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Abstract: The recent discovery of boron triangular nanotubes competes with carbon in many respects.
The closed form of M-polynomial of nanotubes produces closed forms of many degree-based
topological indices which are numerical parameters of the structure and, in combination, determine
properties of the concerned nanotubes. In this report, we give M-polynomials of boron triangular
nanotubes and recover many important topological degree-based indices of these nanotubes. We also
plot surfaces associated with these nanotubes that show the dependence of each topological index on
the parameters of the structure.
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1. Introduction

Nanotechnology is creating new structures between 1 and 100 nm. It creates many new materials
and devices with a wide range of applications in medicine, electronics, and computers. Nanotechnology
is expected to revolutionize the 21st century. Amongst the nanomaterials, nanocrystals, nanowires,
and nanotubes constitute three major categories, the last two being one-dimensional. Since the
discovery of carbon nanotubes in 1991, interests in one-dimensional nanomaterials has remarkably
grown, and a phenomenal number of research articles are being published on nanotubes as well as on
nanowires. Nanotubes are 3-D structures formed out of a 2-D lattice. The most significant nanotubes
are carbon nanotubes and boron triangular nanotubes (Figure 1).

Boron nanotubes are becoming increasingly interesting because of their remarkable properties,
such as their structural stability, work function, transport properties, and electronic structure [1].
A boron triangular sheet is obtained from a carbon hexagonal sheet by adding an extra atom to the
center of each hexagon (Figure 2). Scientists believe that boron triangular nanotubes are a better
conductor than carbon hexagonal nanotubes.
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Figure 1. Carbon hexagonal nanotube (a) and boron triangular nanotube (b).
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Figure 2. 2D lattice of carbon hexagonal nanotube (a) and boron triangular nanotube (b).

In chemical graph theory, a molecular graph is a simple graph (having no loops and multiple
edges) in which atoms and chemical bonds between them are represented by vertices and edges,
respectively. A graph G(V,E) with vertex set V(G) and edge set E(G) is connected if there is a
connection between any pair of vertices in G. A network is simply a connected graph having no
multiple edges and loops. The degree of a vertex is the number of vertices which are connected to that
fixed vertex by the edges. In a chemical graph, the degree of any vertex is at most 4. The distance
between two vertices u and v is denoted as d(u, v) = dg(u, v) and is the length of shortest path between
u and v in graph G. The number of vertices of G, adjacent to a given vertex v, is the “degree” of this
vertex, and will be denoted by d,(G) or, if misunderstanding is not possible, simply by d,. The concept
of degree is somewhat closely related to the concept of valence in chemistry. For details on the basics
of graph theory, any standard text such as [2] can be of great help.

Cheminformatics is another emerging field in which quantitative structure-activity (QSAR)
and structure-property (QSPR) relationships predict the biological activities and properties of the
nanomaterial. In these studies, some physico-chemical properties and topological indices are used
to predict bioactivity of the chemical compounds [3-7]. Algebraic polynomials have also useful
applications in chemistry, such as Hosoya polynomial (also called Wiener polynomial) [8], which plays
a vital role in determining distance-based topological indices. Among other algebraic polynomials,
the M-polynomial [9], introduced in 2015, plays the same role in determining the closed form of
many degree-based topological indices [10-14]. The main advantage of M-polynomial is the wealth of
information that it contains about degree-based graph invariants.
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In this article, we compute a closed form of some degree-based topological indices of boron
triangular nanotubes by using an M-polynomial.

Definition 1. [9] The M-polynomial of G is defined as

M(G,xy)= Y. m(G)x'y, )

S<i<j<A

where 6 = Min{d, :v € V (G)}, A = Max{d, : v € V (G)}, and m;;(G) is the edge vu € E(G) such
that {d,, d,} = {i,j}.

