
Article

Generalized Null 2-Type Surfaces in
Minkowski 3-Space

Dae Won Yoon 1, Dong-Soo Kim 2, Young Ho Kim 3 and Jae Won Lee 1,*
1 Department of Mathematics Education and RINS, Gyeongsang National University, Jinju 52828, Korea;

dwyoon@gnu.ac.kr
2 Department of Mathematics, Chonnam National University, Gwangju 61186, Korea; dosokim@chonnam.ac.kr
3 Department of Mathematics, Kyungpook National University, Daegu 41566, Korea; yhkim@knu.ac.kr
* Correspondence: leejaew@gnu.ac.kr; Tel.: +82-55-772-2251

Academic Editor: Angel Garrido
Received: 3 December 2016; Accepted: 16 January 2017; Published: 20 January 2017

Abstract: For the mean curvature vector field H and the Laplace operator ∆ of a submanifold in the
Minkowski space, a submanifold satisfying the condition ∆H = f H + gC is known as a generalized
null 2-type, where f and g are smooth functions, and C is a constant vector. The notion of generalized
null 2-type submanifolds is a generalization of null 2-type submanifolds defined by B.-Y. Chen. In this
paper, we study flat surfaces in the Minkowski 3-space L3 and classify generalized null 2-type flat
surfaces. In addition, we show that the only generalized null 2-type null scroll in L3 is a B-scroll.
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1. Introduction

Let x : M −→ Em be an isometric immersion of an n-dimensional connected submanifold M in
an m-dimensional Euclidean space Em. Denote by H and ∆, respectively, the mean curvature vector
field and the Laplacian operator with respect to the induced metric on M induced from that of Em.
Then, it is well known as

∆x = −nH. (1)

By using (1), Takahashi [1] proved that minimal submanifolds of a hypersphere of Em are
constructed from eigenfunctions of ∆ with one eigenvalue λ ( 6=0). In [2,3], Chen initiated the study
of submanifolds in Em that are constructed from harmonic functions and eigenfunctions of ∆ with
a nonzero eigenvalue. The position vector x of such a submanifold admits the following simple
spectral decomposition:

x = x0 + xq, ∆x0 = 0, ∆xq = λxq (2)

for some non-constant maps x0 and xq, where λ is a nonzero constant. A submanifold satisfying (2) is
said to be of null 2-type [3]. From the definition of null 2-type submanifolds and (1), it follows that the
mean curvature vector field H satisfies the following condition:

∆H = λH. (3)

A result from [4] states that a surface in the Euclidean space E3 satisfying (3) is either a minimal
surface or an open part of an ordinary sphere or a circular cylinder. Ferrández and Lucas [5] extended
it to the Lorentzian case. They proved that the surface satisfying (3) is either a minimal surface or
an open part of a Lorentz circular cylinder, a hyperbolic cylinder, a Lorentz hyperbolic cylinder, a
hyperbolic space, a de Sitter space or a B-scroll. Afterwards, several authors studied null 2-type
submanifolds in the (pseudo-)Euclidean space [6–21].
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Now, we will give a generalization of null 2-type submanifolds in the Minkowski space. It is well
known that a Lorentz circular cylinder S1(r)×R1

1 is a null 2-type surface in the Minkowski 3-space L3

satisfying ∆H = 1
r2 H, where S1(r) is a circle with radius r and R1

1 is a Lorentz straight line. However,
the following surface has another property as follows: a parametrization

x(s, t) =
(

1
4

s2 − 1
2

ln s,
1
4

s2 +
1
2

ln s, t
)

is a cylindrical surface in L3. On the other hand, the mean curvature vector field H of the surface is
given by

H =

(
−1

4
− 1

4s2 ,−1
4
+

1
4s2 , 0

)
and the surface satisfies

∆H = − 6
s2

(
H + (

1
4

,
1
4

, 0)
)

.

Next, we consider another surface with a parametrization

x(s, t) =
(

1
2

s2t + t, st,
1
2

s2t
)

.

The surface is a conical surface in L3, and it satisfies the following equation for the mean curvature
vector H

∆H =
1
t2 H +

1
2t3 (1, 0, 1).

Thus, based on the above examples, we give the definition:

Definition 1. A submanifold M of the Minkowski space is said to be of generalized null 2-type if it satisfies
the condition

∆H = f H + gC (4)

for some smooth functions f , g and a constant vector C. In particular, if the functions f and g are equal to each
other in (4), then the submanifold M is called of generalized null 2-type of the first kind and of the second kind
otherwise.

In [22], the authors recently classified generalized null 2-type flat surfaces in the Euclidean 3-space.
Conical surfaces, cylindrical surfaces or tangent developable surfaces are developable surfaces (or flat
surfaces) as ruled surfaces in the Minkowski 3-space L3. In this paper, we study developable surfaces
in L3 and completely classify generalized null 2-type developable surfaces, and give some examples.
In addition, we investigate null scrolls in the Minkwoski 3-space L3 satisfying the condition (4).

