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1. Introduction

There can be great advantages in choosing a suitable notation when formulating a theory;
e.g., it is customary to denote the contravariant components of the Cartesian coordinates of an event
in flat 3 + 1-dimensional Minkowski spacetimeM ∼= (R1+3, η) by a column four vector:

x =


x0

x1

x2

x3

 =


ct
x1

x2

x3

 =

(
ct
~x

)
(1)

where the speed of light c accounts for equal physical units of the components xµ defined by the event
time t = x0/c and the corresponding space coordinates given by a column vector ~x = (x1, x2, x3)T .
The Lorentz-invariant Minkowski bilinear form η is then defined by:

η(x, y) = xµyµ = x0y0 − x1y1 − x2y2 − x3y3 = xT gy (2)

with the metric tensor g = diag(1,−1,−1,−1). However, one could also hit upon the idea to arrange
the spacetime coordinates in matrix form according to [1]:

x =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (3)

Then, the indefinite Minkowski norm squared:

x2 = xµxµ = η(x, x) = (x0)2 − (x1)2 − (x2)2 − (x3)2 = det x (4)
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can be written in an elegant manner as a determinant. Furthermore, with:

x =

(
x0 − x3 −x1 + ix2

−x1 − ix2 x0 + x3

)
=

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
(5)

one finds a compact expression for the Minkowski scalar product:

η(x, y) =
1
2

tr(x y) . (6)

Based on notational tricks of this kind, it is possible to derive and discuss the field equations of
the fundamental fermionic fields appearing in the standard model and its modern extensions in a
very elegant manner, as will be demonstrated below. Furthermore, the following discussion includes
a thorough analysis of the basic properties of Weyl [2,3], Dirac [4] and Majorana [5] fields emerging
from first principles, like Lorentz symmetry and causality.

In Section 2, the most relevant topological and group theoretical properties of the Lorentz group
are revisited, resulting in the construction of the fundamental ray representations of the proper
orthochronous Lorentz group in Section 3. Section 4 deals with Weyl and Majorana fields as complex
two-component spinor fields. Section 5 contains a derivation of the Dirac equation and highlights
some technical details, which are missing in the literature. Additionally, the equivalence between the
complex two-component Majorana formalism and the real four-component Majorana formalism in a
Dirac setting is established in a new explicit manner. Finally, a unified approach containing all aspects
of Weyl, Majorana and Dirac fields is presented with a special focus on the emerging Majorana phase.

2. Structure of the Lorentz Group

In the following, Lorentz transformations will be interpreted as passive transformations, i.e.,
when an observer in the inertial system (or inertial frame of reference) IS assigns the contravariant
Cartesian Minkowski coordinates xµ to an event, an observer in another inertial system IS’ with a
common point of origin will assign coordinates x′µ to the same event. Then, the coordinates are related
by a Lorentz transformation expressed by a matrix Λ according to x′ = Λx or:

x′µ = Λµ
νxν . (7)

Since the Minkowski metric is preserved under such transformations, one has for all
x, y ∈ (R1+3, η):

η(x, y) = xT gy = η(Λx, Λy) = xTΛT gΛy , (8)

and consequently:
ΛT gΛ = g . (9)

Equation (9) defines the Lorentz group L (up to isomorphisms) as the indefinite orthogonal
group O(1, 3):

L = O(1, 3) = {Λ ∈ GL(4,R) | ΛT gΛ = g} , (10)

where GL(4,R) denotes the multiplicative group of all invertible real 4× 4-matrices. Since:

det(ΛT gΛ) = det(ΛT)det(g)det(Λ) = det(Λ)2 det(g) = det g = −1 (11)

one has det(Λ) = ±1 for Λ ∈ O(1, 3). Considering matrices in O(1, 3) with a positive determinant
only, one obtains the subgroup:

L+ = SO(1, 3) = {Λ ∈ GL(4,R) | ΛT gΛ = g, det Λ = 1} ⊂ O(1, 3) , (12)
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called the proper Lorentz group L+, which is (isomorphic to) the special indefinite orthogonal
group SO(1, 3).

Representing a matrix Λ ∈ O(1, 3) according to the decomposition:

Λ =

(
γ −aT

−b M

)
, (13)

where γ is a real number, a and b are column vectors, and M is a 3× 3 matrix, a short calculation using
(Λ−1)T = gΛg−1 gives:

(Λ−1)T =

(
γ aT

b M

)
. (14)

Furthermore:
γ2 − b2 = 1 , bT M = γaT , MTM = aaT + 13 (15)

must hold, implying that γ = Λ0
0 fulfills either γ ≥ 1 or γ ≤ −1. Indeed, by the definition:

L↑+ = SO+(1, 3) = {Λ ∈ Mat(4,R) |ΛT gΛ = g, det Λ = 1, Λ0
0 ≥ 1} (16)

a further subgroup SO+(1, 3) ⊂ SO(1, 3) ⊂ O(1, 3) is obtained. This group, called the proper
orthochronous Lorentz group, is considered to be a true (local) symmetry group of all physical
laws governing quantum field theories in classical spacetimes. The larger group SO(1, 3) includes
spacetime reflections (PT) with γ ≤ −1, and O(1, 3) even contains parity (P) and time reversal (T)
transformations, as discussed below. These transformations are not related to exact symmetries of the
real world. Still, the group O(1, 3) is relevant for theoretical considerations in quantum field theory in
connection with the CPTtheorem [6].

2.1. Connected Components and Important Subgroups of the (Complex) Lorentz Group

L↑+ is the identity component of the Lorentz group, containing the identity element denoted in the
following simply by ’1’, by 14, or diag(1, 1, 1, 1). L↑− contains the space reflection P with det P = −1;
L↓− contains the time reversal T with det T = −1:

P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (17)

L↓+ contains the spacetime reflection PT = −14 with det(PT) = 1. The four transformations
{14, P, T, PT} constitute the discrete Klein four group V (see also Figure 1).

The so-called complex Lorentz group O(4,C) = {Λ ∈ GL(4,C) |ΛTΛ = 14} consists of
two connected components SO(4,C) = O+(4,C) and O−(4,C) only, which can be characterized by
the determinant of their elements. The identity component SO(4,C), which contains the unimodular
matrices with positive determinant, is also sometimes called the proper complex Lorentz group.
One may note that the signature of the metric tensor does not play any role for the definition
of the abstract group structure of the complex Lorentz group. A matrix Λ̂ ∈ O(1, 3;C), which
fulfills the condition Λ̂T gΛ̂ = g involving the metric tensor g = diag(1,−1,−1,−1), becomes via a
similarity transformation:

Λ̂→ Λ = ΣΛ̂Σ−1 (18)

using
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Σ =


1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 i

 , Σ−1 =


1 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 −i

 (19)

a O(4,C)-matrix, since from ΣT = Σ, (Σ−1)T = Σ−1 and Σ2 = Σ−2 = g, one has:

ΛTΛ = (ΣΛ̂Σ−1)T(ΣΛ̂Σ−1) = Σ−1Λ̂TΣΣΛ̂Σ−1 = Σ−1 Λ̂T gΛ̂︸ ︷︷ ︸
g

Σ−1 = 14 , (20)

and therefore, Λ ∈ O(4,C).
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Figure 1. The four pairwise disjoint and non-compact connected components of the Lorentz
group L = O(1, 3) and corresponding subgroups: the proper Lorentz group L+ = SO(1, 3),
the orthochronous Lorentz group L↑, the orthochronous Lorentz group Lo = L↑+ ∪ TL↑+ (see below)
and the proper orthochronous Lorentz group L↑+ = SO+(1, 3), which contains the identity element.
Of course, the sets L↓−, L↑− and L↓+ do not represent groups due to the missing identity element.

A continuous path γ̂ : [0, π]→ SO(1, 3;C) ' SO(4,C) connecting the identity element 14 with
the spacetime reflection PT = −14 according to γ̂(0) = 14, γ̂(π) = −14, and |γ̂| = {γ̂(t) | t ∈
[0, π]} ⊂ SO(1, 3;C), is given by:

γ̂(t) =


cos t i sin t 0 0
i sin t cos t 0 0

0 0 cos t sin t
0 0 − sin t cos t

 . (21)

By the similarity transformation (18), the path γ̂ becomes a path γ lying completely in SO(4,C)
(and even in the real group SO(4)):

γ(t) = Σγ̂(t)Σ−1 =


cos t sin t 0 0
− sin t cos t 0 0

0 0 cos t sin t
0 0 − sin t cos t

 . (22)
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Of course, also the pseudo-unitary group U(1, 3) 6' U(4) could be considered as a
complex generalization of the proper Lorentz group; the corresponding group manifold would be
16-dimensional, whereas the topological dimension of the group manifold SO(4,C) is 12. U(1, 3) is the
symmetry group of a ‘Minkowski sesquilinear form’, but it turned out that the group SO(4,C) leads
to more fruitful applications in quantum field theory in connection with the analytic continuation of
certain theoretical constructs like, e.g., Wightman correlation distributions [7].

3. Fundamental Ray Representations of the Proper Orthochronous Lorentz Group

3.1. Explicit Construction of the Two Two-Dimensional Inequivalent Irreducible Fundamental
Ray Representations

In order to construct the lowest-dimensional non-trivial irreducible representations of the proper
orthochronous Lorentz group, one may introduce the relativistically generalized Pauli matrices:

σµ = σ̄µ = (12,~σ) = (σ0, σ1, σ2, σ3) , σ̄µ = σµ = (12,−~σ) (23)

where the three components in~σ are given by the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (24)

The symbol σ0 used for the identity matrix 12 in two dimensions fits nicely into the notation
used above.

