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Abstract: The products made by the forming of polycrystalline metals and alloys, which are
in high demand in modern industries, have pronounced inhomogeneous distribution of grain
orientations. The presence of specific orientation modes in such materials, i.e., crystallographic
texture, is responsible for anisotropy of their physical and mechanical properties, e.g., elasticity.
A type of anisotropy is usually unknown a priori, and possible ways of its determination is of
considerable interest both from theoretical and practical viewpoints. In this work, emphasis is
placed on the identification of elasticity classes of polycrystalline materials. By the newly introduced
concept of “elasticity class” the union of congruent tensor subspaces of a special form is understood.
In particular, it makes it possible to consider the so-called symmetry classification, which is widely
spread in solid mechanics. The problem of identification of linear elasticity class for anisotropic
material with elastic moduli given in an arbitrary orthonormal basis is formulated. To solve this
problem, a general procedure based on constructing the hierarchy of approximations of elasticity
tensor in different classes is formulated. This approach is then applied to analyze changes in the
elastic symmetry of a representative volume element of polycrystalline copper during numerical
experiments on severe plastic deformation. The microstructure evolution is described using a
two-level crystal elasto-visco-plasticity model. The well-defined structures, which are indicative of
the existence of essentially inhomogeneous distribution of crystallite orientations, were obtained in
each experiment. However, the texture obtained in the quasi-axial upsetting experiment demonstrates
the absence of significant macroscopic elastic anisotropy. Using the identification framework, it has
been shown that the elasticity tensor corresponding to the resultant microstructure proves to be
almost isotropic.
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1. Introduction

The most important and promising trends in the development of modern material science are
related to designing functionally graded materials for production of elements and structures with
improved operating characteristics. It is well known that physical and mechanical properties of
materials depend on their microstructures. Therefore, the control of their formation during different
technological processes makes it possible to obtain desired macroscopic properties. Such problems are
usually solved in two stages: first, an optimal microstructure is determined to fit each specific case,
and then the process regimes are devised to create conditions for its formation. With this approach,
the identification of parameters, which will provide the most adequate description of the developed
material microstructure, is the matter of particular importance.

Numerous theoretical and experimental studies show that macroscopic properties of polycrystals
significantly depend both on the physico-mechanical characteristics of the crystallites, and on
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their dimensions, forms and orientations. An essential change in the topological and stereological
parameters of microstructure can be achieved with the use of thermomechanical treatment methods,
which are related to severe plastic deformation. Control of the fragmentation mechanisms and
rotational modes of inelastic deformation offers considerable scope for producing metals and alloys
with a grain structure exhibiting the best properties for the preset operating conditions.

Different issues related to the problems of designing functionally graded materials are discussed,
e.g., in [1–14]. General methodology of designing such materials based on multi-level modeling [15–19]
is described in detail in [8].

In [2], the problem of minimization of the length of a flexible beam at a given deflection of its
end is considered. The structure is supposed to operate in the elastic range under the constraint of
the minimal value of the restoring force. An approach used by the authors involves an expansion of
microstructure parameters including a crystallite orientation distribution function (ODF) into a Fourier
series with respect to the generalized spherical harmonics [20]. The formulation of the optimization
problem is developed in terms of the Fourier series coefficients. In [21,22], the same technique is used
to maximize the load-carrying capacity of a plate with a circular hole, which does not produce inelastic
deformation. Here, an optimal distribution of crystallite orientation is determined within the class of
orthorhombic crystallographic textures. Estimates of the effective elastic moduli and yield strength for
a polycrystalline aggregate with such symmetry properties are presented in [10].

An alternative way to represent ODF in a reduced form is considered in [1,4,5,11–14,23].
To control the texture-dependent parameters, a finite element representation of the ODF conservation
equation [3,24] within a fundamental region of the Rodrigues space [24–26] is used. The inelastic
strain evolution until desired properties are formed is determined by the gradient descent method.
To accelerate the optimization procedure, the authors propose an approach that is based on the
data-mining techniques applied to a specially organized database of microstructures [11,12,14,23].

Optimization of technological processing of the aluminum alloy sheet, using a direct multi-scale
modeling method is described in [7,9]. In these studies, the numerical simulation is based on the finite
element discretization of a computational domain on the macro- and meso-levels. Texture control is
realized by correlating the grain orientation to the integration points of the mesoscopic representative
volume element (RVE).