2. Preliminaries

The Minkowski 3-space L3 is a real space R3 with the standard flat metric given by

〈 , 〉 = −dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of R3. An arbitrary vector x of L3 is said to be
space-like if 〈x, x〉 > 0 or x = 0, time-like if 〈x, x〉 < 0 and null if 〈x, x〉 = 0 and x 6= 0. A time-like or null
vector in L3 is said to be causal. Similarly, an arbitrary curve γ = γ(s) is space-like, time-like or null if all
of its tangent vectors γ′(s) are space-like, time-like or null, respectively. From now on, the “prime”
means the partial derivative with respect to the parameter s unless mentioned otherwise.
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We now put a 2-dimensional space form in L3 as follows:

Q2(ε) =

{
S2

1 = {(x1, x2, x3) ∈ L3| − x2
1 + x2

2 + x2
3 = 1}, if ε = 1;

H2 = {(x1, x2, x3) ∈ L3| − x2
1 + x2

2 + x2
3 = −1}, if ε = −1.

We call S2
1 and H2 the de-Sitter space and the hyperbolic space, respectively.

Let γ : I −→ L3 be a space-like or time-like curve in the Minkowski 3-space L3 parameterized by
its arc-length s. Denote by {t, n, b} the Frenet frame field along γ(s).

If γ(s) is a space-like curve in L3, the Frenet formulae of γ(s) are given by [23]:

γ′(s) = t(s),

t′(s) = κ(s)n(s),

n′(s) = −εκ(s)t(s) + τ(s)b(s),

b′(s) = ετ(s)n(s),

(5)

where 〈t, t〉 = 1, 〈n, n〉 = ε(= ±1), 〈b, b〉 = −ε. Here, the functions κ(s) and τ(s) are the curvature
function and the torsion function of a space-like curve γ(s), respectively.

If γ(s) is a time-like curve in L3, the Frenet formulae of γ(s) are given by [23]:

γ′(s) = t(s),

t′(s) = κ(s)n(s),

n′(s) = −κ(s)t(s) + τ(s)b(s),

b′(s) = −τ(s)n(s),

(6)

where 〈t, t〉 = −1, 〈n, n〉 = 〈b, b〉 = 1. Here κ(s) and τ(s) are the curvature function and the torsion
function of a time-like curve γ(s), respectively.

If γ(s) is a space-like or time-like pseudo-spherical curve parametrized by arc-length s in Q2(ε),
let t(s) = γ′(s) and g(s) = γ(s)× γ′(s). Then, we have a pseudo-orthonormal frame {γ(s), t(s), g(s)}
along γ(s). It is called the pseudo-spherical Frenet frame of the pseudo-spherical curve γ(s). If γ is a
space-like curve, then the vector g is time-like when γ is on S2

1, and the vector g is space-like when γ is
on H2. Similarly, if the curve γ is time-like, then the vector g is space-like. The following theorem can
be easily obtained.

Theorem 1. ([24,25]) Under the above notations, we have the following pseudo-spherical Frenet formulae of γ:
(1) If γ is a pseudo-spherical space-like curve,

γ′(s) = t(s),

t′(s) = −εγ(s)− εκg(s)g(s),

g′(s) = −κg(s)t(s).

(7)

(2) If γ is a pseudo-spherical time-like curve,

γ′(s) = t(s),

t′(s) = γ(s) + κg(s)g(s),

g′(s) = κg(s)t(s).

(8)

The function κg(s) is called the geodesic curvature of the pseudo-spherical curve γ.
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Now, we define a ruled surface M in L3. Let I and J be open intervals in the real line R.
Let α = α(s) be a curve in L3 and β = β(s) a vector field along α with α′(s) × β(s) 6= 0 for every
s ∈ J. Then, a ruled surface M is defined by the parametrization given as follows:

x = x(s, t) = α(s) + tβ(s), s ∈ J, t ∈ I.

For such a ruled surface, α and β are called the base curve and the director curve respectively.
In particular, if β is constant, the ruled surface is said to be cylindrical, and if it is not so, it is called
non-cylindrical. Furthermore, we have five different ruled surfaces according to the characters of the
base curve α and the director curve β as follows: if the base curve α is space-like or time-like, then the
ruled surface M is said to be of type M+ or type M−, respectively. In addition, the ruled surface of
type M+ can be divided into three types. In the case that β is space-like, it is said to be of type M1

+ or
M2

+ if β′ is non-null or null, respectively. When β is time-like, β′ is space-like because of the causal
character. In this case, M is said to be of type M3

+. On the other hand, for the ruled surface of type M−,
it is also said to be of type M1

− or M2
− if β′ is non-null or null, respectively [26].

However, if the base curve α is a light-like curve and the vector field β along α is a light-like vector
field, then the ruled surface M is called a null scroll. In particular, a null scroll with Cartan frame is
said to be a B-scroll [27]. It is also a time-like surface.

A non-degenerate surface in L3 with zero Gaussian curvature is called a developable surface.
The developable surfaces in L3 are the same as in the Euclidean space, and they are planes, conical
surfaces, cylindrical surfaces and tangent developable surfaces [13].

3. Generalized Null 2-Type Cylindrical Surfaces

For a surface in the Minkowski 3-space L3, the next lemma is well known and useful.

Lemma 1. ([16]) Let M be an oriented surface of L3. Then, the Laplacian of the mean curvature vector field H
of M is given by

∆H = 2A(∇H) + ε∇H2 + (∆H + εH|A|2)N, (9)

where ε is the sign of the unit normal vector N of the surface M and ∇H, A are the gradient of the mean
curvature H and the shape operator of M, respectively.