Arbitrary four vectors x with contravariant components xµ = (x0, x1, x2, x3) are mapped by the
linear bijection x 7→ x:

Herm(2,C) 3 x = σµxµ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
(25)

onto the set Herm(2,C) of Hermitian 2× 2 matrices. The inverse mapping can be easily obtained from
a generalization of the well-known trace identity:

1
2

tr (σiσj) = δij , (26)

i.e.,
1
2

tr (σµσ̄ν) = gµν . (27)

Then, one has:
1
2

tr (xσ̄µ) =
1
2

tr (xνσνσ̄µ) = xνg µ
ν = xµ (28)

The Minkowski scalar product can be transferred fromM onto Herm(2,C) via:

det x = (x0 + x3)(x0 − x3)− (x1 + ix2)(x1 − ix2) = (x0)2 − (x1)2 − (x2)2 − (x3)2 = xµxµ = x2 (29)

and the identity:

η(x + y, x + y) = (x + y, x + y)M = (x + y)µ(x + y)µ = x2 + y2 + 2xµyµ , (30)

leading to:

η(x, y) = xµyµ =
1
2
(det(x + y)− det(x)− det(y)) . (31)
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Alike, with y = σ̄µyµ, one obtains the compact expression for the Minkowski scalar product:

η(x, y) =
1
2

tr (x y) . (32)

The special linear group SL(2,C) in two complex dimensions is defined by:

SL(2,C) = {A∈GL(2,C) |detA = +1}. (33)

Now, a handy trick relies on the possibility to act with a matrix A ∈ SL(2,C) on x ∈ Herm(2,C)
according to:

x 7→ x′ = AxA+ (34)

where + denotes Hermitian conjugation. Obviously, x′ is Hermitian again, and the Minkowski scalar
product is preserved in the following sense:

det x′ = det(AxA+) = det A det x det A+ = det x . (35)

Thus, again, x′ can be represented by a real linear combination of generalized Pauli matrices:

x′ = σµx′µ with x′µx′µ = xµxµ (36)

and A explicitly acts as a Lorentz transformation due to:

x′µ =
1
2

tr (x′σ̄µ) =
1
2

tr (Axνσν A+σ̄µ) =
1
2

tr (Aσν A+σ̄µ)xν = Λµ
νxν . (37)

Since x and x′ are obviously related by a Lorentz transformation, one has Λ ∈ O(1, 3), and a
closer inspection shows that Λ ∈ SO+(1, 3) holds indeed. Actually, SL(2,C) is simply connected, as
will be demonstrated later. Since the mapping λ : A 7→ Λ(A) is obviously continuous, it is also a
homomorphism of the group SL(2,C) into the proper orthochronous Lorentz group L↑+ = SO+(1, 3).
Furthermore, λ is surjective, and SL(2,C) is the double universal covering group of the SO+(1, 3).

Mapping covariant components xµ of a four vector according to x = σµxµ = σµxµ onto
Herm(2,C), the transformation law corresponding to Equation (34) reads: x′ = (A+)−1xA−1.
Then, one also has:

x′µy′µ =
1
2

tr(AxA+(A+)−1yA−1) =
1
2

tr(A−1 Ax y) =
1
2

trx y = xµyµ. (38)

To convince one’s self that the homomorphism λ is two-to-one, one observes first that two matrices
±A ∈ SL(2,C) generate the same Lorentz transformation, since AxA+ = (−A)x(−A)+. The kernel
of λ, i.e., the set of all A∈SL(2,C), which fulfill the equation:

x = AxA+ (39)

for every Hermitian matrix x, can be determined by first considering the special choice:

x =

(
1 0
0 1

)
,

which leads to the condition A = (A+)−1 for A ∈ ker(λ), and Equation (39) then reduces to xA− Ax =

[x, A] = 0 for every Hermitian x. This implies A = α12, α ∈ C. Eventually, from the condition
det A = +1 follows A = ±12.
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Aside from the important group isomorphism just found above:

L↑+ ∼= SL(2,C)/{±1} , Λ(±A)x = AxA+ , (40)

the matrices in SL(2,C) display a further interesting property. Defining the fully anti-symmetric tensor
ε = −ε−1 = −εT in two dimensions by:

ε = iσ2 =

(
0 1
−1 0

)
, (41)

a symplectic (and therefore, skew-symmetric) bilinear form 〈u, v〉 = −〈v, u〉 can be defined on
two so-called spinors u and v, which are elements of the two-dimensional complex vector (or spinor)
space C2

C
:

u =

(
u1

u2

)
, v =

(
v1

v2

)
(42)

equipped with the symplectic form 〈·, ·〉 according to:

〈u, v〉 = u1v2 − u2v1 = uTεv . (43)

In analogy to the SO+(1, 3)-invariance of the metric tensor g, this symplectic form is
SL(2,C)-invariant:

〈u, v〉 = uTεv = 〈Au, Av〉 = uT ATεAv . (44)

This can be easily demonstrated by a short calculation. With:

A =

(
a1

1 a1
2

a2
1 a2

2

)
, where det A = a1

1a2
2 − a1

2a2
1 , (45)

one has:

ATεA =

(
a1

1 a2
1

a1
2 a2

2

)(
0 1
−1 0

)(
a1

1 a1
2

a2
1 a2

2

)
=

(
a1

1 a2
1

a1
2 a2

2

)(
a2

1 a2
2

−a1
1 −a1

2

)
=

(
0 det A

−det A 0

)
=

(
0 1
−1 0

)
, (46)

such that a further group isomorphism is established:

L↑+ ∼= Sp(2,C)/{±1}, SL(2,C) ∼= Sp(2,C) . (47)

Sp(2,C) is the complex symplectic group in two dimensions:

Sp(2,C) = {A∈GL(2,C) | ATεA = ε} . (48)

The accidental isomorphism SO(3,C) ∼= L↑+ is mentioned here without proof for the sake
of completeness.

To sum up, the trick expressed by Equation (34) serves to construct a real linear representation of
the Lie group SL(2,C) by the Lie group SO+(1, 3) with the defining property for representations:

Λ(A1)Λ(A2) = Λ(A1 A2) . (49)

Equation (49) can be inverted up to a sign, and in a loose style, one may write A(Λ1Λ2) =

±A(Λ1)A(Λ2), i.e., also a two-valued ray representation of the Lorentz group L↑+ has been found.
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The inversion of Equation (37), which fails for some Λ for topological reasons, reads:

A = ±
Λµ

νσµσ̄ν√
det(Λµ

νσµσ̄ν)
. (50)

The derivation of Equation (50) is left to the reader as an exercise.
One may ask whether the two-valued ray representation of the proper orthochronous

Lorentz group or the representation of the SL(2,C) by itself is equivalent to the complex conjugate
representation. It turns out that no matrix B exists, such that for all A∈SL(2,C):

A∗ = BAB−1 (51)

holds. However, restricting our considerations to the SL(2,C)-subgroup:

SU(2) = {U∈GL(2,C) |U+ = U−1, det U = 1}⊂SL(2,C) , (52)

the situation is different, because a special unitary matrix U∈SU(2) given by:

U =

(
a b
−b∗ a∗

)
= (U−1)+ , det U = aa∗ + bb∗ = 1 (53)

is related to its complex conjugate matrix U∗ by a similarity transformation expressed by the help of
the anti-symmetric tensor ε = iσ2:

εUε−1 =

(
0 1
−1 0

)(
a b
−b∗ a∗

)(
0 −1
1 0

)
=

(
a∗ b∗

−b a

)
= U∗ . (54)

Therewith, the ray representation of the rotation group SO(3) by the special unitary group SU(2),
obtained from the restriction of the SL(2,C) representation constructed above via the trick in
Equation (34) to the subgroup SU(2), turns out to be equivalent to its complex conjugate representation.
The SU(2) matrices in the SL(2,C) generate spatial rotations; Hermitian matrices in the SL(2,C)
generate the boosts.

We will denote the fundamental representation of the spinor Lorentz group SL(2,C) by itself as
the ( 1

2 , 0)-representation and its complex conjugate representation ( 1
2 , 0)∗ as the (0, 1

2 )-representation.
The trivial irreducible representation is the (0, 0)-representation.

3.2. Wigner Boosts

A Wigner boost is a proper orthochronous Lorentz transformation, which transforms a given four
vector q into another four vector p. For illustrative purposes only, the special case with m > 0:

q =


m
0
0
0

 Wigner boost−→ p =


p0

p1

p2

p3

 (55)

shall be investigated here. Since q is a future-directed, timelike vector, p is also contained in the open
forward light-cone, and one has p2 = p2

0 − |~p |2 = m2 > 0 and p0 = p0 ≥ m > 0.
With q = σµqµ = m12 and:

AW =
√

p/m =
1√
m

√
p012 +~σ · ~p
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= ± 1
2
√

m

[(√
p0 + |~p |+

√
p0 − |~p |

)
12 +

(√
p0 + |~p | −

√
p0 − |~p |

)
~σ · ~p
|~p |

]
, (56)

a Wigner boost is given, since:

AW qA+
W
= mAW A+

W
= m

√
p/m

2
= p . (57)

The explicit expression for the square root in Equation (56) can be easily verified by a
short calculation. For m = 0, the expression becomes useless, signaling fundamental differences
between the physics of massive and massless particles.

3.3. Topology of the SL(2,C) Group Manifold

An invertible matrix A ∈ GL(n,C) possesses the polar decomposition:

A = H ·U , (58)

where H = H+ ∈ Herm(n,C) is a positive definite Hermitian matrix and U = (U−1)+ ∈ U(n) is
unitary. For A ∈ GL(1,C) = Ċ, the polar decomposition reduces to the well-known form:

z = H · eiϕ , 0 < H ∈ R+ , eiϕ ∈ U(1) . (59)

Singular matrices can be represented by the product of a unitary and a positive semi-definite
Hermitian matrix.

The existence of the polar decomposition for matrices follows from the observation that the matrix
H̃ = AA+ is Hermitian, since (AA+)+ = A++A+ = AA+. Obviously, H̃ is also invertible when A
is invertible. If v is an eigenvector of AA+ with a corresponding eigenvalue λ, then due to Hermiticity,
λ is real, and from:

λv+v = v+AA+v = (A+v)+(A+v) ≥ 0 (60)

one even has λ > 0. Since det A 6= 0, λ1,...,n > 0 holds for all n eigenvalues λ1, . . . λn of AA+.
Diagonalizing AA+ by a unitary matrix Ũ ∈ U(n) leads to the real diagonal matrix:

D = ŨH̃Ũ−1 =


λ1

. . . 0
0 . . .

