0.13

Table 5. Recommendation performance comparison on ECR data set when one to three restaurants are selected (average ˘ standard deviation, evaluated on test sets
of 10-fold cross-validation).

Method
One Restaurant Two Restaurants Three Restaurants

Precision Recall F1 Precision Recall F1 Precision Recall F1

UB 0.36 ˘ 0.10 0.26 ˘ 0.07 0.30 ˘ 0.12 0.33 ˘ 0.11 0.29 ˘ 0.15 0.31 ˘ 0.12 0.28 ˘ 0.07 0.29 ˘ 0.07 0.28 ˘ 0.07
IB 0.37 ˘ 0.12 0.25 ˘ 0.10 0.30 ˘ 0.11 0.39 ˘ 0.07 0.33 ˘ 0.11 0.36 ˘ 0.09 0.35 ˘ 0.07 0.39 ˘ 0.11 0.37 ˘ 0.08
FB 0.12 ˘ 0.07 0.16 ˘ 0.07 0.14 ˘ 0.07 0.13 ˘ 0.06 0.17 ˘ 0.10 0.15 ˘ 0.07 0.11 ˘ 0.04 0.17 ˘ 0.11 0.13 ˘ 0.05

VCR1 0.40 ˘ 0.05 0.63 ˘ 0.07 0.49 ˘ 0.05 0.40 ˘ 0.04 0.60 ˘ 0.07 0.48 ˘ 0.04 0.38 ˘ 0.03 0.61 ˘ 0.04 0.47 ˘ 0.03
VCR-UB1 0.33 ˘ 0.05 0.46 ˘ 0.06 0.38 ˘ 0.05 0.34 ˘ 0.05 0.53 ˘ 0.08 0.41 ˘ 0.06 0.28 ˘ 0.03 0.40 ˘ 0.02 0.33 ˘ 0.02
VCR-IB1 0.37 ˘ 0.02 0.48 ˘ 0.03 0.42 ˘ 0.02 0.38 ˘ 0.03 0.60 ˘ 0.05 0.47 ˘ 0.03 0.37 ˘ 0.03 0.73 ˘ 0.05 0.49 ˘ 0.03

VCR2 0.42 ˘ 0.07 0.37 ˘ 0.06 0.39 ˘ 0.06 0.41 ˘ 0.04 0.45 ˘ 0.05 0.43 ˘ 0.04 0.38 ˘ 0.02 0.61 ˘ 0.03 0.47 ˘ 0.02
VCR-UB2 0.36 ˘ 0.05 0.55 ˘ 0.05 0.44 ˘ 0.04 0.33 ˘ 0.05 0.54 ˘ 0.07 0.41 ˘ 0.05 0.28 ˘ 0.03 0.53 ˘ 0.02 0.37 ˘ 0.02
VCR-IB2 0.38 ˘ 0.05 0.52 ˘ 0.07 0.44 ˘ 0.05 0.39 ˘ 0.07 0.60 ˘ 0.11 0.47 ˘ 0.09 0.38 ˘ 0.03 0.73 ˘ 0.04 0.50 ˘ 0.03
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The recommendation results on the four real-world data sets are similar. The proposed methods,
i.e., the VCR1 and VCR2, perform better than the traditional methods, i.e., IB, UB, and FB. On average,
VCR2 is the best among all nine methods. This confirms that the proposed VCMs can cluster the data
and the new fitness function works better than the previous one.

Using the combinations of the VCR1 and UB or IB yield better F1 than using the VCR1 alone.
In fact, these combinations do not provide much help in the precision. However, they always help
in the recall. That is the reason why combining with UB or IB can enhance the recommendation
performance of the VCR1. However, these combinations do not work with the VCR2. They sometimes
deteriorate the recommendation performance of the VCR2. For the KDD data set, when two items
are selected into the basket, the recommendation performance is better than the case when only one
item is selected. This is not surprising because when there are two items in the basket, we have more
information of the user-item relationship. As a result, the recommended items are more likely to be
chosen than in the case of one-item selection. This is the same for the ECR data set. When two or three
restaurants are chosen, the better recommendation performances are achieved compared to when only
one or two restaurants are chosen. This is also true for the RCM data set; when two restaurants are
chosen, the better recommendation performance is achieved compared to when only one restaurant
is chosen. However, when three restaurants are chosen, the performance worsens. This is due to
the fact that most of the customers rated only a handful of restaurants. For example, there are only
38 customers who rated more than 10 restaurants. This makes it more difficult to have the correct
items in the top-N recommendation when the number of items in the basket is larger because more
correct items are already placed in the basket and there are not many left in the recommendation pool.