Theorem 2. All cylindrical surfaces in L3 are of generalized null 2-type.

Proof. Let M be a cylindrical ruled surface in the Minkowski 3-space L3 of type M1
+, M1

− or M3
+.

Then, M is parameterized by
x(s, t) = α(s) + tβ,

where the base curve α(s), which is a space-like or time-like curve with the arc-length parameter s,
lies in a plane with a space-like or time-like unit normal vector β that is the director of M, that is,
〈β, β〉 = ε1(= ±1) and 〈α′(s), α′(s)〉 = ε2(±1).

Now, we take a local pseudo-orthonormal frame {e1, e2, e3} on L3 such that e1 = ∂
∂t and e2 = ∂

∂s
are tangent to M, and e3 normal to M. It follows that the Levi–Civita connection ∇̃ of L3 is expressed as

∇̃e1 e1 = ∇̃e1 e2 = ∇̃e2 e1 = 0, ∇̃e2 e2 = ε3κ(s)e3,

∇̃e1 e3 = 0, ∇̃e2 e3 = −ε2κ(s)e2,
(10)

where κ(s) is the curvature function of α(s) and ε3(= ±1) is the sign of e3. From this, the mean
curvature vector field H of M is given by

H =
ε2κ(s)

2
e3 (11)
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and the Laplacian ∆H of H is expressed as

∆H =
3
2

ε1ε2κ(s)κ′(s)e2 −
1
2
(κ3(s) + ε1κ′′(s))e3. (12)

Suppose that M is of generalized null 2-type. With the help of (4) and (12), we obtain the
following equations:

gC1 = 0, (13)

3
2

ε1ε2κ(s)κ′(s) = gC2, (14)

1
2

ε1ε2κ3(s) +
1
2

ε2κ′′(s) = −1
2

ε1κ(s) f + gC3, (15)

where C = ε1C1e1 + ε2C2e2 − ε1ε2C3e3 with C1 = 〈C, e1〉, C2 = 〈C, e2〉 and C3 = 〈C, e3〉. In this case,
C1 is a constant, and C2, C3 are functions of the variable s.

If g is identically zero, then, from (14), the curvature κ(s) is constant, and from (15), the function f
is constant, say λ. Thus, M satisfies ∆H = λH, that is, it is either a Euclidean plane, a Minkowski plane,
a Lorentz circular cylinder S2 ×R1

1, a hyperbolic cylinder H1 ×R or a Lorentz hyperbolic cylinder
S1

1 ×R according to [16].
We now assume that g 6= 0. It follows from (13) that C1 = 0. By using (10), we can show that the

component functions of C satisfy the following equations:

C′2(s) + ε1ε2κ(s)C3(s) = 0,

C′3(s) + ε2κ(s)C2(s) = 0,
(16)

which yield ε2C2
2(s)− ε1ε2C2

3(s) = ηd2
0 for some nonzero constant d0, where η = 〈C, C〉.

Case 1: If M is of type M3
+, then ε1 = −1, ε2 = 1 and η = 1. We may put from (16)

C2(s) = d0 sin θ(s), C3(s) = d0 cos θ(s), (17)

where θ(s) = κ0 +
∫

κ(s)ds for some constant κ0. Therefore, the constant vector C becomes

C = d0 sin θ(s)e2 + d0 cos θ(s)e3. (18)

Combining (14), (15) and (17), one also gets

g = −3κ(s)κ′(s)
2d0

csc θ(s), f =
κ′′(s)
κ(s)

− κ2(s) + 3κ′(s) cot θ(s). (19)

Thus, the mean curvature vector field H of the cylindrical surface M+
3 satisfies

∆H = f H + gC,

where f , g and C are given in (18) and (19), respectively.
Case 2: Let M be of type M1

+. In this case, ε1 = 1, ε2 = 1 and the constant vector C is space-like,
time-like or null.

First of all, we consider the constant vector C is non-null. Then, from (16), we may put{
C2(s) = d0 cosh θ(s), C3 = d0 sinh θ(s) if η = 1,

C2(s) = d0 sinh θ(s), C3 = d0 cosh θ(s) if η = −1,
(20)

where θ(s) = −
∫

κ(s)ds + κ0 with a constant κ0.
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By using (14), (15) and (17), the functions f (s) and g(s) are determined by f (s) = − κ′′(s)
κ(s) + κ2(s) + 3κ′(s) tanh θ(s), g(s) = 3κ(s)κ′(s)

2d0 cosh θ(s) if η = 1,

f (s) = − κ′′(s)
κ(s) − κ2(s) + 3κ′(s) coth θ(s), g(s) = 3κ(s)κ′(s)

2d0 sinh θ(s) if η = −1.
(21)

Thus, for the non-null constant vector C, the cylindrical surface M+
1 is of generalized null 2-type,

that is, it satisfies
∆H = f H + gC,

where f , g and C are given by (20) and (21), respectively.
Next, let the constant vector C be null, that is, η = 0. Then, we get

C2(s) = ±C3(s).