λn

 , (61)

accordingly H̃ = Ũ−1DŨ also holds. Now, choosing H and U as follows:

H = Ũ−1
√

DŨ , U = H−1 A ,
√

D =


√

λ1

. . . 0
0 . . . √

λn

 (62)

directly leads to the desired polar decomposition, since H+ = Ũ+
√

D(Ũ−1)+ = H is Hermitian and
U is unitary because of:

UU+ = H−1 AA+(H−1)+ = Ũ−1
√

D−1Ũ︸ ︷︷ ︸
H−1

· Ũ−1DŨ︸ ︷︷ ︸
AA+=H̃

· Ũ−1
√

D−1Ũ︸ ︷︷ ︸
(H−1)+

= 1n . (63)
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For the special case A ∈ SL(2,C) ⊂ GL(2,C) follows a unique decomposition with det H = 1
and U ∈ SU(2), since:

det A = 1 = det H︸ ︷︷ ︸
=λ1·λ2∈R+

· det U︸ ︷︷ ︸
|det U|=1

→ det H = 1 , U ∈ SU(2) . (64)

The representation:
H = hµσµ , det H = hµhµ = h2

0 −~h2 = 1 , (65)

where~h ∈ R3 can be chosen in an arbitrary manner, implies h2
0 = 1 +~h2 ≥ 0. Furthermore, h0 is fully

determined by~h since 2h0 = tr H = λ1 + λ2 ≥ 0, i.e.,

h0 =

√
1 +~h2 , (66)

implying the homeomorphism:
SL(2,C) ∼= R3 × S3 , (67)

since SU(2) ∼= S3. Since both manifolds R3 and S3 are simply connected, the same observation follows
for the group manifold SL(2,C) as a topological product space. Whereas the group manifold of the
SU(2) is homeomorphic to the compact three-dimensional sphere S3, the Lorentz group manifold is
non-compact due to the non-compact factor R3 in Equation (67). Is is assumed here that the reader
is well acquainted with the basic topological facts concerning the manifolds and matrix Lie groups
equipped with their standard topologies discussed so far.

All four components of the Lorentz group O(1, 3) like the SO+(1, 3) are not simply connected,
but the covering group SL(2,C) of SO+(1, 3) is. This topological difference and the related two-to-one
surjective homomorphism of the SL(2,C) onto the proper orthochronous Lorentz group discussed
above is the origin of spinor physics, a fact that is deeply related to Wigner’s theorem where physical
states are related to rays in a Hilbert space [8]. However, we will not dwell any further on the specific
aspects of Wigner’s theorem in this paper.

4. Spin- 1
2 : Two-Component Spinor Wave Equations

4.1. Weyl Equations

Remembering the Wigner trick (25) relying on the bijection:

M 3 x 7→ x = σµxµ ∈ Herm(2,C) (68)

and the transformation (34):

x′ = (±A)x(±A+) = Aσµxµ A+ = Aσµ A+xµ = σµx′µ = σµΛµ
νxν = σνΛν

µxµ , (69)

we now use the fact that a two-to-one correspondence Λ(±A) ↔ ±A(Λ) exists between proper
orthochronous Lorentz transformations Λ ∈ SO+(1, 3) = L↑+ and two corresponding elements ±A of
the special linear group SL(2,C) in order to construct the most fundamental spinor wave equations.

Obviously, Equation (69) implies:

Aσµ A+ = σνΛν
µ . (70)

In analogy to the construction given by Equation (25), one defines the matrix-valued differential
operator [9]:

∂ = σµ∂µ =

(
∂0 + ∂3 ∂1 − i∂2

∂1 + i∂2 ∂0 − ∂3

)
, i2 = −1 ; (71)
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e.g., this operator can act by a formal matrix multiplication from the left on a two-component
wave function:

ψ(x) =

(
ψ1(x)
ψ2(x)

)
∈ C2 , (72)

explicitly: (
∂0 + ∂3 ∂1 − i∂2

∂1 + i∂2 ∂0 − ∂3

)(
ψ1

ψ2

)
=

(
∂0ψ1 + ∂3ψ1 + ∂1ψ2 − i∂2ψ2

∂0ψ2 − ∂3ψ2 + ∂1ψ1 + i∂2ψ1

)
. (73)

Ignoring the trivial case where the two components of the wave function individually behave as
scalar wave functions:

ψ′(x′) =

(
ψ′1(x′)
ψ′2(x′)

)
= ψ(x) =

(
ψ1(x)
ψ2(x)

)
, (74)

the spinor components of the wave function ψ(x) passively transform equivalently to a irreducible
fundamental ray transformation ( 1

2 , 0) or (0, 1
2 ) in the following sense:

(
1
2

, 0) : ψ(x)→ ψ′(x′) = SA(Λ)S−1ψ(x) = SA(Λ)S−1ψ(Λ−1x′) (75)

or:
(0,

1
2
) = (

1
2

, 0)∗ : ψ(x)→ ψ′(x′) = S′A∗(Λ)S′−1ψ(x) , (76)

with fixed invertible matrices S, S′ ∈ GL(2,C), such that one has of course SAS−1 ∈
SL(2,C) 3 S′A∗S′−1, since det(SAS−1) = det A = det(S′A∗S′−1).

An observer in an inertial system IS’ using coordinates x′µ will use the operator (71) according to
∂′ = σµ∂′µ. With Equation (70), one immediately notes the corresponding transformation law:

∂′ = σµ∂′µ = σµΛµ
ν∂ν = σνΛν

µ∂µ = Aσµ A+∂µ = Aσµ∂µ A+ = A∂A+ . (77)

The following simple differential equation for a two-component, necessarily complex spinor wave
function ψ(x):

∂ψ(x) = 0 (78)

shall serve now as a first ansatz for a relativistically invariant wave equation. In this context,
relativistic invariance means that the wave Equation (78) holds in all inertial systems, a fact that
is readily verified. From ∂ψ(x) = 0 trivially follows A∂ψ(x) = 0. Here, A is an SL(2,C)-matrix
associated with a Lorentz transformation Λ. In wise foresight, one requests that ψ(x) obeys the
manifestly covariant transformation law in accordance with Equation (76):

ψ′(x′) = εA∗ε−1ψ(Λ−1x′) , ε = iσ2 =

(
0 1
−1 0

)
. (79)

The special property of the matrix A ∈ SL(2,C) = Sp(2,C):

ATεA = ε (80)

implies:
(AT)−1 = εAε−1 , (A+)−1 = (A−1)+ = εA∗ε−1 , (81)

hence:
0 = A∂ψ(x) = A∂ A+(A+)−1︸ ︷︷ ︸

12

ψ(x) = A∂A+︸ ︷︷ ︸
∂′

εA∗ε−1ψ(x)︸ ︷︷ ︸
ψ′(x′)

= ∂′ψ′(x′) . (82)
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Obviously, the ‘natural law’ ∂ψ = 0 is valid in a manifestly Lorentz-invariant form in every inertial
system. Manifest Lorentz invariance of a formalism provides great advantages from the calculational
point of view, but this certainly does not imply that more involved formalisms depending on a specific
frame of reference may play a role in theoretical physics.

Spinors transforming according to Equation (76) are called left-chiral spinors. One has to mention
that this chirality (from the Greek χειρ, ‘hand’) should not be confused with the helicity (from the
Greek ελιξ, the ‘twisted’) of the particles described by the wave functions discussed here. Helicity is
defined via the direction of the momentum and the angular momentum of a particle, and it is not a
Lorentz-invariant property for massive particles. In the massless case, however, helicity can be linked
directly to chirality.

In the non-interacting case, a spinor ψL(x) as in Equation (82) obeys the so-called left-chiral
Weyl equation:

∂ψL(x) = (σ0∂0 −~σ · ~∇)ψL(x) = 0 , (83)

which has been put in a form explicitly containing the nabla operator:

~∇ =

 ∂/∂x1

∂/∂x2

∂/∂x3

 = −

 ∂1

∂2

∂3

 . (84)

Of course, the right-chiral case is missing so far in the present discussion. Therefore, one considers
the operator:

∂ = σµ∂µ = ε∂Tε−1 = σ0∂0 +~σ · ~∇ = σ+
µ ∂µ =

(
∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

)
, (85)

where the easily-verifiable identities ε~σε−1 = −~σT = −~σ∗ have been used. Then, the right-chiral Weyl
equation for a right-chiral spinor ψR reads:

∂ψR(x) = (σ0∂0 +~σ · ~∇)ψR(x) = 0 , (86)

and again, one can check for the manifest Lorentz invariance of this equation. The transformation
law (77) implies for the operator ∂ the transformation law:

∂
′
= ε[A∂A+]Tε−1 = εA∗ε−1︸ ︷︷ ︸

(A+)−1

ε∂Tε−1 εATε−1︸ ︷︷ ︸
A−1

= (A+)−1∂A−1 , (87)

and postulating the simple transformation law corresponding to the right-chiral (0, 1
2 )-representation

for the right-chiral field ψR(x):
ψ′(x′) = Aψ(x) (88)

directly leads to the desired result:

∂
′
ψ′(x′) = (A+)−1∂A−1 AψR(x) = (A+)−1∂ψR(x) = 0 . (89)

Together, the operators ∂ and ∂ possess the interesting property:

∂∂ = ∂∂ =

(
∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

)(
∂0 + ∂3 ∂1 − i∂2

∂1 + i∂2 ∂0 − ∂3

)

=

(
∂2

0 − ∂2
1 − ∂2

2 − ∂2
3 0

0 ∂2
0 − ∂2

1 − ∂2
2 − ∂2

3

)
=

(
� 0
0 �

)
, (90)
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which can be expressed in a more elegant manner by exploiting the analytic symmetry ∂µ∂ν = ∂ν∂µ for
functions of class C2:

∂∂ = σµ∂µσν∂ν =
1
2
(σµσν + σνσµ)∂

µ∂ν = gµν∂µ∂νσ0 = �12 . (91)

Equation (91) implies that both field components of a left- or right-chiral Weyl field fulfill the
Klein–Gordon equation. From a group theoretical perspective, the differential operators ∂ and ∂ are
of a more fundamental significance than the wave operator �, since the two two-component spinor
operators, which are related to the (1/2, 0)- and (0, 1/2)-representations of the proper orthochronous
Lorentz group, allow for the construction of the wave equation for higher-spin fields with more
involved transformation properties. The Klein–Gordon wave operator, which is linked to the trivial
representation of the Lorentz group, does not contain this group theoretical information.