We also performed the comparison indirectly with other existing methods. The comparison
between different methods is not straightforward because the ways of data preprocessing/cleaning
are different. For the KDD data set, a cold-start eliminating method with an improved most
frequency item-extracting algorithm for top-N recommendation yielded the F-measure value of 0.146
(20 neighbors were used) [48] which is a little bit better than what we achieved. It should be noted
that the numbers of users and items in [48] are 1426 and 207, respectively, are less than what we
have here. For the RCM data set, the fusion method using contextual features in [49] yielded the
precision of 0.07–0.08 and the recall of 0.30–0.32. Meanwhile, it can be seen in Table 4 that the proposed
methods yielded comparable recall but much better precision. For the ECR data set, we compare our
results to other methods directly because we used data from one-quarter only due to computation
time constraint. The previous method using contextual information as virtual items in [50] yielded an
F1 measure of 0.225 using collaborative filtering and 0.341 using association rules.

Memory required to run each of the proposed methods may not be a problem here because the
main portion is for storing the binary images. The memory required for a set of binary images is
nIJ bits, where n is the number of the binary images (set to 80 in this research), I is the number of
users, and J is the number of items. Hence, the memory required to store binary images during the
clustering (training) process for the KDD, TTS, RCM, and ECR data sets are approximately 27 KB,
19 KB, 18 KB, and 235 KB, respectively. For the recommendation (testing) process, only one final
binary image is required for each data set. We tested the proposed methods on a computer with i5
CPU, 4 GB RAM, running on Windows 10, 64-bit operating system. Please be reminded that 10-fold
cross-validation was performed in our experiments; the average computation times to cluster images
in each cross-validation for the KDD, TTS, RCM, and ECR data sets are 4 h 34 min, 4 h 44 min, 4 h
19 min, 10 h 30 min, respectively. These are the approximated computation times for these data sets
in a real-world application. However, in our experiments, the clustering processing for each data
set was performed ten independent times (ten-fold cross-validation). Therefore, the times taken in
our experiments were about ten times those. On the other hand, the recommendation time is very
quick. The computation times for each recommendation for the KDD, TTS, RCM, and ECR data sets
are 0.9 ms, 1.0 ms, 1.1 ms, and 2.1 ms, respectively.
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5. Conclusions

To solve the cold-start and sparsity problems in the recommender systems (RS), we have
developed recommendation methods based on clustered user-item images. In this study, we improved
a clustering method by changing the fitness function in the genetic algorithm and applying it to the
recommendation problem. The proposed clustering methods worked very well with a set of synthetic
data sets whose ground truths were known a priori. Even though the clustering results look good
visually, it is extremely hard to evaluate whether they work properly in more complicated scenarios
like that in the real-world recommendation data sets. We, therefore, further applied results from the
clustering methods to generate top-5 recommendations to active users with VCR1 and VCR2. We also
combined both methods with the user-based method (UB) or item-based method (IB).

Four real-world data sets were used, i.e., the transaction of purchasing collected by Blue Martini
Software on KDD-CUP2000 (KDD), the transaction of purchasing at Thaiherbs-Thaimassage shop
(TTS) [47], the restaurant and consumer data set (RCM) collected by the Department of Computer
Science, National Center for Research and Technological Development in Mexico, and the entree
Chicago restaurant (ECR) data set collected by the University of California, Irvine. The proposed
methods were tested on both real-world data sets using ten-fold cross-validation. The evaluation
measure used here included precision, recall, and F1 score. The proposed VCRs and their respective
combinations with UB and IB were compared with three traditional methods, i.e., frequency-based,
user-based, and item-based methods. The recommendation results showed that the VCR2 was the best
among all nine methods tested. This confirms that changing the fitness function yields better clustering
results. The combinations with UB or IB help the VCR1, but deteriorate the performance of the VCR2.
In real application, the actual purchase by a new user can be used directly to update the current clusters
by setting the pixels at the corresponding user and items to one. The purchasing frequencies of those
items are also updated. Therefore, these clusters can be updated without reclustering the entire data
set. This proposed method is very useful for e-commerce applications. The results from the VCR2 are
currently used for the recommendation at the website of Thaiherbs-Thaimassage shop.

Unlike other clustering methods proposed for recommendation problems, our proposed methods
provide the visualization of user-item interactions in the clustered images. Each cluster possesses many
useful characteristics that the system owners can extract and use later on. We hope that the clustered
images will cull a great deal more new information from these transactions/ratings than is currently
possible with existing methods. It should be noted that it is theoretically feasible to implement the
proposed methods on an extremely large data set, i.e., millions of customers and millions of items.
However, it is not presently practical due to technological limitations. Judging from the speed of
computation machine development, however, we believe that more powerful computers or a new
kind computation machine that can handle such complexity will be available on the market in the
near future.
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