We will consider the case C2(s) = C3(s). It follows from (16) C2(s) = eθ(s), where
θ(s) = −

∫
κ(s)ds + κ0 for some constant κ0. In this case, we have

f (s) = −κ′′(s)
κ(s)

− κ2(s) + 3κ′(s), g(s) =
3
2

e−θ(s)κ(s)κ′(s) (22)

and, for the null constant vector C, the surface satisfies the condition ∆H = f H + gC.
Case 3: Let M be of type M1

−, that is, ε1 = 1, ε2 = −1. In this case, the constant vector C is
space-like, time-like or null.
Applying the same method as in Case 2, the functions f (s) and g(s) are determined by

f (s) = κ′′(s)
κ(s) + κ2(s) + 3κ′(s) coth θ(s), g(s) = 3κ(s)κ′(s)

2d0 sinh θ(s) if η = 1,

f (s) = κ′′(s)
κ(s) + κ2(s) + 3κ′(s) tanh θ(s), g(s) = 3κ(s)κ′(s)

2d0 cosh θ(s) if η = −1,

f (s) = κ′′(s)
κ(s) + κ2(s) + 3κ′(s), g(s) = 3

2 e−θ(s)κ(s)κ′(s) if η = 0,

(23)

and the component functions of C are given by
C2(s) = d0 sinh θ(s), C3(s) = d0 cosh θ(s), if η = 1,

C2(s) = d0 cosh θ(s), C3(s) = d0 sinh θ(s), if η = −1,

C2(s) = ±C3(s), if η = 0,

(24)

where θ(s) =
∫

κ(s)ds + κ0 for some constant κ0.
Thus, from Cases 1, 2 and 3, Theorem 2 is proved.

Example 1. We consider a surface defined by

x(s, t) =
(

1
4

s2 − 1
2

ln s,
1
4

s2 +
1
2

ln s, t
)

. (25)

This parametrization is a cylindrical ruled surface of type M1
+. In this case, the mean curvature vector field

H of the surface is given by

H =

(
−1

4
− 1

4s2 ,−1
4
+

1
4s2 , 0

)
.

By a direct computation, the Laplacian ∆H of the mean curvature vector field H becomes

∆H =

(
3

2s4 ,− 3
2s4 , 0

)
,



Symmetry 2017, 9, 14 7 of 15

and it can be rewritten in terms of the mean curvature vector field H and a constant vector C as follows:

∆H = − 6
s2 (H + C),

where C = ( 1
4 , 1

4 , 0) is a null vector. Thus, the cylindrical ruled surface defined by (25) is a generalized null
2-type surface of the first kind.

Remark 1. A cylindrical surface in L3 generated by the base curve α(s) with the curvature κ(s) = 1
s and a

constant director β is a generalized null 2-type surface of the first kind if the constant vector C is null.

4. Generalized Null 2-Type Non-Cylindrical Flat Surfaces

In this section, we classify non-cylindrical flat surfaces satisfying

∆H = f H + gC. (26)

It is well-known that a non-cylindrical flat surface in the Minkowski 3-space L3 is an open part of
a conical surface or a tangent developable surface.

First of all, we consider a conical surface M in L3. Then, we may give the parametrization of M by

x(s, t) = α0 + tβ(s), s ∈ I, t > 0,

such that 〈β′(s), β′(s)〉 = ε1 and 〈β(s), β(s)〉 = ε2, where α0 is a constant vector. We take the
orthonormal tangent frame {e1, e2} on M such that e1 = 1

t
∂
∂s and e2 = ∂

∂t . The unit normal vector of M
is given by e3 = e1 × e2. By the Gauss and Weingarten formulas, we have

∇̃e1 e1 = − ε1ε2

t
e2 +

ε1ε2κg(s)
t

e3, ∇̃e1 e2 =
1
t

e1, ∇̃e2 e1 = ∇̃e2 e2 = 0,

∇̃e1 e3 =
ε1κg(s)

t
e1, ∇̃e2 e3 = 0,

(27)

where κg(s) = 〈β(s), β′(s)× β′′(s)〉, which is the geodesic curvature of the pseudo-spherical curve
β(s) in Q2(ε). From (27), the mean curvature vector field H of M is given by

H = −
ε1κg(s)

2t
e3, (28)

and the Laplacian ∆H of the mean curvature vector field H is expressed as

∆H =
3ε1

2t3 κg(s)κ′g(s)e1 −
ε2

2t3 κ2
g(s)e2 +

(
1

2t3 κ′′g (s) +
ε2

2t3 κ3
g(s) +

ε1ε2

2t3 κg(s)
)

e3. (29)

Suppose that κg is constant. If κg = 0, by a rigid motion, the pseudo-spherical curve β(s) in Q2(ε)

lies on yz-plane or xz-plane. Thus M is an open part of a Euclidean plane or a Minkowski plane. If κg

is a non-zero constant, from (27), we can obtain by a straightforward computation

β′′′(s) = ε2(κ
2
g(s)− ε1)β′(s). (30)

Case 1: ε2(κ
2
g(s)− ε1) = k2 for some real number k.