A characteristic feature of polycrystalline products obtained by plastic forming is a rather high
inhomogeneity of the orientation distribution. By virtue of the fact that physical and mechanical
characteristics of crystallites are anisotropic, such inhomogeneity provides, as well, anisotropy on the
macro-level. Furthermore, the isotropy group [27] of such materials is usually not known a priori.
The identification of the group elements, or in a more broad sense, determination of conformity of
physico-mechanical properties with the known forms of anisotropy plays an important role in material
design, thermomechanical treatment, strength analysis and subsequent exploitation of produced
structural components and constructions. Knowledge of anisotropy type of a particular material allows
one to simplify its constitutive equations, which are used for numerical implementation of the models
describing different technological processes, and also to reduce the number of macro-experiments,
which should be performed to identify its parameters. Moreover, there is a special interest in studying
the relations between the microstructure and symmetry properties of the macroscopic RVE.

In this work, the emphasis is placed on the identification of the elasticity class, to which a
Hookean solid belongs. One should note that the majority of papers on this topic focuses on the
so-called symmetry identification problem, which is related to a search for orthogonal transformations,
to which the elasticity tensor of the material under investigation is invariant.

A criterion of the existence of a symmetry plane for the elasticity tensor was obtained in [28].
The authors provide a theorem, according to which a material can be assigned to one of the six classes,
depending on the number of such planes and their mutual orientations.

Another possible way to solve the identification problem is to examine a full system of algebraic
invariants [29] of the elasticity tensors, which uniquely determine the material properties [30,31].
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Such type of system, which has clear mechanical meaning but is not polynomial [32], is proposed
in [31]. As mentioned in [31,33], for physical and mechanical problems the requirement that the
invariants must be polynomial is not essential.

One can distinguish a group of techniques, which are based on the separation of an additive part
of the elasticity tensor (e.g., by way projecting), possessing one or another type of symmetry [34–37].
In this case, the identification problem is reduced to determination of the symmetric part, which is the
closest in some metric to a given tensor, as e.g., in [38–45]. Note that depending on the choice of the
metric, the separated parts may have special properties.

It should be emphasized that the application of the above identification procedures implies
knowledge of all elastic components of the examined material within some basis. Such information
may be obtained, e.g., from the experiments [46–48] or by means of physically justified multi-level
modeling. An approach that does not require preliminary determination of elastic constants is
considered in [49–53]. In the cited works, a series of mechanical macro-experiments is proposed
to identify the type of anisotropy of a Hookean solid.

The purpose of this study is to investigate changes in the elastic symmetry of polycrystals during
inelastic deformation. To this end, the results of the numerical experiments obtained in the framework
of the multi-level crystal elasto-visco-plasticity model described in [54] for a polycrystalline copper
RVE are analyzed. The experimental program includes simple shear, quasi-axial tension and upsetting
tests. To solve the symmetry identification problem, a “projection” approach [44] is used.

This paper is organized as follows. In Section 2, the notation and definitions used in the paper
are refined. Section 3 is devoted to formal classification of elastic materials and general approach to
identification of classes, which is based on a special approximation of the elasticity tensors. In Section 4,
the application of the proposed identification procedure for investigation of elastic properties of
polycrystalline RVEs is considered. In Section 5, the results of the analysis of changes in elastic
symmetry of polycrystalline copper revealed by the numerical experiments on inelastic deformation
are presented. The paper ends with a discussion, where particular attention is paid to some problems
related to determination of crystallographic textures characterized by a desired macroscopic symmetry
of elastic properties, and a conclusion.

2. Preliminaries

In what follows, the notations and definitions formulated in this section will be used.
Let E3 be a three-dimensional Euclidean space over the real field, R (it is specified as E3(C)

in the case of the complex field, C); Er
3 (Er

3(C)) is the space of the r-rank tensors over E3 (E3(C));
O ⊂ E2

3 (O+ ⊂ E2
3) is the orthogonal (proper orthogonal) group of transformations of E3. Rϕ

a ∈ O+

signifies the tensor of rotation about the axis a ∈ E3 by the angle ϕ ∈ R. Let {ei} ⊂ E3 be an arbitrary

vector basis and
{

ei} ⊂ E3 be its conjugate, such that ei · ej = δ
j
i , where δj

i =

{
1, i = j
0, i 6= j

is the

Kronecker symbol.
For brevity, the tensor product of T ∈ Er

3 and S ∈ Ep
3 is written below as TS, i.e., by omitting a sign

of the operation.
Let the dot product, «·», of T ∈ Er

3 and S ∈ Ep
3 be defined by the formula (hereinafter the summation

convention for repeated indexes, which are not in parentheses, is adopted):

T · S = Ti1 ...ir ei1 . . . eir−1

(
eir · ej1

)
Sj1 ...jp ej2 . . . ejp =

= Ti1 ...ir Sir
j2 ...jp ei1 . . . eir−1ej2 . . . ejp .