The Weyl equations do not describe a parity invariant world. Introducing a passive
parity transformation:

ΛP : (x0,~x)→ (x′0,~x′) = (x0,−~x) , SO+(1, 3) 63 ΛP ∈ O(1, 3) (92)

and considering an observer describing the dynamics of a Weyl field by ψ(x) and a point reflected
observer describing the same Weyl field in ‘his own words’ by ψ′(x′), one must have a linear
transformation law connecting the mathematical entities used by the two observers:

ψ′(x′) = APψ(x) = APψ(x′0,−~x′) (93)

with an appropriate 2× 2-matrix AP, which makes it possible to translate theoretical or experimental
aspects related to the Weyl field from one observer to the other. It is a simple exercise to show that no
matrix AP exists, such that both ψ(x) and ψ′(x′) fulfill the left-chiral (or right-chiral) Weyl equation at
the same time. In fact, a parity transformation transforms a left-chiral field into a right-chiral field and
vice versa. Of course one may wonder how it is possible to mirror an observer. Anyway, it is much
easier to boost or to rotate a person or a measuring device.

4.2. Two-Component Majorana Equations

The Weyl equations suffer from the disadvantage that they do not describe massive particles.
Modifying, e.g., the left-chiral Weyl equation by a naive mass term according to:

∂ψ(x) + m̂ψ(x) = 0 , m̂ ∈ Mat(2,C)\O2 (94)

with an arbitrary, but non-vanishing 2 × 2 mass matrix m̂, the wave equation turns out to be
non-Lorentz invariant. A solution ψ′(x′) of the left-chiral Weyl equation in an inertial system IS’
does not fulfill the Weyl equation in a different inertial system IS since:

∂′ψ′(x′) + m̂ψ′(x′) = A∂ψ(x) + m̂εA∗ε−1ψ(x) 6= 0 . (95)

In 1937, Ettore Majorana found an unconventional way out of this disturbing situation by coupling
a field with its complex conjugate field [5]. The left-chiral Majorana equation:

∂ψ(x) + ηmε−1ψ(x)∗ = 0 , η ∈ U(1) , m ∈ R , (96)

obeys the desired transformation law,

∂′ψ′(x′) + ηmε−1ψ′(x′)∗ = A∂ψ(x) + ηmε−1 εAε−1ψ(x)∗︸ ︷︷ ︸
ψ′(x′)∗

= A(∂ψ(x) + ηmε−1ψ(x)∗) = 0 . (97)
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The mass term m must be a scalar in order to commute with every possible spinor Lorentz
transformation matrix A in Equation (97).

In complete analogy to the considerations above, one may write down the right-chiral
Majorana equation. Since the mass term can be equipped with a so-called Majorana phase in both the
left- and the right-chiral case, it is common usage in the literature to formulate the field equations and
the corresponding transformation laws with:

ε−1 = −iσ2 =

(
0 −1
1 0

)
(98)

in the following manner (mL,R ∈ R, |η| = 1):

iσµ∂µψL(x)− ηLmL(iσ2)ψL(x)∗ = 0 , ψ′L(x′) = εA∗ε−1ψL(Λ−1x′) , (99)

iσµ∂µψR(x) + ηRmR(iσ2)ψR(x)∗ = 0 , ψ′R(x′) = AψR(Λ−1x′) . (100)

Majorana fields play an important role as fundamental theoretical building blocks in
supersymmetric quantum field theories.

In the non-interacting case, the phases ηL,R have no physical significance and can be removed
by a redefinition of the fields by the help of a global gauge transformation. With ψL(x) → ψ′L(x) =
ψL(x)e−iδL/2 and ηL = eiδL , one has, e.g., in the left-chiral case:

i(σ0∂0 −~σ · ~∇)ψL(x)− ηLmLεψL(x)∗ = i(σ0∂0 −~σ · ~∇)eiδL/2ψ′L(x)− eiδL mLεe−iδL/2ψ′L(x)∗

= eiδL/2[i(σ0∂0 −~σ · ~∇)ψ′L(x)−mLεψ′L(x)∗] = 0 , (101)

i.e., ψ′L(x) fulfills a phase-free Majorana equation.
For left-handed Majorana particles, one obviously has, due to ~∇ψL(x) = 0:

iψ̇L,1(x) = ηLmLψ∗L,2(x), iψ̇L,2(x) = −ηLmLψ∗L,1(x) . (102)

Differentiating the left equation above with respect to time and using the complex conjugate
equation at the right, ψ̇∗L,2 = −iη∗LmLψL,1, leads to:

ψ̈L,1(x) = −iηmLψ̇∗L,2(x) = −|ηL|2m2
LψL,1(x) = −m2ψL,1(x) . (103)

Therefore, ψL,1 is a linear combination of e−imx0
- and e+imx0

-terms, and particles with their
spin directed parallel or anti-parallel to the three- or (z-) axis are described by the wave functions
(ψ2 = − i

m ηψ̇∗1 ):

ψL,+ 1
2
(x) =

(
1
0

)
e−imx0

+ η

(
0
1

)
e+imx0

, (104)

ψL,− 1
2
(x) =

(
0
1

)
e−imx0

+ η

(
−1
0

)
e+imx0

. (105)

The wave functions given by Equations (104) and (105) can be sped up, e.g., by Wigner boosts.
Both the left- and the right-chiral Majorana fields ψL,R describe one species of particles in the
following sense: all plane wave solutions of the corresponding left- or right-chiral Majorana
equations can be transformed into each other by appropriate Poincaré transformations, i.e., by Lorentz
transformations and spacetime translations. Starting from the idealized, improper state of a particle at
rest with a given spin direction, all other states of the particle with sharp momentum can be generated
by boosts and rotations.
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5. Spin- 1
2 : Four-Component Complex and Real Spinor Wave Equations

5.1. Dirac Equation

A left-chiral two-component spin- 1
2 field obeying the transformation law ψ′L(x′) = εA∗ε−1ψL(x)

can be coupled to a right-chiral field with transformation law ψ′R(x′) = AψR(x), and vice versa, with a
coupling strength expressed by a mass term m according to:

(σ0∂0 −~σ · ~∇)ψL(x) + imψR(x) = 0 , (106)

(σ0∂0 +~σ · ~∇)ψR(x) + imψL(x) = 0 . (107)

The coupled system of Equations (106) and (107) is manifestly Lorentz invariant, since:

∂′ψ′L(x′) + imψ′R(x′) = A∂ψL(x) + imAψR(x) = A(∂ψL(x) + imψR(x)) = 0 , (108)

∂
′
ψ′R(x′) + imψ′L(x′) = (A+)−1∂ψR(x) + imεA∗ε−1ψL(x) = (A+)−1(∂ψR(x) + imψL(x)) = 0 . (109)

Casting the Equations (106) and (107) into the form:

i

(
0 σ0∂0 −~σ · ~∇

σ0∂0 +~σ · ~∇ 0

)(
ψR(x)
ψL(x)

)
−
(

m 0
0 m

)(
ψR(x)
ψL(x)

)
= 0 (110)

and introducing the so-called gamma matrices in chiral representation:

γ̃0 = γ̃0 =

(
0 12

12 0

)
, γ̃k = −γ̃k =

(
0 −σk
σk 0

)
, k = 1, 2, 3 , (111)

one obtains the Dirac equation in its chiral representation:

iγ̃µ∂µΨ(x)−mΨ(x) = 0 , (112)

with:

Ψ(x) =

(
ψR(x)
ψL(x)

)
, γ̃µ =

(
0 σµ

σ̄µ 0

)
. (113)

It is straightforward to check that the gamma matrices fulfill the anti-commutation relations:

{γ̃µ, γ̃ν} = γ̃µγ̃ν + γ̃νγ̃µ = 2gµν14 , (114)

e.g., one has

(γ̃1)2 =

(
0 −σ1

σ1 0

)(
0 −σ1

σ1 0

)
=

(
−12 O2

O2 −12

)
= −14 . (115)

Historically, the relations (114) were found in 1928 by Paul Adrien Maurice Dirac in his ansatz [4]
to ‘linearize’ the Klein–Gordon equation according to:

(�+ m2)ϕ(x) → (−iγν∂ν ∓m)(iγµ∂µ ∓m)Ψ(x) = (γνγµ∂ν∂µ + m2)Ψ(x) = 0 , (116)

which led him to conditions for the coefficients γµ = gµνγν:

� = γνγµ∂ν∂µ =
1
2
(γµγν + γνγµ)∂µ∂ν =

1
2
{γµ, γν}∂µ∂ν = gµν∂µ∂ν (117)
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enforcing the introduction of a Clifford algebra of gamma matrices γ0, γ1, γ2 and γ3, which can be
represented in the lowest-dimensional case by 4× 4-matrices.

It turns out that the gamma matrices can be represented in different ways. The anti-commutation
relations (114) are invariant with respect to a similarity transformation with a non-singular matrix
in GL(4,C) and, apart from the chiral representation the literature, tends to use a standard
representation with matrices γµ called the Dirac representation, which is linked to the chiral
representation by:

γ̃µ = Uγ
µ
DiracU−1 , U =

1√
2

(
12 12

12 −12

)
, U−1 = U+ . (118)

In the sequel, chiral gamma matrices shall be denoted by γ̃µ and (standard) Dirac matrices by γµ.
The standard Dirac matrices are explicitly given by:

γ0 =

(
12 0

0 −12

)
=

(
σ0 0
0 −σ0

)
, γk =

(
0 σk
−σk 0

)
, (119)

and for many purposes, it is convenient to define a matrix γ5 in a representation-independent manner:

γ5 = γ5 = iγ0γ1γ2γ3 . (120)

It is well-known that the solutions of the Dirac equation describe spin- 1
2 particles together

with their antiparticles with the same mass. The Dirac matrices γµ are especially well-suited for
investigations of the low-energy limit of the Dirac equation.