Let ε1 = 1. Without loss of generality, we may assume β′(0) = (0, 1, 0). Thus,
β′′′(s) = k2β′(s) implies

β′(s) = (B1 sinh ks, cosh ks + B2 sinh ks, B3 sinh ks)
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for some constants B1, B2 and B3. Since ε1 = 1, we have B2
1 − B2

3 = 1 and B2 = 0. From this, we
can obtain

β(s) =
(

B1

k
cosh ks + D1,

1
k

sinh ks,
B3

k
cosh ks + D3

)
(31)

for some constants D1, D3 satisfying D2
3 − D2

1 = 1
k2 + ε2, B1D1 = B3D3 and B2

1 − B2
3 = 1. We now

change the coordinates by x̄, ȳ, z̄ such that x̄ = B1x− B3z, ȳ = y, z̄ = −B3x + B1z, that is, x̄
ȳ
z̄

 =

 B1 0 −B3

0 1 0
−B3 0 B1


 x

y
z

 .

With respect to the coordinates (x̄, ȳ, z̄), β(s) turns into

β(s) =
(

1
k

cosh ks,
1
k

sinh ks, D
)

(32)

for a constant D = B1D3 − B3D1 with D2 = 1
k2 + ε2. Thus, up to a rigid motion M has the

parametrization of the form

x(s, t) = α0 + t
(

1
k

cosh ks,
1
k

sinh ks, D
)

.

We call such a surface a hyperbolic conical surface of the first kind, and it satisfies

∆H =

(
ε2(1− D2 − k2)

k2t2

)
H +

(
ε2D(1− D2k2)

2k4t3

)
(0, 0, 1).

Next, let (ε1, ε2) = (−1, 1). We now consider a initial condition β′(0) = (1, 0, 0) of the ordinary
differential equation (ODE) (30). Quite similarly as we did, we obtain

β(s) =
(

1
k

sinh ks,
B2

k
cosh ks + D2,

B3

k
cosh ks + D3

)
,

satisfying B2
2 + B2

3 = 1, B2D2 + B3D3 = 0 and D2
2 + D2

3 = 1− 1
k2 .

If we adopt the coordinates’ transformation, x̄
ȳ
z̄

 =

 1 0 0
0 B2 B3

0 −B3 B2


 x

y
z

 .

With respect to the new coordinates (x̄, ȳ, z̄), the vector β(s) becomes

β(s) =
(

1
k

sinh ks,
1
k

cosh ks, D
)

, (33)

where D = B2D3− B3D2 with D2 = 1− 1
k2 . We call such a surface generated by (33) a hyperbolic conical

surface of the second kind and it satisfies

∆H =

(
1 + D2 + k2

k2t2

)
H +

(
D(1 + k2D2)

2k4t3

)
(0, 0, 1).

Case 2: ε2(κ
2
g(s)− ε1) = −k2 for some real number k.



Symmetry 2017, 9, 14 9 of 15

Let ε1 = 1. We may give the initial condition by β′(0) = (0, 1, 0) for the differential equation
β′′′(s) + k2β′(s) = 0. Under such an initial condition, a vector field β(s) is given by

β(s) =
(
−B1

k
cos ks + D1,

1
k

sin ks,−B3

k
cos ks + D3

)
,

where B1, B3, D1 and D3 are some constants satisfying B2
3 − B2

1 = 1, B1D1 = B3D3 and
D2

1 − D2
3 = 1

k2 − ε2. If we take another coordinate system (x̄, ȳ, z̄) such that

x̄ = −B3x + B1z, ȳ = y, z̄ = B1x− B3z,

then a vector β(s) takes the form

β(s) =
(

D,
1
k

sin ks,
1
k

cos ks
)

, (34)

where D = B1D3 − B3D1 satisfying D2 = 1
k2 − ε2. We call such a surface generated by (34) an elliptic

conical surface and it satisfies

∆H =

(
ε1 − ε1D2 − k2

k2t2

)
H−

(
D(k2D2 − 1)

2k4t3

)
(1, 0, 0).

Case of ε1 = −1 gives ε2 = −1. It is impossible by the causal character of Lorentz geometry.
Case 3: κ2

g(s)− ε1 = 0.
In this case, κ2

g(s) = 1, in other words, ε1 = 1, which implies by using (27) 〈β′′(s), β′′(s)〉 = 0.
Since β′′(s) is a constant vector by (30), we may put β′′(s) = (d1, d2, d3) for some constants d1, d2,
d3 satisfying −d2

1 + d2
2 + d2

3 = 0 and so β′(s) = (d1s + k1, d2s + k2, d3s + k3) for some constants k1, k2

and k3. Since 〈β′(s), β′(s)〉 = ε1 = 1, we may set (k1, k2, k3) = (0, 1, 0) up to an isometry and hence
β(s) = ( d1

2 s2 + c1, d2
2 s2 + s + c2, d3

2 s2 + c3) for some constants c1, c2 and c3. However, 〈β(s), β(s)〉 = ε2

implies d2 = c2 = 0 and d2
1 = d2

3, −c2
1 + c2

3 = ε2, −d1c1 + d3c3 + 1 = 0. Thus, β(s) takes the form

β(s) =
(

d1

2
s2 + c1, s,

d3

2
s2 + c3

)
. (35)

We call such a surface generated by (35) a quadric conical surface.
As shown in the Introduction, a quadric conical surface is of generalized null 2-type of the first

kind. Let us suppose that κg is a non-constant, i.e., κ′g 6= 0 on an open interval. Suppose that M is of
generalized null 2-type, that is, M satisfies the condition (4). Then, we have the following equations:

3κg(s)κ′g(s)
2t3 = gC1, (36)