(1)

The following definition for the double dot product, «:», of T ∈ Er
3 and S ∈ Ep

3 is being used:

T : S = Ti1 ...ir ei1 . . . eir−2

(
eir−1 · ej1

)(
eir · ej2

)
Sj1 ...jp ej3 . . . ejp =

= Ti1 ...ir−1ir Sir−1ir
j3 ...jp ei1 . . . eir−2ej3 . . . ejp .

(2)
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With respect to this product, E4
3(C) is a unital non-commutative algebra [55] with the second

isotropic tensor, CI I = eiejeiej [56], taken as the unit element, i.e., CI I : T = T : CI I = T holds for any
T ∈ E4

3(C). In such algebra, the Eigen-value problem for T ∈ E4
3(C) is stated as follows.

Find the values of T ∈ C such, that the equation (either of the two equations):

T : τ = Tτ (τ : T = Tτ) (3)

with respect to τ ∈ E2
3(C) has non-trivial solutions.

In the following, T ∈ C and τ ∈ E2
3(C) defined by (3) are termed the Eigen-values and the right

(left) Eigen-elements of T ∈ E4
3(C), respectively. In total, such tensor has nine Eigen-values Tn ∈ C

(multiple values are counted).
By definition [57], T ∈ E4

3 has the major symmetry if the requirement, Tijkl = Tklij, is satisfied for
any basis. Similarly, the minor symmetries take place when the equalities, Tijkl = Tjikl and Tijkl = Tijlk,
hold. Note that if a tensor possesses both the major and minor symmetries, it generally has 21
independent components.

It can be shown that all Eigen-values of a major-symmetric T ∈ E4
3 are real. Such tensor can be

written as (spectral decomposition):

T =
9

∑
n=1

Tnτnτn, (4)

where Tn ∈ R and τn ∈ E2
3 are the Eigen-values and normalized (i.e., τm : τn = δmn) Eigen-elements of

T, respectively. It should be emphasized that a tensor possessing both the major and minor-symmetries
always has a zero Eigen-value of multiplicity 3, the Eigen-subspace of which involves all antisymmetric
2-rank tensors.

It is convenient to introduce the Rayleigh product, «∗», [58] of T ∈ Er
3 and S ∈ E2

3, which is
defined as:

S ∗ T = Ti1 ...ir S · ei1 . . . S · eir = Si1 j1 . . . Sir
jr T j1 ...jr ei1 . . . eir . (5)

The above product has such a property that S2 ∗ (S1 ∗ T) = (S2 · S1) ∗ T for all T ∈ Er
3 and

S1, S2 ∈ E2
3. Let G(T) = {O ∈ O|O ∗ T = T} signify the symmetry group of T ∈ Er

3.
Finally, the definition of the total scalar product, «◦», of T ∈ Er

3 and S ∈ Er
3 is given by the formula:

T ◦ S = Ti1 ...ir ei1 . . . eir ◦ Sj1 ...jr ej1 . . . ejr =

= Ti1 ...ir Sj1 ...jr
(
ei1 · ej1

)
. . .
(
eir · ejr

)
= Ti1 ...ir Si1 ...ir .

(6)

It should be remembered that this operation gives rise to the Frobenius norm [59], ‖ · ‖Er
3
:

‖T‖Er
3
=
√

T ◦ T =
√

Ti1 ...ir Ti1 ...ir . (7)

and allows the space, Er
3, to be treated as a Hilbert space. Moreover, for the further treatment it will be

interesting to consider the so-called operator norm, ‖ · ‖, defined on the space E4
3:

‖T‖ = sup
τ∈E2

3\{0}

‖T : τ‖E2
3

‖τ‖E2
3

, (8)

where 0 ∈ E2
3 is the null tensor. This norm treats T ∈ E4

3 as a linear operator, T[·] : E2
3 → E2

3 ,
obeying the rule T[τ] = T : τ. Let the kernel and the image of such operator be denoted as
kerT =