The matrix U in Equation (118) is unitary; as a matter of fact, all representations of the gamma
matrices that are unitarily equivalent to the chiral or Dirac representation exhibit the following (anti-)
Hermiticity relations:

γ0γµγ0 = γ+
µ , (121)

respectively:
γ+

0 = γ0 , γ+
k = −γk , (122)

which provide some advantages for the discussion of energy and momentum observables.
An important result of the theory of Clifford algebras states that each set of four 4× 4-matrices

fulfilling the anticommutation relations (114) can be brought into the chiral or Dirac form by a similarity
transformation of the kind (118), where U is invertible, but not necessarily unitary. This nice feature
enables theoretical physicists working in different solar systems to compare their calculations by some
simple conversions. In this sense, the Dirac equation is universal.

Applying a similarity transformation to the Dirac matrices according to:

γ̂µ = BγµB−1 → {γ̂µ, γ̂ν} = BγµB−1BγνB−1 + BγνB−1BγµB−1 = B{γµ, γν}B−1 = 2gµν14 (123)

with an invertible matrix B, then the transformed Dirac spinor Ψ̂ = BΨ fulfills the Dirac equation with
the new gamma matrices γ̂µ again, since from (iγµ∂µ −m)Ψ(x) = 0 follows:

(iγ̂µ∂µ −m)Ψ̂(x) = (iBγµB−1∂µ −m)BΨ(x) = B(iγµ∂µ −m)Ψ(x) = 0 . (124)

From now on, spacetime arguments will be omitted for the sake of notational brevity.
In Equations (106) and (107), solely one single real mass term coupling a left- and a right-chiral
two-component field shows up. Indeed, a more general ansatz:

i∂ψL − m̃D,RψR = 0 , (125)
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i∂ψR − m̃D,LψL = 0 (126)

with complex chiral mass terms m̃D,R and m̃D,L is conceivable. Acting with the operator −i∂ on
Equation (125) and using Equation (126) yields:

∂∂ψL + im̃D,R∂ψR = �ψL + m̃D,Rm̃D,LψL = 0 . (127)

Hence, the left-chiral part ψL respects a Klein–Gordon-type equation, and the same follows
in complete analogy for the right-chiral part �ψR + m̃D,Rm̃D,LψR = 0. However, for the correct
energy-momentum relation to hold true, one must require:

m̃D,Rm̃D,L = m2 ≥ 0 . (128)

The degenerate case m2 = 0 is not particularly interesting; e.g., for:

i∂ψL = 0 , i∂ψR − m̃ψL = 0 (129)

with m̃ 6= 0 follows �ψR = �ψL = 0 and ψL = im̃−1∂ψR; therefore, ψL is determined by the massless
field ψR. Writing the mass terms for m2 > 0 in polar form:

m̃D,R = mD,Re+iϕD,R , m̃D,L = mD,Le+iϕD,L = mD,Le−iϕD,R = mD,Le−iϕD (130)

with mD,R, mD,L > 0 and ϕD,R = −ϕD,L = ϕD ∈ (π, π], the ansätze (125) and (126) can be written as:

i∂ψL −
√

mD,RmD,Le+iϕD

√
mD,R

mD,L
ψR = 0 , (131)

i∂
√

mD,R

mD,L
ψR −

√
mD,LmD,Le−iϕD

√
mD,R

mD,L
ψL = 0 . (132)

Rescaling the right-chiral field:

ψ′R =

√
mD,R

mD,L
ψR (133)

and introducing a Dirac mass term mD =
√mD,RmD,L finally yields the Dirac equation involving a

single Dirac phase ϕD:
i∂ψL −mDe+iϕD ψ′R = 0 , (134)

i∂ψ′R −mDe−iϕD ψL = 0 . (135)

Only one real mass term mD is relevant for the present theory from the physical point of view.
Of course, one may argue about the physical relevance of parameters in non-interacting theories.
Eventually, the phase factors e±iϕD can be trivially eliminated by a chiral phase transformation:

Γα
L : ψL → ψ̃L = ψLe−iα , ψ′R → ψ̃R = ψ′R , (136)

with α = ϕD or:
Γβ

R : ψL → ψ̃L = ψL , ψ′R → ψ̃R = ψ′Re−iβ (137)

with β = −ϕD, so that the fields ψ̃L,R fulfill the phase-free Dirac equation:

i∂ψ̃L(x)−mDψ̃R = 0 , (138)

i∂ψ̃R(x)−mDψ̃L = 0 . (139)

These phase transformations do not represent a gauge transformation of the four-component
Dirac spinor, merely one has to state that the same physical information is encoded in the fields ψ̃L,R as



Symmetry 2016, 8, 87 18 of 29

in ψL and ψ′R. Thus, the transformation trick above does not imply that phases in interacting theories
are not related to measurable quantities. A gauge transformation:

Γα = Γα
LΓα

R : ψL,R → e−iαψL,R (140)

would leave eiϕD unchanged.
Actually, purely imaginary representations of the gamma matrices, which are unitarily equivalent

to the standard Dirac matrices, exist. Using such matrices in a so-called Majorana representation,
the Dirac equation becomes a purely real differential equation.

5.2. Real Four-Component Majorana Equation

Decomposing the two complex components of a left-chiral spinor according to:

ψL =

(
ψ1

ψ2

)
=

(
Ψ1 + iΨ2

Ψ3 + iΨ4

)
, Ψ1,2,3,4 ∈ R , (141)

one obtains from the two-component Majorana equation (for the sake of simplicity, a trivial Majorana
phase, such that ηL = 1 shall be used for the forthcoming considerations):

iσµ∂µψL −m(iσ2)ψ
∗
L = i

(
∂0 + ∂3 ∂1 − i∂2

∂1 + i∂2 ∂0 − ∂3

)(
Ψ1 + iΨ2

Ψ3 + iΨ4

)
− im

(
−iΨ3 −Ψ4

+iΨ1 + Ψ2

)
= 0 (142)

after a separation into real and imaginary parts, the real linear system of first order
differential equations:

∂1Ψ2 + ∂2Ψ1 + ∂0Ψ4 − ∂3Ψ4 − mΨ1 = 0 , (143)

∂1Ψ1 − ∂2Ψ2 + ∂0Ψ3 − ∂3Ψ3 − mΨ2 = 0 , (144)

∂0Ψ2 + ∂3Ψ2 − ∂2Ψ3 + ∂1Ψ4 + mΨ3 = 0 , (145)

∂0Ψ1 + ∂3Ψ1 + ∂1Ψ3 + ∂2Ψ4 + mΨ4 = 0 , (146)

or: 
∂2 ∂1 0 ∂0 − ∂3

∂1 −∂2 ∂0 − ∂3 0
0 −∂0 − ∂3 ∂2 −∂1

−∂0 − ∂3 0 −∂1 −∂2




Ψ1

Ψ2

Ψ3

Ψ4

−m


Ψ1

Ψ2

Ψ3

Ψ4

 = 0 . (147)

By the help of the purely imaginary Majorana (gamma) matrices (γM
µ = gµνγν

M):

γM
0 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 , γM
1 =


0 −i 0 0
−i 0 0 0
0 0 0 i
0 0 i 0

 ,

γM
2 =


−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i

 , γM
3 =


0 0 0 i
0 0 i 0
0 i 0 0
i 0 0 0

 , (148)

Equation (147) can be cast into the Dirac equation form (iγM
µ ∂µ −m)ΨM = 0 with a Majorana

spinor ΨM = (Ψ1, Ψ2, Ψ3, Ψ4)
T , rendering the Dirac equation a real differential equation. It is

readily verified that the γM-Majorana matrices in the representation (148) above obey the mandatory
anticommutation relations {γM

µ , γM
ν } = 2gµν14.
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Furthermore, restricting the spinor components of ΨM according to the original construction
premised by Equation (141) to real values only, the four-component Majorana equation
(iγM

µ ∂µ − m)ΨM = 0 is completely equivalent to the two-component Majorana equation, and again, it
describes (after second quantization) the dynamics of neutral spin- 1

2 particles. However, abandoning
the requirement ΨM = Ψ∗M, the number of the degrees of freedom described by the four-spinor doubles,
one is lead back to the theory describing two spin- 1

2 -(anti)particles through the Dirac equation.
A further, purely imaginary representation of the Majorana matrices spread in the literature is

given by:

γ̃0
M =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 =

(
0 σ2

σ2 0

)
, γ̃1

M =


i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

 = i

(
σ3 0
0 σ3

)
,

γ̃2
M =


0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 =

(
0 −σ2

σ2 0

)
, γ̃3

M =


0 −i 0 0
−i 0 0 0
0 0 0 −i
0 0 −i 0

 = −i

(
σ1 0
0 σ1

)
. (149)

This representation can be obtained from the original representation (148) by the
unitary transformation:

γ̃
µ
M = Ũγ

µ
MŨ−1 , Ũ =

1
2


+1 +1 +1 −1
−1 +1 +1 +1
+1 +1 −1 +1
+1 −1 +1 +1

 ∈ O(4) ⊂ U(4) (150)

where det(Ũ) = −1.
The four-component spinor appearing in Equation (147) is real by definition, a fact that can be

expressed by the condition ΨM = Ψ∗M. Therefore, complex conjugation can be interpreted as a charge
conjugation operator, and the condition Ψ∗M = ΨM simply expresses the fact that a neutral Majorana
particle is invariant under charge conjugation. Applying a unitary similarity transformation on the
Majorana matrices and the Majorana spinor according to Equation (123):