−
κ2

g(s)
2t3 = gC2, (37)

− 1
2t3

(
ε1ε2κ′′g (s) + ε1κ3

g(s) + κg(s)
)
=

ε2κg(s)
2t

f + gC3, (38)

where C = ε1C1e1 + ε2C2e2 − ε1ε2C3e3 with C1 = 〈C, e1〉, C2 = 〈C, e2〉 and C3 = 〈C, e3〉. Since
e1 = β′(s), e2 = β(s) and e3 = β′(s)× β(s), the component functions Ci (i = 1, 2, 3) of C depend only
on variable s. Let us differentiate C1, C2 and C3 covariantly with respect to e1. Then, from (27), we
have the following equations:

C′1(s) + ε1ε2C2(s)− ε1ε2κg(s)C3(s) = 0, (39)

C′2(s)− C1(s) = 0, (40)
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C′3(s)− ε1κg(s)C1(s) = 0. (41)

Combining (36) and (37), and using (40), we have

C1 = −
3cκ′g
κ4

g
and C2 =

c
κ3

g
, (42)

where c is a constant of integration.
Together with (37) and (42), we can find

g = −
κ5

g

2ct3 . (43)

Substituting (42) into (39), we get

C3 =
c(κ2

g − 3ε1ε2κgκ′′g + 12ε1ε2κ′g
2)

κ6
g

. (44)

Then, (38) and (44) lead to

f = − ε2

t2κ2
g
(4ε1ε2κgκ′′g − 12ε1ε2κ′g

2
+ ε1κ4

g). (45)

Furthermore, it follows from (41) and (42) that

C′3 = −
3ε1cκ′g

κ3
g

and its solution is given by

C3 =
3ε1c
2κ2

g
+ a1 (46)

for some constant a1.
Combining (44) and (46), the geodesic curvature κg satisfies the following equation:

κ′′g −
4
κg

κ′g
2 − 1

3
ε1ε2κg +

1
2

ε2κ3
g +

a1

3c
ε1ε2κ5

g = 0. (47)

To solve the ODE, we put p = κ′g. Then, (47) can be written of the form

dp
dκg
− 4

κg
p =

1
p

(
1
3

ε1ε2κg −
1
2

ε2κ3
g −

a1

3c
ε1ε2κ5

g

)
, (48)

and it is a Bernoulli differential equation. Thus, the solution is given by

p = ±κg

(
a2κ6

g +
a1

3c
ε1ε2κ4

g +
1
4

ε2κ2
g −

1
9

ε1ε2

) 1
2

,

which is equivalent to

κ−1
g

(
a2κ6

g +
a1

3c
ε1ε2κ4

g +
1
4

ε2κ2
g −

1
9

ε1ε2

)− 1
2

dκg = ±ds

for some constant a2. If we put

F(v) =
∫

ψ(v)dv,
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where

ψ(v) = v−1
(

a2v6 +
a1

3c
ε1ε2v4 +

1
4

ε2v2 − 1
9

ε1ε2

)− 1
2

,

and then we have
F(κg) = ±s + a3 (49)

for some constant a3. Thus, the geodesic curvature κg is given by

κg(s) = F−1(±s + a3). (50)

Furthermore, the constant vector C can be expressed as

C = −
3cκ′g
κ4

g
e1 +

c
κ3

g
e2 +

c(κ2
g − 3ε1ε2κgκ′′g + 12ε1ε2κ′g

2)

κ6
g

e3. (51)

Conversely, for some constants a1, a2 and c such that the function

ψ(v) = v−1
(

a2v6 +
a1

3c
ε1ε2v4 +

1
4

ε2v2 − 1
9

ε1ε2

)− 1
2

(52)

is well-defined on an open interval J ⊂ (0, ∞), we take an indefinite integral F(v) of the function
ψ(v). Let I be the image of the function F. We can take an open subinterval J1 ⊂ J such that
F : J1 → I is a strictly increasing function with F′(v) = ψ(v). Let us consider the function ϕ defined by
ϕ(s) = F−1(±s + a3) for some constant a3. Then, the function ϕ satisfies F(ϕ) = ±s + a3.

For any unit speed pseudo-spherical curve β(s) in Q2(ε) with geodesic curvature κg(s) = ϕ(s),
we consider the conical surface M in L3 parametrized by

x(s, t) = α0 + tβ(s), s ∈ I, t > 0, (53)

where α0 is a constant vector. Given any nonzero constant c, we put f and g the functions, respectively,
given by

f (s, t) = − ε2

t2 ϕ2 (4ε1ε2 ϕϕ′′ − 12ε1ε2 ϕ′
2
+ ε1 ϕ4), g(s, t) = − ϕ5

2ct3 . (54)

For a nonzero constant c and the pseudo-orthonormal frame {e1, e2, e3} on L3 such that e1 = 1
t

∂
∂s and

e2 = ∂
∂t are tangent to M and e3 normal to M, we put

C = −3cϕ′

ϕ4 e1 +
c

ϕ3 e2 +
c(ϕ2 − 3ε1ε2 ϕϕ′′ + 12ε1ε2 ϕ′2)

ϕ6 e3. (55)

Note that it follows from the definition of ϕ that the function ϕ satisfies (47). Hence, using (27), it is
straightforward to show that

∇̃e1 C = ∇̃e2 C = 0,

which implies that C is a constant vector. Furthermore, the same argument as in the first part of this
subsection yields the mean curvature vector field H of the conical surface M satisfies

∆H = f H + gC,

where f , g and C are given in (54) and (55), respectively. This shows that the conical surface is of
generalized null 2-type.

