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Abstract: Due to the high cost of photovoltaic (PV) modules, an accurate performance estimation
method is significantly valuable for studying the electrical characteristics of PV generation systems.
Conventional analytical PV models are usually composed by nonlinear exponential functions
and a good number of unknown parameters must be identified before using. In this paper,
an adaptive-network-based fuzzy inference system (ANFIS) based modeling method is proposed
to predict the current-voltage characteristics of PV modules. The effectiveness of the proposed
modeling method is evaluated through comparison with Villalva’s model, radial basis function
neural networks (RBFNN) based model and support vector regression (SVR) based model.
Simulation and experimental results confirm both the feasibility and the effectiveness of the
proposed method.
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1. Introduction

For a rapid and reliable photovoltaic (PV) system design, an efficient and accurate PV
characteristics simulator is indispensable [1]. PV model is used for obtaining the current-voltage
(I-V) or power-voltage (P-V) characteristics by the environmental data, such as solar irradiance and
ambient temperature.

During the last few decades, numerous analytical models have been proposed to represent the
relations between PV current and voltage [2–4]. These mathematical models are always non-linear
as the presence of the silicon PN junction, and the complexity depends on the adopted circuital
representation [5]. This kind of model can be divided into two main types, the one-diode and
two-diode models. The latter two-diode models have higher accuracy [6,7] but suffer from high
computational complexities [8]. And the former type, one-diode model, is the most commonly used
mathematical model in the fields of PV modeling as it gives a solution for the tradeoff problems
between the simplicity and accuracy [9,10]. The analytical models are easy to implement but a
good number of unknown parameters must be identified before using. All the parameters inside
the models need to be well determined, otherwise the accuracy of the models reduces [5]. A more
complicated model normally results in more parameters in its mathematical formulations along with
a higher computational complexity [1,11].

Recently, artificial intelligence (AI) algorithms have been introduced into the fields of PV
modeling. Artificial neural network (ANN) based models do not require any physical definitions
for PV modules. Since the 1990s, a number of researches presented neural network based systems to
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predict the optimal operating power points for the PV modules [12,13]. Radial basis function neural
network (RBFNN) based PV models were introduced to improve the estimation accuracy [14–16].
Shi et al. [17] proposed a forecasting tool to predict the output power of PV systems using the
support vector regression (SVR), which is a regression technique based on the concept of Vapnik’s
support vector machines (SVM) [18].

The main purpose of this paper is to present a more accurate PV model based on
adaptive-network-based fuzzy inference system (ANFIS), which has the capability to approximate a
nonlinear function. The proposed ANFIS based model does not need any primary model parameter
and the estimation accuracy is verified by applying the model to three PV modules with different
technologies (mono-crystalline, poly-crystalline and thin-film) and compared with three different
kinds of modeling including Villalva’s model, RBFNN model and SVR model. It is envisaged to
be useful for the circuit simulation developers and PV system designers who require a simpler and
more accurate PV estimation model.

The remainder of this paper is organized as follows. Section 2 introduces the ANFIS method and
the proposed ANFIS based PV model. The results and the validated performance of the proposed
method are given in Section 3. Section 4 finally summaries this work.

2. ANFIS and PV Modeling

An adaptive network-based fuzzy inference system (ANFIS) is a kind of artificial neural network
developed by Jang [19] in 1993. In this section, after a brief introduction of the theory of the ANFIS,
we propose a PV model based on the ANFIS technique.

2.1. ANFIS

The ANFIS combines the fuzzy inference and neural network algorithms. It overcomes the
limitations of fuzzy inference that the identification procedure of the parameters in membership
functions (MFs) is not efficient for complex systems. Recently, ANFIS has been widely used in
maximum power point tracking (MPPT) [20], face recognition [21] and object tracking [22].

Considering there are two inputs x, y and one output f , the inputs and outputs of a neural
network obey the following rule.

If x is Ai and y is Bi

Then fi = pix + qiy + ri ( i ∈ {1, 2} )

where Ai, Bi are fuzzy sets and {pi, qi, ri} is the parameter set, which is determined during the training
process. fi are the outputs within the fuzzy region determined by the rules. The architecture of ANFIS
is shown in Figure 1.
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Figure 1. The architecture for adaptive-network-based fuzzy inference system (ANFIS).
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Every node in layer 1 has a node function

O1
i =

{
µAi (x), i ∈ {1, 2}
µBi−2(y), i ∈ {3, 4}

(1)

where O1
i is the output of the ith node in the first layer, and µAi (x) or µBi (y) can adopt any fuzzy

member function and is usually chosen to be generalized bell function as follows.

µAi (x) =
1

1 + | x−ci
ai
|2bi

µBi (y) =
1

1 + | y−ci
ai
|2bi

, i ∈ {1, 2} (2)

where {ai, bi, ci} is the parameter set of the generalized bell function.
The general function of layer 2 O2

i multiplies the input values, denoted as ωi.