γ̂M
µ = UγM

µ U−1 , Ψ̂M = UΨM , U−1 = U+ = (UT)∗ , (151)

the condition that the Majorana–Dirac equation should describe neutral particles becomes:

Ψ∗M = (U−1Ψ̂M)∗ = UTΨ̂∗M = U−1Ψ̂M = ΨM ; (152)

therefore, the neutrality condition for the transformed four-components Majorana spinor now reads:

Ψ̂M = UUTΨ̂∗M . (153)

For real, i.e., orthogonal U ∈ O(4) ⊂ U(4), one has UUT = 14, and so again, Ψ̂∗M = Ψ̂M.
The discussion above illustrates the complete equivalence of the four-component and the

two-component Majorana formalism in the literature. The four-component field is related to
an irreducible four-dimensional real spinor representation of the Lorentz group, whereas the
two-component formalism is based on the two fundamental complex spinor representations.
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6. Weyl–Majorana–Dirac Formalism

Considering now the most general free field case, the left- and right-chiral fields can be coupled
via linear and anti-linear terms according to the following “Weyl–Majorana–Dirac equation”:

iσµ∂µψL − ηD,RmD,RψR − ηLmL(iσ2)ψ
∗
L = 0 , (154)

iσ̄µ∂µψR − ηD,LmD,LψL + ηRmR(iσ2)ψ
∗
R = 0 , (155)

with non-negative mass terms mL, mR, mD,L and mD,R and phase terms ηL, ηR, ηD,L and ηD,R in the
unitary group U(1). A polar decomposition of the complex mass terms according to:

m̃D,L = ηD,LmD,L = mD,LeiϕD,L , m̃D,R = ηD,RmD,R = mD,ReiϕD,R ,

m̃L = ηLmL = mLeiϕL , m̃R = ηRmR = mReiϕR (156)

with phases ϕD,L, ϕD,R, ϕL, ϕR ∈ (−π, π] can also be used for notational convenience. When all mass
terms vanish, Equations (154) and (155) trivially describe a left- and a right-chiral field. However,
in the following, we consider the non-trivial Majorana–Dirac case where none of the mass terms
above vanishes.

One may note first that using (iσ2)~σ
∗ = −~σ(iσ2) leads to (iσ2)Kσ̄µ∂µ = σµ∂µ(iσ2)K or:

εK∂ = ∂εK , εK∂ = ∂εK , (157)

where the operator K denotes complex conjugation. Hence, Equations (154) and (155) are fully
equivalent to (keeping in mind that (iσ2)

2 = ε2 = −12, Kηϕ = η∗Kϕ and Ki = −iK):

i∂(εψ∗L) + m̃∗D,R(εψ∗R)− m̃∗LψL = 0 , (158)

i∂(εψ∗R) + m̃∗D,L(εψ∗L) + m̃∗RψR = 0 , (159)

i.e., the left-chiral field ψL is physically equivalent to a right-chiral field εψ∗L, whereas the right-chiral
field ψR is equivalent to the left-chiral field εψ∗R.

Working with the original Equations (154) and (155), which can be cast into the form:

i

(
0 ∂

∂ 0

)(
ψR
ψL

)
−
(

m̃D,R m̃LεK
−m̃RεK m̃D,L

)(
ψR
ψL

)
= 0 (160)

yields the compact representation:

iγµ∂µΨ− m̂Ψ = 0 , Ψ =

(
ψR
ψL

)
, (161)

with chiral Dirac matrices fulfilling the usual anti-commutation relations {γµ, γν} = 2gµν14 and a
non-linear mass operator m̂.

Defining a dual mass operator:

m̌ =

(
m̃D,R m̃RεK
−m̃LεK m̃D,L

)
(162)

one obtains:

m̌m̂ =

(
m̃2

D,R + m2
R (m̃D,Rm̃L + m̃∗D,Lm̃R)εK

−(m̃∗D,Rm̃L + m̃D,Lm̃R)εK m̃2
D,L + m2

L

)
. (163)
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Acting with (−iγν∂ν − m̌) on Equation (161) leads to:

(−iγν∂ν − m̌)(iγµ∂µ − m̂)Ψ = (�+ m̌m̂ + (iγν∂ν)m̂− m̌(iγµ∂µ))Ψ = 0 , (164)

where (beware that Ki = −iK):
(iγν∂ν)m̂− m̌(iγµ∂µ)

= i

(
−∂m̃RεK + m̃RεK∂ (m̃D,L − m̃D,R)∂

(m̃D,R − m̃D,L)∂ ∂m̃LεK− m̃LεK∂

)
. (165)

Using εK∂ = ∂εK and εK∂ = ∂εK again, the expression above reduces to:

(iγν∂ν)m̂− m̌(iγµ∂µ) = i

(
0 (m̃D,L − m̃D,R)∂

(m̃D,R − m̃D,L)∂ 0

)
. (166)

We remember now that it is in fact possible to rescale, e.g., the right-chiral field ψR according
to Equation (133) in order to obtain field equations where the modulus of the Dirac mass terms
fulfills mD,R = mD,L. Additionally, introducing a phase-transformed left-chiral field ψ′L according to
Equation (136):

ψ′L = Γα/2
L ψL = ψLe−iα/2 , (167)

Equations (154) and (155) can be written as:

iσµ∂µψ′L − m̃′D,RψR − m̃′L(iσ2)ψ
′∗
L = 0 , (168)

iσ̄µ∂µψR − m̃′D,Lψ′L + m̃′R(iσ2)ψ
∗
R = 0 , (169)

with:
m̃′D,L = m̃D,Le+iα/2 , m̃′D,R = m̃D,Re−iα/2 , m̃′L = m̃Le−iα , m̃′R = m̃R . (170)

A phase transformation of the right-chiral field ψR only:

ψ′R = Γβ/2
R ψR = ψRe−iβ/2 (171)

modifies the mass parameters in Equations (154) and (155) according to:

m̃′D,L = m̃D,Le−iβ/2 , m̃′D,R = m̃D,Re+iβ/2 , m̃′R = m̃Re−iβ , m̃′L = m̃L . (172)

Observing that the left-chiral Dirac mass term m̃D,L picks up the opposite phase compared to the
right-chiral mass term m̃D,R under a phase transformation and considering the effect of rescaling one
of the fields ψL,R show that one could also start with an equivalent field theory where m̃D,R = m̃D,L =

m̃D 6= 0. Additionally, the phase of m̃D can be chosen to fulfill:

Re(m̃D) ≥ 0 . (173)

For m̃D = m̃D,R = m̃D,L, the operator (iγν∂ν)m̂− m̌(iγµ∂µ) in Equation (166) vanishes, and the
Majorana–Dirac Equation (160) is equivalent, after appropriate rescaling and phase transformation of
the corresponding fields, to the field equation:

i

(
0 ∂

∂ 0

)(
ψR
ψL

)
−
(

m̃D m̃LεK
−m̃RεK m̃D

)(
ψR
ψL

)
= 0 , (174)



Symmetry 2016, 8, 87 22 of 29

where any superscripts due to the aforegoing scaling and phase transformations have been omitted,
and the fields obey the Klein–Gordon equation with generalized mass terms:

�

(
ψR
ψL

)
+

(
m̃2

D + m2
R (m̃Dm̃L + m̃∗Dm̃R)εK

−(m̃∗Dm̃L + m̃Dm̃R)εK m̃2
D + m2

L

)(
ψR
ψL

)
= 0 . (175)

However, there is still the freedom to perform a gauge transformation leaving the Dirac mass m̃D
invariant, but changing m̃K and m̃R by a common phase. This freedom can be used to redefine the
fields and correspondingly rotate the phases of m̃L and m̃R in order to obtain:

κ := m̃Dm̃L + m̃∗Dm̃R ≥ 0 , (176)

and every Majorana–Dirac equation with suitably redefined fields leads to the Klein–Gordon equation:

�

(
ψR
ψL

)
+

(
m̃2

D + m2
R κεK

−µ̃εK m̃2
D + m2

L

)(
ψR
ψL

)
= 0 (177)

with µ̃ = m̃∗Dm̃L + m̃Dm̃R. This Klein–Gordon equation can be written in a manifestly real form by
introducing the real spinor:

Φ = (ψ1, ψ2, . . . ψ8)
T , (178)

with eight real components given by:

ψR =

(
ψ1 + iψ2

ψ3 + iψ4

)
, ψL =

(
ψ5 + iψ6

ψ7 + iψ8

)
(179)

according to:
�Φ + M̂2Φ = 0 . (180)

Obviously, the mass operator M̂2 must be positive semi-definite in order to exclude
time-asymmetric complex mass solutions or even tachyonic solutions of the Majorana–Dirac equation,
and it must be Hermitian in order to generate a unitary dynamics of the single particle states described
by the wave function Φ. Only then, the solutions of Equation (180) describe well-behaved normalizable
single particle states as part of a stable theory, which are eigenstates of the energy-momentum
squared Casimir operator of the double covering group of the inhomogeneous Poincaré group
P̄↑+ ' T1,3 o SL(2,C), which is the semi-direct product of the time-space translation group T1,3

and the universal cover SL(2,C) of the proper orthochronous Lorentz group SO+(1, 3). This condition
restricts the admissible mass terms, as discussed in the following.