Thus, we have the following:
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Theorem 3. Let M be a conical surface in the Minkowski 3-space L3. Then, M is of generalized null 2-type if
and only if it is an open part of one of the following surfaces:

(1) a Euclidean plane;
(2) a Minkowski plane;
(3) a hyperbolic conical surface of the first kind;
(4) a hyperbolic conical surface of the second kind;
(5) an elliptic conical surface;
(6) a quadric conical surface;
(7) a conical surface parameterized by

x(s, t) = α0 + tβ(s),

where α0 is a constant vector and β(s) is a unit speed pseudo-spherical curve in Q2(ε) with the non-constant
geodesic curvature κg which is, for some indefinite integral F(v) of the function

ψ(v) = v−1
(

a2v6 +
a1

3c
ε1ε2v4 +

1
4

ε2v2 − 1
9

ε1ε2

)− 1
2

with a1, a2, c ∈ R, given by
κg(s) = F−1(±s + a3),

where a3 is constant.

Next, we study tangent developable surfaces in the Minkowski 3-space L3.

Theorem 4. Let M be a tangent developable surface in the Minkowski 3-space L3. Then, M is of generalized
null 2-type if and only if M is an open part of a Euclidean plane or a Minkowski plane.

Proof. Let α(s) be a curve parameterized by arc-length s in L3 with non-zero curvature κ(s). Then, a
non-degenerate tangent developable surface M in L3 is defined by

x(s, t) = α(s) + tα′(s), t 6= 0.

In the case, we can take the pseudo-orthonormal frame {e1, e2, e3} of L3 such that e1 = ∂
∂t and

e2 = ε2
tκ(s)

(
∂
∂s −

∂
∂t

)
are tangent to M and e3 is normal to M. By a direct calculation, we obtain

∇̃e1 e1 = ∇̃e1 e2 = 0, ∇̃e2 e1 =
1
t

e2, ∇̃e2 e2 = − ε1ε2

t
e1 −

ε1τ(s)
tκ(s)

e3,

∇̃e1 e3 = 0, ∇̃e2 e3 =
ε2τ(s)
tκ(s)

e2,
(56)

where 〈e1, e1〉 = ε1(= ±1), 〈e2, e2〉 = ε2(= ±1) and τ(s) is the torsion of α(s). Therefore, the mean
curvature vector field H of M is given by

H =
τ(s)

2tκ(s)
e3. (57)
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By a long computation, the Laplacian ∆H of the mean curvature vector field H turns out to be

∆H = − ε1τ2

2κ2t3 e1 +
1

2κ4t4

(
3κτ2 − 2κ′τ2t + 3κττ′t

)
e2

+
1

2κ4t5

(
−ε1κ3τt2 + ε1κ′τt− 3ε2κτ − (ε1κ2t + ε2κκ′t2)(

τ

κ
)′

−ε2κ2(
τ

κ
)′′t2 − ε1τ3κt2

)
e3.

(58)

Suppose that M is of generalized null 2-type, that is, M satisfies ∆H = f H + gC for some smooth
functions f , g and a constant vector C. With the help of (57) and (58), (4) can be written in the form

gC1 = − τ2

2κ2t3 ,

gC2 =
ε2

2κ4t4

(
3κτ2 − 2κ′τ2t + 3κττ′t

)
,

− ε1ε2τ

2κt
f + gC3 = − ε1ε2

2κ4t5

(
−ε1κ3τt2 + ε1κ′τt− 3ε2κτ − (ε1κ2t + ε2κκ′t2)(

τ

κ
)′

−ε2κ2(
τ

κ
)′′t2 − ε1τ3κt2

)
,

(59)

where C = ε1C1e1 + ε2C2e2 − ε1ε2C3e3 with C1 = 〈C, e1〉, C2 = 〈C, e2〉 and C3 = 〈C, e3〉. In this case,
the components Ci of C are functions of only s. It follows from (56) that we have

C′1 − ε2κC2 = 0, (60)

C′2 + ε1κC1 + ε1ε2τC3 = 0, (61)

C′3 + ε2τC2 = 0. (62)

By combining the first and second equations of (59), we get

3ε2κτ2C1 + (3ε2κττ′C1 − 2ε2κ′τ2C1 + κ2τ2C2)t = 0.

This shows that we obtain
3ε2κτ2C1 = 0,

3ε2κττ′C1 − 2ε2κ′τ2C1 + κ2τ2C2 = 0.
(63)

Consider the open set O = {p ∈ M|τ(p) 6= 0}. Suppose that O is a non-empty set. (63) shows
that C1 = 0 and C2 = 0, and it follows from (61) that C3 = 0. That is, C = 0 on O. In addition, (59)
gives τ = 0, and it is a contradiction. Thus, the open setO is empty and τ is identically zero. Therefore,
α(s) is a plane curve, and the surface M is an open part of a Euclidean plane or a Minkowski plane.

The converse of Theorem 4 follows a straightforward calculation.