{
τ ∈ E2

3

∣∣T : τ = 0
}

and imT =
{

T : τ | τ ∈ E2
3
}

, respectively.
Given any T ∈ E4

3, it is possible to decompose E2
3 into the direct sum: E2

3 = kerT⊕ E2
3
′, where

E2
3
′ ⊂ E2

3 is the subspace uniquely determined by kerT. The operator, T′[·] : E2
3
′ → imT , governed by

T′[τ] = T : τ satisfies the conditions, kerT′ = {0} and imT′ = imT, and hence [60] is invertible. The
tensor, T′−1 ∈ E4

3, associated with the inverse operator, T′−1[·] : imT→ E2
3
′ , (so that T′−1[τ] = T′−1 :
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τ) will be called the generalized inverse of T. Such tensor has the property that T′−1 : T : τ = T : T′−1 :
τ = τ holds for all τ ∈ E2

3
′. Also, if T is of the form (4), then T′−1 can be represented as follows:

T′−1 = ∑
n∈{1,9 | Tn 6=0}

Tn
−1τnτn. (9)

In the case of a trivial kernel, the generalized reversibility of a tensor is equivalent to the
algebraic one.

3. Elasticity Class Identification

Suppose that the examining material is simple and its elastic deformation is governed by the
generalized Hooke’s law [61]:

σ = Π : ε, (10)

where σ ∈ E2
3 is the Cauchy’s stress tensor, ε ∈ E2

3 is the small strain tensor, Π ∈ E4
3 is the elasticity

tensor. It should be noted that, in the general case, in the capacity of such equation, an arbitrary,
physically linear constitutive equation could be used, including the one that relates the velocity
measures of stresses and strains.

For a Green elastic material [62], the existence of a potential implies that its elasticity tensor has a
major symmetry. Recall that in the framework of the classical elasticity theory, which operates with
the symmetric measures of stresses and strains, there should also be minor symmetries, so that in the
general case Π has 21 independent components.

It seems reasonable to describe the classification of materials based on their elasticity tensors in
greater detail. First, define the congruence relation, «∼», between two linear subspaces, T,S ⊂ E4

3,
in such a way that T ∼ S holds if and only if there exists a tensor O ∈ O such that T = O ∗ S. As it is
readily seen, this is an equivalence relation, so that it can be used to form the quotient set, LatE4

3/ ∼,
from the set, LatE4

3, of all subspaces of E4
3. The elements of LatE4

3/ ∼ are the classes of congruent
subspaces. It seems reasonable to associate any T ∈ E4

3 with K ∈ LatE4
3/ ∼, if K contains a subspace,

to which T belongs. In this regard, a union of all congruent subspaces contained in the element
K ∈ LatE4

3/ ∼ is considered to mean the class of 4-rank tensors, K = ∪K, or, in the related context, the
elasticity class. Given some representative subspace, K ∈ K, the following definition can be written:
K = {O ∗K |O ∈ O}. Thus, any class is uniquely specified by some subspace in E4

3. One should also
note that although each of these subspaces belongs to exactly one element of LatE4

3/ ∼, their tensors
might belong to several classes simultaneously.

Let K(s) be a class of elastic tensors with K(s) ⊂ E4
3 as a representative subspace. Here and below,

this upper symbolic index, s, will be used to specify the considered class in the framework of the
accepted classification. By definition, any Π(s) ∈ K(s) has the following form:

Π(s) = ΠαO ∗K(s)
α , (11)

where Πα ∈ R are arbitrary independent constants (α = 1, dimK(s)), O ∈ O is some orthogonal tensor,
and K(s)

α ∈ K(s) are the prescribed linearly independent tensors. It is readily seen that each class is
uniquely given by its own set of the base tensors,

{
K(s)
α

}
. Suppose that these tensors are determined

in terms of the orthogonal, normalized basis, {li}, of the laboratory coordinate system (LCS). Then,
as it follows from the structural Formula (11), in the basis, {ki}, ki = O · li, the multi-dimensional
matrix of Π(s) will have the known structure, which is characteristic of K(s). Bearing this in mind,
this basis will be termed canonical.