O2
i = ωi = µAi (x)µBi (y), i ∈ {1, 2} (3)

The output of layer 2 need to be normalized, the output of the normalization layer O3
i is

O3
i = ωi =

ωi

∑i(ωi)
, i ∈ {1, 2} (4)

where ωi is the normalized value of ωi.
The node function of the nodes in layer 4 O4

i is to multiply the outputs of layer 3 and the related
supposed function. It can be express by Equation (5).

O4
i = ωi fi = ωi(pix + qiy + ri), i ∈ {1, 2} (5)

The overall output f is the summation of the outputs of layer 4.

f = O5 = ∑
i

O4
i = ∑

i
ωi fi (6)

There are two fixed layers (layer 2 and 3) and two adaptive layers (layer 1 and 4) in this
ANFIS architecture. In layer 1, the parameter set {ai, bi, ci} determines the input member function.
These parameters are the so-called premise parameters. In the fourth layer, the parameters {pi, qi, ri}
are related to the first-order polynomial and are the so-called consequent parameters [19].

2.2. The Proposed PV Model

In this paper, the ANFIS based PV model is used to estimate the I-V or P-V characteristics of
PV modules under the given environmental conditions. Given the specified solar irradiance and
temperature of PV cells, by scanning the voltage of the PV array from zero to the open-circuit voltage
of the PV modules, which can be found on manufacturing datasheet, the corresponding predicted
current set can be obtained by the proposed PV estimation model.

The architecture for the proposed ANFIS based model is shown in Figure 2. The input data
consists of the solar irradiance (G), the ambient temperature (T) and the operating voltage of the PV
array (V), while the output is the current (I) of the PV module. The inference system corresponds to a
set of fuzzy IF–THEN rules that have learning capability to approximate the I-V or P-V nonlinear
relations. The algorithm uses a combination of the least-squares and back-propagation gradient
descent methods to train the data set.
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In the ANFIS architecture shown in Figure 2, the consequent parameter set is {pi, qi, ri, si}
according to the dimension of the input vector {G, T, V}. The outputs of the specified rule fi are
as follows.

fi = piG + qiT + riV + si (7)

After completing the training phase, the aforementioned premise and consequent parameters,
and the final weights ωi of the nodes are found and then stored in matrixes of real numbers. Thus,
the learned model can be used to get the predicted results as follows.

I = ∑
i

ωi fi =
∑i ωi(piG + qiT + riV + si)

∑i ωi
(8)
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Figure 2. The ANFIS architecture for the proposed photo-voltaic (PV) model.

3. Results

In this section, the performance of different estimation models are evaluated by four statistical
indicators including root mean squared error (RMSE), mean absolute error (MAE), mean absolute
percent error (MAPE) and coefficient of determination (R2). The mathematical expressions of these
three indicators are given as follows.

RMSE =

√
1
n

n

∑
i=1

( Îi − Ii)2 (9)

MAE =
1
n

n

∑
i=1
| Îi − Ii| (10)

MAPE =
1
n

n

∑
i=1
| Îi − Ii

Ii
| (11)

R2 = 1− ∑n
i=1( Îi − Ii)

2

∑n
i=1( Îi − Īi)2

(12)

where Îi is the predicted current of PV modules, Ii is the measured one and Īi is the mean of the
measured ones.

RMSE is frequently used to measure the differences between the values predicted by the model
and the related experimental data. MAE is a quantity used to measure how close the predictions
are to the experimental data. MAPE is also used to measure the errors but it differs in values from
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module to module because the short-circuit current varies from different PV models. R2 evaluates
how well the predicted data fits the measured one. R2 = 1 indicates that the predicted values and the
measured values are perfectly fitted, while R2 = 0 indicates that the predicted values do not fit the
measured values at all.

All the simulations are carried out in MATLAB 2016a (http://www.mathworks.com)
environment running on an Intel(R) Core(TM) i7-4850HQ 2.30 GHZ CPU with 16 G RAM. Gaobo
GSMT-H-3A100 solar module tester is applied to measure the I–V experimental data. A comparative
experiment has been performed among the four different estimation models including Villalva’s
model [6], RBFNN model, SVR model and the proposed ANFIS model, using three PV modules
with different technologies. Villalva’s model is one of the most successful models in the field of
PV modeling. Therefore, the proposed method was compared with Villalva’s model. The technical
parameters at the nominal environment of the three PV modules used in this manuscript are listed in
Table 1.

Table 1. Technical parameters of PV modules at 25 ◦C, AM 1.5, 1000 W/m2.

Module STP265S-20 KC200GT TS-150C1

Technology mono-crystalline poly-crystalline thin-film

PMAX (W) 265.05 200.14 149.96

VOC (V) 38.1 32.9 64.5

ISC (A) 9.22 8.21 3.61

VMPP (V) 30.5 26.3 46.0

IMPP (A) 8.69 7.61 3.26

KV (V/K) −0.130 −0.123 −0.187

KI (A/K) 5.53 × 10 −3 3.18 × 10 −3 3.61 × 10 −4

NCS 60 54 100

Figure 3 depicts the median deviation of the current predicted by four different modeling
methods from the measured values of operating current of three PV modules with varied
technologies. The red circle below the unit-slope straight line indicates that the estimated current
is smaller than the measured one, and vice versa.