Weiner, in 1947 approximated the boiling point of alkanes as aW(G) + BPs + v, where «,
B, and 7 are empirical constants, W(G) is the Weiner index, and P; is the number of paths of
length 3 in G [15]. Thus, Weiner laid the foundation of Topological index, which is also known as the
connectivity index. Many chemical experiments require the determination of the chemical properties of
emerging nanotubes and nanomaterials. Chemical-based experiments reveal that, out of more than 140
topological indices, no single index in strong enough to determine many physico-chemical properties,
although, in combination, these topological indices can do this to some extent. The Wiener index is
originally the first and most studied topological index (for details, [16,17]). The Randi¢ index, [18]
denoted by R _ 1 (G) and introduced by Milan Randi¢ in 1975, is also one of the oldest topological
indexes. The Randi¢ index is defined as

B

uveE(G)

)

In 1998, working independently, Bollobas and Erdos [19] and Amic et al. [20] proposed the
generalized Randi¢ index and has been studied extensively by both chemists and mathematicians [21],
and many mathematical properties of this index have been discussed in [22]. For a detailed survey,
refer to [23].

The general Randi¢ index is defined as

1

sz(G) = Z (dudv)w

uveE(G)

®)

and the inverse Randi¢ index is defined as RR,(G) = ¥ (dudy)".
uveE(G)

Obviously, R B (G) is the particular case of Ry(G) when a = —1.

The Randi¢ index is also the most popular, the most often applied, and the most studied among all
other topological indices. Many papers and books such as [24,25] are written on this topological index.
Randi¢ himself wrote two reviews on his Randi¢ index [26,27], and there are three other reviews [28-30].
The suitability of the Randi¢ index for drug design was immediately recognized; eventually, the index
was used for this purpose, and now has been used on countless occasions. The physical reason for the
success of such a simple graph invariant is still an enigma, although several more-or-less plausible
explanations were offered.

Gutman and Trinajsti¢ introduced first Zagreb index and second Zagreb index, which are defined
as M1(G) = Y (dy+dy)and Mp(G) = Y (dy x dy), respectively. For detail about these

uveE(G) uveE(G)
indices, we refer the reader to [31-35].

Both the first Zagreb index and the second Zagreb index give greater weights to the inner vertices
and edges, and smaller weights to the outer vertices and edges, which opposes intuitive reasoning.
Hence, they were amended as follows [36]: for a simple connected graph G, the second modified
Zagreb index is defined as
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1
"My(G)= ) . 4
uveE(G) d(u)d(v)
The symmetric division index [SDD] is one of the 148 discrete Adriatic indices and is a good
predictor of the total surface area for polychlorobiphenyls [37]. The symmetric division index of a
connected graph G is defined as

SDD(G) = { min(du, dy) | max(du, do) } -
uveE(G) max(du/ dv) mll’l(du,dv)
Another variant of the Randi¢ index is the harmonic index, defined as
2
H(G) = ) 6
©= L 54 ©)

vu€E(G)

As far as we know, this index first appeared in [38]. Favaron et al. [39] considered the relation
between the harmonic index and the eigenvalues of graphs.

The inverse sum-index is the descriptor that was selected in [40] as a significant predictor of
the total surface area of octane isomers and for which the extremal graphs obtained with the help of
MathChem have a particularly simple and elegant structure. The inverse sum-index is defined as

dyd
I(G)= ), =2, @)
vu€E(G) du +dy
The augmented Zagreb index of G proposed by Furtula et al. [41] is defined as
A(G) = Z {d“d” }3 (8)
vu€eE(G) dy +dy —2

This graph invariant has proven to be a valuable predictive index in the study of the heat
of formation in octanes and heptanes [41], whose prediction power is better than the atom-bond
connectivity index (please refer to [42—44] for its research background). Moreover, the tight upper
and lower bounds for the augmented Zagreb index of chemical trees, and the trees with minimal
augmented Zagreb index, were obtained in [41].

The following Table 1 relates some well-known degree-based topological indices with
M-polynomials [9].

Table 1. Derivation of some degree-based topological indices from M-polynomials.

Topological Index Derivation from M(G; x,y)
First Zagreb index (Dx + Dy) (M(G; x/y))x:yzl
Second Zagreb index (DxDy) (M(G; x, y))x:y:l
Modified Second Zagreb index (5xSy) (M(G; x,y) )x=y=1
Randi¢ index <DQ‘D;‘> (M(G; x, y))x:y:1
Inverse Randi¢ index (Sf’é Sg) (M(G;x,y) )x=y=1
Symmetric Division Index (sty + Sny) (M(G; x, y))x:y:1
Harmonic Index 25 J(M(G;x,Y))—1
Inverse sum Index SxJDxDy(M(G; x,V))—q

Augmented Zagreb Index SX3Q_2]DX3Dy3 (M(G;%,¥)) 1
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where

X Y
Dy = x5, Dy =y U, 5= [ 150t s, = [ [at, (£ () = F),
Qulf(x,) = xf(xy).