Using the abbreviations µ̃ = µ1 + iµ2 and m̃2
D = ν1 + iν2, the mass operator M̂2 reads:

M̂2 =



ν1 + m2
R −ν2 0 0 0 0 κ 0

ν2 ν1 + m2
R 0 0 0 0 0 −κ

0 0 ν1 + m2
R −ν2 −κ 0 0 0

0 0 ν2 ν1 + m2
R 0 κ 0 0

0 0 −µ1 −µ2 ν1 + m2
L −ν2 0 0

0 0 −µ2 µ1 ν2 ν1 + m2
L 0 0

µ1 µ2 0 0 0 0 ν1 + m2
L −ν2

µ2 −µ1 0 0 0 0 ν2 ν1 + m2
L


. (181)

Some straightforward algebra results in the following four doubly degenerate eigenvalues of M̂2:

λ1,2 = ν1 +
m2

L + m2
R

2
±

√(
m2

L −m2
R

2

)2

+ κµ̃− ν2
2 + iν2(m2

L −m2
R) , (182)
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λ3,4 = ν1 +
m2

L + m2
R

2
±

√(
m2

L −m2
R

2

)2

+ κµ̃∗ − ν2
2 − iν2(m2

L −m2
R) . (183)

The Hermiticity of M̂2 implies the conditions ν2 = 0 and µ2 = 0. From ν2 follows that m̃2
D

is real; considering additionally that κ is real and also µ̃ must be real, m̃D becomes a real and positive
parameter with Relation (173). Then, the eigenvalues of M̂2 become:

λ± = m2
D +

m2
L + m2

R
2

±

√(
m2

L −m2
R

2

)2

+ m2
D(m̃L + m̃R)2 , (184)

with m = m̃L + m̃R real. This is the origin of the Majorana phase ϕM graphically depicted in Figure 2.
Writing:

m̃R = mReiϕR , m̃L = mLeiϕL , ϕL = ϕR + ϕM , (185)

the sine and the cosine law imply:

m2 = (m̃L + m̃R)
2 = m2

R + m2
L + 2mRmL cos ϕM (186)

together with:

sin ϕR =
mL
m

sin ϕM , sin ϕL = −mR
m

sin ϕM ,
sin ϕL
sin ϕR

= −mR
mL

. (187)

Figure 2. Left- and right-chiral mass terms m̃L,R with a relative Majorana phase ϕM adding up to a real
mass term m = m̃R + m̃L.

For the special case ϕM = 0, the two Majorana masses become:

m2
± =

[
mL + mR

2
±

√(
mL −mR

2

)2

+ m2
D

]2

. (188)

The explicit expressions for the mass eigenvalues illustrate how the presence of the Majorana
mass term splits a Dirac field into a couple of two Majorana fields.

The discussion of the rather trivial cases where one or several of the Majorana or Dirac mass
terms are absent or degenerate cases where some masses have the same modulus and special phase
relations is left to the reader as an interesting exercise.
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7. Finite-Dimensional Irreducible (Ray) Representations of the Proper Orthochronous
Lorentz Group

7.1. Complex Representation Theory of the SL(2,C)

In order to understand the findings of the last section from a more general perspective, we finally
leave the restricted framework of the fundamental representations of the proper orthochronous
Lorentz group and shortly revisit the most important results from the theory of its real and complex
finite-dimensional representations [10]. Such a discussion fits nicely into the considerations exposed
so far for spin- 1

2 fields only and will clarify the group theoretical background of the results obtained
in the last section. It is assumed below that the reader is well acquainted with the basic notions of
representation theory.

Classical ‘fields’ or ‘wave functions’ are spacetime-dependent functions or distributions serving
for the construction and description of a multiplicity of purely theoretical quantities or observables
closely related to the measurement process. The transformation property of fields transforming
according to:

Ψ′λ(x′) = D ρ
λ (Λ)Ψρ(x) , x′µ = Λµ

νxν , (189)

where D(Λ) is a n× n-representation matrix, which is associated with a not necessarily irreducible
(ray) representation of the proper orthochronous Lorentz group, will be referred to as manifestly
Lorentz invariant in the following, if the defining (ray) representation property:

D ρ
λ (Λ2Λ1) = ±D α

λ (Λ2)D ρ
α (Λ1) (190)

holds. The sign appearing above, which distinguishes ordinary representations from ray
representations by allowing for a phase in the homomorphism property, may appear in the case
of the so-called spinor ray representations (of the proper orthochronous Lorentz group SO+(1, 3))
defined below, a result that will not be motivated any further in this paper [10].

A well-known result from the representation theory of the rotation group states that all
finite-dimensional irreducible ray representations ϑj of SO(3) (or all finite-dimensional irreps of
the corresponding universal covering group SU(2)) can be labeled by j = (n− 1)/2, where n ∈ N is
the dimension of ϑj, since all irreducible (ray) representations of a given dimension n are unique up
to equivalence. Furthermore, the tensor (or Kronecker, or direct) product of two such representations
decays into a direct sum according to the Clebsch–Gordan decomposition:

ϑj1 ⊗ ϑj2 =
j1+j2⊕

j=|j1−j2|
ϑj , or j1 ⊗ j2 = |j1 − j2| ⊕ |j1 − j2 + 1| ⊕ . . .⊕ |j1 + j2| , (191)

i.e., we denote representations up to equivalence by the symbol ϑj or directly by the ‘quantum number’
j, which classifies the representation; e.g., the tensor product of two spin- 1

2 -representations contains a
spin-0 and a spin-1-representation:

ϑ 1
2
⊗ ϑ 1

2
= ϑ0 ⊕ ϑ1 , or

1
2
⊗ 1

2
= 0⊕ 1 . (192)

A SU(2)-representation ϑj and its complex conjugate representation ϑ∗j are equivalent.
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Going beyond the rotation group, one finds that all existing finite-dimensional (ray) irreps ϑj,j′

of the group (SO+(1, 3)) SL(2,C) can be labeled by two indices j, j′ = 0, 1
2 , 1, 3

2 , . . ., and the
Clebsch–Gordan decomposition (191) generalizes to:

ϑj1,j′1
⊗ ϑj2,j′2

=
j1+j2⊕

J=|j1−j2|

j′1+j′2⊕
J′=|j′1−j′2|

ϑJ,J′ . (193)

The ϑj,j′ can be constructed as tensor products according to:

ϑj,j′ = ϑj,0 ⊗ ϑ0,j′ = ϑj,0 ⊗ ϑ∗j′ ,0 , (194)

and consequently, all ϑj,j′ can be generated inductively from the fundamental representations ϑ0, 1
2

and ϑ 1
2 ,0; for this reason, they are called fundamental. Restricting the SL(2,C)-representations

ϑj,0 and ϑ0,j to the subgroup SU(2) leads to the SU(2)-representations ϑj. The analogy of the
decomposition (193) with the SU(2) case is rooted in the fact that the complex six-dimensional
Lie algebra of the complex Lorentz group SO(4,C) is the direct sum of two SO(3,C) Lie subalgebras,
which itself originates from the algebra of rotation and boost generators in the real case. The complex
dimension n = dimC(ϑj,j′) is given by n = (2j + 1)(2j′ + 1). One should note that interchanging the
indices j and j′ according to:

ϑj,j′ = ϑ∗j′ ,j (195)

relates complex conjugate representations that are not equivalent for j 6= j′. The representations
ϑj,j are real, i.e., they can be represented by real (2j + 1)2 × (2j + 1)2-matrices. Only the trivial
representation ϑ0,0 of the Lorentz group is unitary. All other unitary irreps of the Lorentz group are
infinite-dimensional and are commonly constructed by the help of wave function spaces.

The following fields, transforming according to the lowest-dimensional, not necessarily irreducible
(ray) representations ϑj,j′ of the proper orthochronous Lorentz group, play the most important roles in
relativistic (quantum) field theory in 3 + 1-dimensional Minkowski spacetime:

• (j, j′) = (0, 0): Real or complex scalar field ϕ(x).

ϕ′(x′) = D0,0(Λ)ϕ(x) = ϕ(x) = ϕ(Λ−1x′) . (196)

• (j, j′) = ( 1
2 , 0): Complex two-component right-chiral spinor field ψR(x).

ψ′R,α(x′) = A β
α (Λ)ψR,β(x) = A β

α (Λ)ψR,β(Λ−1x′) , A(Λ) = D 1
2 ,0(Λ) . (197)

• (j, j′) = (0, 1
2 ): Complex two-component left-chiral spinor field ψL(x).

ψ′L,α(x′) = A∗βα (Λ)ψL,β(x) = A∗βα (Λ)ψL,β(Λ
−1x′) , A∗(Λ) = D0, 1

2
(Λ) . (198)

As a reminiscence to the literature using dotted and non-dotted spinor indices according to
varying conventions, two types of spinor indices were used above to distinguish between the two
fundamental SL(2,C)-representations.

• (j, j′) = ( 1
2 , 1

2 ): Real or complex vector field Vαβ̄(x)/Vµ(x).
One has ϑ 1

2 , 1
2
= ϑ 1

2 ,0 ⊗ ϑ0, 1
2

or ( 1
2 , 1

2 ) = ( 1
2 , 0)⊗ (0, 1

2 ), and the transformation law following for
Vαβ̄(x) under the direct product of the representations ϑ 1

2 ,0 and ϑ0, 1
2
= ϑ∗1

2 ,0
:

V′
αβ
(x′) = A γ

α A∗ δ
β

Vγδ(Λ
−1x′) (199)
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can be cast into an interesting form by using the generalized Pauli matrices as a basis of the
complex vector space of the 2× 2-matrices Mat(2,C) in order to define the four fields V0, V1, V2

and V3 according to:

Vγδ(x) =
3

∑
µ=0

Vµ(x)(σµ)γδ = Vµ(x)(σµ)γδ ∼
(

V0 + V3 V1 − iV2

V1 + iV2 V0 −V3

)
(x) , (200)

leading to:
V′µ(σµ)αβ(x′) = V′

αβ
(x′) = A γ

α A∗ δ
β

Vγδ(Λ
−1x′)

= (AV(x)A+)αβ︸ ︷︷ ︸ V′0 + V′3 V′1 − iV′2

V′1 + iV′2 V′0 −V′3

(x′)

!
= (Λµ

νVν(x))(σµ)αβ . (201)

Indeed, Vµ is a vector field and transforms like the spacetime coordinates. The Vµ are not
necessarily complex, as one knows from the relativistic four-potential Aµ in electrodynamics or
the (massive) classical Proca field Zµ used to describe the classical Z-boson. In the complex case,
the vector field may be used to describe charged fields W∗µ 6= Wµ and associated particles like
the W-bosons.