5. Null Scrolls

Let α = α(s) be a null curve in L3 and β = β(s) a null vector field along α satisfying 〈α′, β〉 = −1.
Then, the null scroll M is parameterized by

x(s, t) = α(s) + tβ(s). (64)

Furthermore, without loss of generality, we may choose α(s) as a null geodesic of M, i.e, 〈α′(s), β′(s)〉 =
0 for all s. By putting γ(s) = α′(s)× β(s), then {α′(s), β(s), γ(s)} is a pseudo-orthonormal frame along
α(s) in L3. We define the smooth functions k and u by

k(s) = 〈α′′(s), γ(s)〉, u(s) = 〈β(s), γ′(s)〉.
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On the other hand, the induced Lorentz metric on M is given by g11 = u(s)2t2, g12 = −1 and g22 = 0.
Since M is a non-degenerate surface, u(s)t is non-vanishing everywhere.
In terms of the pseudo-orthonormal frame, we have

α′′(s) = k(s)γ(s),

β′(s) = −u(s)γ(s),

γ′(s) = −u(s)α′(s) + k(s)β(s).

(65)

The mean curvature vector field H of M is given by

H = −u2tβ + uγ,

and its Laplacian ∆H is expressed as

∆H = (−4uu′ − 2u4t)β + 2u3γ. (66)

Suppose that M is a generalized null 2-type surface. Then, we have

4uu′ + 2u4t = u2t f − gC2,

gC1 = 0,

2u3 = u f + gC3,

(67)

for a constant vector C = C1α′ + C2β + C3γ with C1 = −〈C, β〉, C2 = −〈C, α′〉 and C3 = 〈C, γ〉.
Suppose that g is identically zero. By combining the first and third Equations in (67), we see that

u is constant, say u0. In this case, we have f = 2u2
0. Thus, M is a B-scroll, and it satisfies ∆H = 2u2

0H
(see [16]).

Consider the open set O = {p ∈ M|g(p) 6= 0}. Suppose that O is a non-empty set. Then,
from (67), we find C1 = 0 on a component O0 on O. Let us differentiate C1 with respect to s and
use (65). Then, C3 = 0 on O0. Since

α′ × β′ = −uα′, α′′ × β = kβ,

by differentiating the equation C3 = 0 with respect to s, we can obtain

kC1 − uC2 = 0.

It follows that C2 = 0 on O0 because C1 = 0 and u 6= 0. Since C is a constant vector, it is a zero vector.
From the first and third Equations in (67), u is a non-zero constant, say u0, and f = 2u2

0 on M. Thus, M
is of null 2-type and it is a B-scroll.

Consequently, we have

Theorem 5. Let M be a null scroll in the Minkowski 3-space L3. Then, M is of generalized null 2-type if and
only if M is an open piece of a B-scroll.

We now propose an open problem.

Problem 1. Classify all generalized null 2-type surfaces in the Euclidean space or pseudo-Euclidean space.

Acknowledgments: We would like to thank the referee for the careful review and the valuable comments, which
really improved the paper. The first author was supported by the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01060046).

Author Contributions: Dae Won Yoon gave the idea to establish generalized null finite type surfaces on
Minkowski space. Dong-Soo Kim, Yong Ho Kim and Jaewon Lee checked and polished the draft.



Symmetry 2017, 9, 14 15 of 15

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Takahashi, T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Jpn. 1966, 18, 380–385.
2. Chen, B.-Y. Total Mean Curvature and Submanifolds of Finite Type; World Scientific Publishing: Singapore, 1984.
3. Chen, B.-Y. Null 2-type surfaces in E3 are circular cylinders. Kodai Math. J. 1988, 11, 295–299.
4. Chen, B.-Y. Null 2-Type Surfaces in Euclidean Space. In Proceedings of the Algebra, Analysis and Geometry,

Taipei, Taiwan, 27–29 June 1988; World Science Publishing: Teaneck, NJ, USA; pp. 1–18.
5. Ferrández, A.; Lucas, P. On surfaces in the 3-dimensional Lorentz-Minkowski space. Pac. J. Math. 1992, 152,

93–100.
6. Chen, B.-Y. Submanifolds in de Sitter space-time satisfying ∇H = λH. Israel J. Math. 1995, 89, 373–391.
7. Chen, B.-Y.; Fu, Y. δ(3)-ideal null 2-type hypersurfaces in Euclidean spaces. Differ. Geom. Appl. 2015,

40, 43–56.
8. Chen, B.-Y.; Garay, O.J. δ(2)-ideal null 2-type hypersurfaces of Euclidean space are spherical cylinders.

Kodai Math. J. 2012, 35, 382–391.
9. Chen, B.-Y.; Song, H.Z. Null 2-type surfaces in Minkowski space-time. Algebras Groups Geom. 1989,

6, 333–352.
10. Dursun, U. Null 2-type submanifolds of the Euclidean space E5 with non-parallel mean curvature vector.

J. Geom. 2006, 86, 73–80.
11. Dursun, U. Null 2-type space-like submanifolds of E5

t with normalized parallel mean curvature vector.
Balkan J. Geom. Appl. 2006, 11, 61–72.

12. Dursun, U. Null 2-type submanifolds of the Euclidean space E5 with parallel normalized mean curvature
vector. Kodai Math. J. 2005, 28, 191–198.
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