2. Results

In this section, we provide our computational results.

2.1. M-Polynomials

In Figure 3, we represent a boron triangular nanotube, by a planar graph, BNT;[m, n] of order

n X m, where m and n represent the number of items in each row and each column, respectively.

3nm 3m(3n—2)
2

There are =5* vertices and edges in the 2D lattice graph of boron triangular nanotubes.
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Figure 3. 2D lattice of the boron triangular nanotube.

There are two types of vertices with respect to degree, i.e., Vi) = {v € V(BNTi[m, n]) : d, = 4}
and V{6} = {{v € V(BNTi[m,n]) : d, = 6}. The partition of the edge set of BNT;[m, n] is given in
Table 2

Table 2. Edge partition of edge set of BN T;[m, n].

(du, dv) (4, 4) (4, 6) (6, 6)
Number of edges 3m 6m 2 (9n — 24)

Theorem 1. Let BNT;[m, n] be boron triangular nanotubes. Then,

M(BNT;[m, n;x,y) = 3mx*y* + 6mxy® + %m(% — 24)x5y5. 9)

Proof. From Table 2, we have following edge partition:

Ef44y = {e =uv € E(BNT}[m,n]) : d, = 4,d, = 4}, (10)
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E46) = {e = uv € E(BNT}[m,n]) : dy = 4,d, = 6}, (11)
and Egg¢ = {e = uv € E(BNTy[m,n]) : dy = 6,dy = 6}, (12)

such that ‘E{4,4}‘ =3m,
of BNT¢[m, n] is

‘ = 2(9n — 24). Thus, by definition, the M-polynomial

M(BNTi[m,n]; x,y) =Y mij(BNTt[m,n])xiyj
i<
= ¥ mys(BNT;[m, n])x*y* + ¥ mae(BNT;[m, n])x*y® + Z mes(BNT[m, n])xby®
4<4 4<6
= Y my(BNTimn))x*y*+ ¥  my(BNTi[m, n} P+ ¥ mes(BNT[m,n])xby®

uv€E 4y uv€E g1 uvEE s 6,
= E{4l4} ‘x2y4 + )E{4,6} ’x4y6 + ’E{6,6} ’xéyé
= 3mxty + 6mxty® + % (9n — 24)x5y°

Figure 4 presents the Maple 13 plot of the M-polynomial of the boron triangular nanotubes.
Clearly, the values drastically decrease, as X — £1, Y — £2. For most of [-1,1] x [-2,2], values
remain stable.

x -1

Figure 4. 3D plot of the M-polynomial of BNT;[m, n].

2.2. Topological Indices

Proposition 1. Let BNT;[m, n] be the boron triangular nanotube. Then,

1.  M;(BNT;[m,n]) = 54mn — 60m.
2. My(BNTi[m,n]) = 162mn — 240m.
3.  ™M,(BNTi[m,n]) = gm~+ ymn.
4. Ry(BNTi[m,n]) = 3m (3n(36) +2(16)* +4(24)" — 8(36)).
3m(3n—8
5. RRq(BNTi[m,n]) = 3 4 e 4 2008l
6. SDD(BNTi[m,n]) = 9mn — 5m.
Proof. Let
f(x,y) = M(BNT;[m,n];x ,y) = 3mx*y* + 6mx*y® + = (9n —24)x%y°, (13)

thenDy (f(x,v)) = 12mx*y* + 24mx*y® + 3m(9n — 24)x%y°, (14)
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Dy(f(x,y)) = 12mx*y* 4 36mx*y® +3m(9n — 24)x°y°,
DyDy(f(x,y)) = 48mx4y4 + 144mx4y6 + 18m(9n — 24)x6y6,