As can be seen in Figure 3, the estimation results from RBFNN model are much more accurate
than those from Villalva’s model, but some red circles can be found to deviate from the unit-slope
straight line, indicating that some errors still exist in the estimation phase. Besides, it is hard to
distinguish the prediction performance of SVR model and the proposed ANFIS model from Figure 3.

Figure 4 shows the I-V curves of three PV modules predicted by different modeling approaches
along with the measured ones obtained by solar module tester. The left three figures in Figure 4
depict the overall views of the estimation results from four models versus the experimental I-V curves
and the right three ones give the details of the appointed areas marked with red rectangles in the
overall views. The most important point for solar cells is the maximum power point, thus, these
selected regions contain the corresponding maximum power points. It is observed that the estimated
I-V curves from the proposed ANFIS model are relatively close to the measured ones among all the
modeling methods.
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Figure 3. Operating current predicted by different models versus the measured data.

Furthermore, Table 2 lists the best results of involved mathematical indicators for the mentioned
three PV modules over 100 runs of four given estimation models. As can be seen, considering
the values RMSE and MAPE, the results of these two indicators from the analytical approach
(Villalva’s model) are much higher than that from the ANFIS model. The RMSE value of Villalva’s
model is nearly 20 times of that of the proposed model. Meanwhile, the R2 value of the later
three AI-algorithm-based models are all close to 1, while the Villalva’s method’s R2 is much lower.
Overall, the proposed ANFIS model obtains the lower values of RMSE/MAPE and higher R2 value,
which indicates that the proposed ANFIS model has the most accurate estimation capability among
four modeling methods.
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Figure 4. Current-voltage (I-V) curves obtained by different estimation models.

Table 2. Best results in 100 runs of different models.

Method STP265S-20 KC200GT TS-150C1

RMSE MAPE R2 (%) RMSE MAPE R2 (%) RMSE MAPE R2 (%)

Villalva’s model [6] 0.6754 11.859 94.50 0.2032 0.0499 99.27 0.1007 0.1386 99.04
RBFNN model * 0.0458 1.9232 99.97 0.0381 0.0071 99.97 0.0414 0.0204 99.71
SVR model † 0.0574 3.1932 99.95 0.0145 0.0037 99.99 0.0105 0.0150 99.99
ANFIS model 0.0280 0.7363 99.99 0.0123 0.0026 99.99 0.0079 0.0109 99.99

* RBFNN model uses the tool embedded in MATLAB 2016a; † SVR model uses the SVM tool provided by
LIBSVM [23].

The best prediction results over 100 times only show the optimal predicting capability of each
model. Figure 5 further estimates the average prediction performance of different modeling methods
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over 100 times. Among the four PV models, the ANFIS model shows the lowest MAE in most cases,
which is just 7.34% of that for Villalva’s model in average. It is observed that significant errors
usually occur in Villalva’s model when the operating voltage is approaching the open-circuit voltage.
Both SVR and ANFIS models obtain good estimation capabilities, yet small errors can be found at the
open-circuit points. The MAE value for the estimation results from ANFIS model is 32.9% and 50.0%
lower than that from SVR model and RBFNN model in average, respectively.
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Figure 5. The comparison of mean absolute error (MAE) values over 100 runs for the module
(a) STP265S-20 (b) KC200GT (c) TS-150C1. (The MAE value above 0.5 A is shown as 0.5 A in
the figure).
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Especially, thin-film modules exhibit both time dependent degradation and annealing behavior,
which make device analyses more complicated. The simulation of the initial device performance
works fine while the degradation behavior of thin-film modules requires a more detailed analysis.

4. Conclusions

In this paper, an adaptive-network-based fuzzy inference system (ANFIS) based estimation
model has been proposed to predict the electrical characteristics of various types of PV modules.

The proposed method has the capability of obtaining I-V or P-V curves based on environmental
data. The accuracy of the proposed model has been evaluated by PV modules with different
technologies. Three modeling approaches, including Villalva’s model, RBFNN model and SVR
model, have been used to benchmark the proposed ANFIS model. The simulation results show that
the I-V curves predicted by the proposed model are relatively close to those measured data and the
improvement on the prediction accuracy of the proposed PV estimation model also can be reflected
by its lowest RMSE, MAPE and highest R2. The robustness of the proposed model is validated by
comparative study on performance test of PV models by using different environmental conditions.
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Abbreviations

AM air mass
PMAX maximum power (W)
VOC open circuit voltage (V)
ISC short circuit current (A)
VMPP maximum power point voltage (V)
IMPP maximum power point current (A)
KV temperature coefficients of open circuit voltage (V/K)
KI temperature coefficients of short circuit current (A/K)
NCS number of cells in series
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