• (j, j′) = (1, 0) or (0, 1): Complex Riemann–Silberstein vector fields ~F(x) = ~E(x) + i~B(x) or
~F(x)∗ = ~E(x)− i~B(x).
The direct sum of the representations (1, 0)⊕ (0, 1) can be used to construct a six-dimensional
real representation of the Lorentz group, which is linked to the Lorentz transformation properties
of the electric and magnetic field ~E(x) and ~B(x), respectively.

• ( 1
2 , 0)⊕ (0, 1

2 ): Dirac spinors Ψ(x).
Dirac spinors are used to describe the standard model spin- 1

2 particles, i.e., leptons and quarks.
The representation ( 1

2 , 0)⊕ (0, 1
2 ) can be restricted to four real dimensions and leads to the concept

of four-component Majorana fields. This observation is one of the main subjects of this paper and
will be elucidated below in further detail.

7.2. Real (Ray) Representations of the Proper Orthochronous Lorentz Group

Complex half-integer representations ϑj,j′ with j + j′ = 1
2 , 3

2 , 5
2 , . . . are called spinor ray

representations of the proper orthochronous Lorentz group; integer representations ϑj,j′ with j + j′ ∈ N
are tensor representations. Spinor representations are faithful representations of the SL(2,C).
The reduction Formula (193) explicitly holds in the case of the complex representation theory of
the groups SL(2,C) and SO+(1, 3). However, also real irreducible representations play a crucial
role in quantum mechanics in connection with the description of neutral fields like, e.g., the Higgs
field in the standard model, the real antisymmetric field strength tensor in electrodynamics or the
gravitational Field. Of course, these classical entities lead to states in corresponding (Fock–)Hilbert
spaces after second quantization, and these states can be superposed according to the manifest complex
structure of quantum mechanics.

The real irreducible SL(2,C)-representations can be classified into two types [11]:

• Type 1: ϑRj (j = 0, 1
2 , 1, 3

2 , . . .) is obtained from restricting a complex representation ϑj,j acting on

C
(2j+1)2

C to a real subspace, which is isomorphic to R(2j+1)2

R . A more suggestive notation used
below for such representations obtained from the complex irreps (j, j) is (j, j)R.

• Type 2: ϑRj,k ' ϑRk,j with j 6= k is obtained from restricting the direct sum ϑj,k ⊕ ϑk,j of an

SL(2,C) irrep and its complex conjugate to the real subspace R2(2j+1)(2k+1)
R ⊂ C

2(2j+1)(2k+1)
C .

From a ‘complex point of view’, such representations are reducible, but they are not reducible
in the real sense. These representations shall be denoted below by (j, k)R ' (k, j)R.
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Having projected out such a real representation from ϑj,k ⊕ ϑk,j, there remains a second equivalent
real representation with, of course, the same dimension; the total dimension of both real
representations is then 4(2j + 1)(2k + 1) = dimR C

2(2j+1)(2k+1).

Since the second type is directly linked to the group theory of Dirac and Majorana fields,
this case shall be investigated in the following pedestrian way. The real irreducible representations
contained in the complex reducible SL(2,C)-representation ϑj,k ⊕ ϑk,j can be isolated by the following
explicit calculations. Let R and I denote the real and the imaginary part of the n× n-representation
matrix D(A) = R(A) + iI(A) with A ∈ SL(2,C) and n = (2j + 1)(2k + 1), corresponding to a
given representation (j, k). Then, a 2n× 2n-representation matrix D̃ of the direct sum (j, k)⊕ (k, j) =
(j, k)⊕ (j, k)∗ can be written as:

D̃ =

(
R + iI 0

0 R− iI

)
. (202)

As a complex representation matrix, D̃ acts on complex 2n-component column vectors in C2n
C .

However, we now focus on the real 2n-dimensional subspace spanned by vectors, which can be
represented in the form:

v =

(
v1 + iv2

v1 − iv2

)
, v1,2 ∈ Rn . (203)

Such vectors are real linear combinations of the 2n basis vectors:

1
0
0
...
1
0
0
...


,



0
1
0
...
0
1
0
...


, . . . ,



0
0
...
1
0
0
...
1


, . . . ,



i
0
0
...
−i
0
0
...


,



0
i
0
...
0
−i
0
...


, . . . ,



0
0
...
i
0
0
...
−i


. (204)

When D̃ acts as a linear operator on such a vector v, one obtains:

D̃v =

(
R + iI 0

0 R− iI

)(
v1 + iv2

v1 − iv2

)
=

(
Rv1 − Iv2 + i(Iv1 + Rv2)

Rv1 − Iv2 − i(Iv1 + Rv2)

)
. (205)

This result can be immediately translated into a real representation defined by real matrices D̂:(
v1

v2

)
7→ D̂

(
v1

v2

)
=

(
R −I
I R

)(
v1

v2

)
=

(
Rv1 − Iv2

Iv1 + Rv2

)
, (206)

which display the multiplicative (homomorphism) representation property of their
complex counterparts:

D̃2,1 = D̃2D̃1 =

(
R2 + iI2 0

0 R2 − iI2

)(
R1 + iI1 0

0 R1 − iI1

)

=

(
R2R1 − I2 I1 + i(R2 I1 + I2R1) 0

0 R2R1 − I2 I1 − i(R2 I1 + I2R1)

)
(207)
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becomes in the real case:

D̂2,1 = D̂2D̂1 =

(
R2 −I2

I2 R2

)(
R1 −I1

I1 R1

)
=

(
R2R1 − I2 I1 −R2 I1 − I2R1

R2 I1 + I2R1 R2R1 − I2 I1

)
; (208)

e.g., considering the Kronecker product of two vector representations, one has in the complex case
from decomposition (193) in compact notation:

(
1
2

,
1
2
)⊗ (

1
2

,
1
2
) = (0, 0)⊕ (1, 0)⊕ (0, 1)⊕ (1, 1) . (209)

Restricting this complex result to the real content leads to a sum of two Type 1 real representations
((0, 0) and (1, 1)) and a Type 2 real representation ((1, 0)⊕ (0, 1)):

((
1
2

,
1
2
)⊗ (

1
2

,
1
2
))R = (0, 0)R ⊕ (1, 0)R ⊕ (1, 1)R . (210)

For the direct product of the real representations, one has therefore:

ϑR1
2
⊗ ϑR1

2︸ ︷︷ ︸
dimR=16

= ϑR0︸︷︷︸
dimR=1

⊕ ϑR1,0︸︷︷︸
dimR=6

⊕ ϑR1︸︷︷︸
dimR=9

. (211)

This decomposition is best illustrated by investigating a real second rank tensor field Tµν(x),
which transforms according to the tensor product of the real representation of the proper orthochronous
Lorentz group SO+(1, 3) by itself and with itself according to:

T′µν(x′) = Λµ
αΛν

βTαβ(x) , (212)

i.e., according to ( 1
2 , 1

2 )R ⊗ ( 1
2 , 1

2 )R. Tµν(x) can be decomposed in a unique manner into a
spacetime-dependent part, which is proportional to the inverse metric tensor gµν = diag(1,−1,−1,−1),
an antisymmetric tensor Fµν(x) = −Fνµ(x) and a traceless symmetric tensor Hµν(x) = Hνµ(x) with
Hµ

µ(x) = gµνHµν(x) = 0, as follows:

Tµν(x) = ϕ(x)gµν + Fµν(x) + Hµν(x) , (213)

where (note that gµ
µ = δ

µ
µ = 4):

ϕ(x) =
1
4

Tµ
µ(x) , Fµν(x) =

1
2
(Tµν(x)− Tνµ(x)), Hµν(x) =

1
2
(Tµν(x) + Tνµ(x))− ϕ(x)gµν . (214)

The antisymmetric tensor field Fµν is given by six real spacetime-dependent field components
transforming under the (1, 0)R-representation; the traceless symmetric tensor field Hµν contains
nine independent real field components (→ (1, 1)R); and the component in Tµν, which is proportional
to the inverse metric tensor is related to the real scalar field ϕ(x) (→ (0, 0)R); everything in accordance
with the decomposition displayed in (211).

In matrix notation, the transformation (212) can be expressed by T′ = ΛTΛT , and the trace Tµ
µ

becomes tr (Tg). Obviously, due to the defining property ΛT gΛ = g of the matrices in O(1, 3):

tr (T′g) = tr(ΛTΛT g) = tr(TΛT gΛ) = tr (Tg) (215)

holds, i.e., the trace of a second rank tensor is a Lorentz invariant scalar.
Having all of these group theoretical tools in our backpack, the observations elaborated in

the last section by explicit calculations now receive a simple explanation. Coupling a left- and a
right-handed chiral (Weyl) spinor field by mass terms as performed in Equations (154) and (155)
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imposes an additional dynamics on the total field of four complex or eight real field components.
In the Dirac case, the mass spectrum is degenerate, and the structure of the field equations remains
complex, such that the field components transform according to the reducible complex representation
( 1

2 , 0)⊕ (0, 1
2 ); complex linear superpositions of solutions of the field equations are still solutions. In the

Majorana case, the representation splits up into two equivalent real four-dimensional representations
( 1

2 , 0)R of Type 2, with representation spaces, which are invariant under the proper orthochronous
Lorentz group, containing two real four-component Majorana fields with independent dynamics
imposed by the equations of motion and independent Majorana masses.

8. Conclusions

In this paper, a comprehensive derivation and concise discussion of the free field wave equations
governing the dynamics of the fundamental two-component and four-component spin- 1

2 matter
fields in Minkowski spacetime is presented. The discussion is solely based on first principles, like
Lorentz symmetry, locality, causality and unitarity, which result in the hyperbolic differential equations
describing Weyl, Dirac or Majorana fields. Coupling a fundamental two-component left-chiral field
with a two-component right-chiral field in the most general non-trivial way leads to Dirac fields or
Majorana fields and an emergent Majorana phase. A pure matrix-based formalism is used, avoiding
an explicit van der Waerden notation [12], with dotted and non-dotted spinor indices sometimes
confusing researchers from different fields, which are more familiar with a notation inspired from
linear algebra.
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