3 3
Sx(f(x,y)) = 4mxy + mx y® t135 (9n—24)x v,

3 1
SySx(f(x,y)) = 1 —mxtyt + mx y° + (9n—24)x Yo,

0(
DDy (f(x,y)) = 3 x £%mx*y* + 6* 1 x 4%mxty® + —— 6 (9n — 24)x%°,

3
Sx"Sy*(f(x,y)) = yony mxty* + mxty® 4 (9n — 24)x%°,

m
4opr—1 2 x 62

SyDx(f(x,y)) = 3mx*y* + 4mx*y® + %m(% —24)x%y°,

1
SxDy(f(x,y)) = 3mx*y* + 9mxty® + 5m(9n — 24)x5y°.
Now, from Table 1,

1. My(BNTi[m,n]) = (Dx+ Dy)(M(G;x,y)) |x:y:1 = 54mn — 60m.

2. My(BNTi[m,n]) = DxDy(M(G;x,y))|,_ g1 T 162mn — 240m.

3. ™M,(BNT[m,n]) = S¢Sy (M(G;x,y))|,_ 1 = Zm+ gmn.

4. Re(BNT[m,n]) = DDE(M(G;x,y) ‘ = 3m(3n(36)" + 2(16)" + 4(24)" —
RR,(BNT;[m, n]) = SS%(M (G,x,y))’ = (311;11 . +3m(<33:);s)

6. SDD(BNTi[m,n]) = (DxSy + SxDy)(M(G;x, y))y = 9mn — 5m.

Proposition 2. Let BNT;[m, n] be the boron triangular nanotube. Then,

1.  H(BNT; [m,n]) = —g5m+ Jmn.
2. I(BNTi[m,n]) = —Bm+ Zmn.
3. A(BNTi[m,n]) = — 38306y, + 2028y,

Proof. Let
f(x,y) = M(BNTi[m,n];x ,y) = 3mx*y* + 6mxty® + — (9n —24)x%°,

then S, J(f(x,y)) = §mx +3mx +

5 24(911 —24)x!

Sx]DxDy(f(x,y)) = 6mx® + 752mx + 3m(9n —24)x!

3x4% o 6tx4d o 6%m

8(36)").

3 31 3 _ 10
Sx*Q_2]Dx’Dy>(f(x,y)) = M+~ M+ ooy (9n — 24)x
Now, from Table 1,
1. H(BNTim,n]) = 25:J(M(G;x,y))|,_y = —zgm + mn.

N ) = S.IDLD, MG ), 2+ o

3. A(BNTim,n]) = 5,°Q »]D:*D,*(M(G; x,y))’x:1 = —353m + X5 mn.

7 of 10
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3. Conclusions and Discussion

In this article, we computed the closed form of M-polynomial for boron triangular nanotubes.
Then, we derived many degree-based topological indices for boron triangular nanotubes.
These indices can help us to understand its physical features, chemical reactivity, and biological
activities, such as the boiling point, the heat of formation, the fracture toughness, the strength, the
conductivity, and the hardness. From this point of view, a topological index can be regarded as
a score function that maps each molecular structure to a real number and is used as a descriptor
of the molecule under testing. These results can also play a vital part in the determination of the
significance of boron triangular nanotubes in electronics and industry. Because of its hardness, it can
be used in the preparation of armor. We also want to remark that similar techniques can be used to
determine M-polynomials and topological indices about a-boron nanotubes. Now, we provide the
computer-based analysis of each topological index with involved parameters. Although graphs are
similar, but have different gradients; see Figure 5.

000 %0 05%

LRI SEALALADS LEATAL
Dit0aiests: Aestestesteless eibegbogtelest
i tatentets. iy o taitesoesesss: IR

SRS PQLaLEote s’ o legbottel
Ep o eetstss: ,,;l,‘s‘{!,@'h:o“:’:‘ LS

Randi¢ index Inverse Randi¢ index

KRG
lo"l:'o:‘;‘
LA
L

Doy Shuettsets
LI 2504
LA PR AR
’z;;l'é poataseses oreost
2 XA,
AL bo
Do ol S oess,
[ S e e e e et
et ettt
e ety

Harmonic index Inverse sum index Augmented Zagreb index

Figure 5. 3D plots of topological indices.
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