In continuum mechanics, the classification, which is based on the concept [27] of isotropy group
with respect to an undistorted configuration, has received wide acceptance. As demonstrated, e.g.,
in [63,64], the elasticity tensor can be assigned to one of the eight symmetry classes according to its
invariance with respect to transformations of the orthogonal coordinate system. These classes consist
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of tensors with congruent (orthogonally conjugate) symmetry groups. The structure of such class
allows its representation as the union, K = ∪{O ∗K |O ∈ O}, where K ⊂ E4

3 is the subspace of
tensors invariant with respect to a given subgroup of orthogonal transformations(which, accurate
to an orthogonal transformation, is the symmetry group of tensors from this class). Depending on
cardinality of these groups and directions of the inclusion between them, the symmetry classes can be
hierarchically schematized as shown in Figure 1.
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Figure 1. Symmetry classes of elasticity tensors. Numbers of independent components and cardinalities
of the symmetry groups are specified in the parentheses (c for continuum). The arrows indicate the
directions of inclusion between the corresponding groups [63].

In this paper, particular attention is paid to the cases of isotropy, transverse isotropy, cubic
symmetry and orthotropy. The structure of tensors, which can be taken as the basis ones for the
above-mentioned classes of symmetry, is shown in Table 1 (indexes of non-zero components and their
corresponding values in the canonical basis are given). The parameters, Πα, of decomposition (11)
with respect to these tensors are, in essence, the non-zero independent components of Π(s) in the
so-called principal axes of anisotropy [53], i.e., in the basis, for which the number of such components
is minimal. Note that for isotropic and transversely isotropic classes the systems of the tensors given
in the table are not biorthogonal.

Table 1. The structure of base tensors for some symmetry classes.

Symmetry Class (s) Elastic Modulus Index (α) Non-Zero Components of K(s)
α in Canonical Basis

Indexes Value

Isotropic

1122 1111, 1122, 1133,2211, 2222, 2233,3311, 3322, 3333 1

1212
1212, 1221, 1313, 1331,2112, 2121, 2323, 2332,3113, 3131, 3223, 3232 1

1111, 2222, 3333 2

Transversely Isotropic

1111
1212, 1221, 2112, 2121 0.5

1111, 2222 1

1122
1212, 1221, 2112, 2121 –0.5

1122, 2211 1

1133 1133, 2233, 3311, 3322 1

2323 1212, 1221, 1313, 1331,2112, 2121, 3113, 3131 1

3333 3333 1

Cubic

1111 1111, 2222, 3333 1

1122 1122, 1133, 2211, 2233, 3311, 3322 1

1212 1212, 1221, 1313, 1331,2112, 2121, 2323, 2332,3113, 3131, 3223, 3232 1
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Table 1. Cont.

Symmetry Class (s) Elastic Modulus Index (α) Non-Zero Components of K(s)
α in Canonical Basis

Indexes Value

Orthotropic

1111 1111 1

1122 1122, 2211 1

1133 1133, 3311 1

1212 1212, 1221, 2112, 2121 1

1313 1313, 1331, 3113, 3131 1

2222 2222 1

2233 2233, 3322 1

2323 2323, 2332, 3223, 3232 1

3333 3333 1

Generally speaking, the classification structural Formula (11) can be constructed based on the
arbitrary additive decomposition of an elasticity tensor, which, in the general case, bears no relation
to the elasticity symmetry groups. In particular, it is possible to use the spectral decomposition (4)
(the major symmetry of Π is taken into account):

Π =
9

∑
n=1

Πnπnπn, (12)

where Πn ∈ R and πn ∈ E2
3 are the Eigen-values and the corresponding normalized (i.e., πm : πn =

δmn) Eigen-elements of Π, respectively. It is evident that by grouping the Eigen-projectors, πnπn,
associated with multiple Eigen-values, Πn, Formula (12) can be reduced to (11). It should also be noted
that the base tensors obtained with such approach turns to be “◦”-biorthogonal. Similar elasticity
tensor decompositions were used, e.g., in [30,65–67].

Let the elasticity class identification problem (ECIP) be formulated as follows.

All components of an elasticity tensor are given in the LCS. It is required to determine, which of the classes
under consideration this tensor can be assigned to with a desired accuracy.

Good reason for assigning the examined material to a given elasticity class, K(s), is the existence
of class approximation, Π(s) ∈ K(s), for its elasticity tensor, Π, such that the norm of the residual of a
stress tensor (or the analogous stress measure) in relation (10), ‖Π(s) : ε−Π : ε‖E2

3
, is quite small on

the bounded subset of ε ∈ E2
3. Adopt the notation: Ψ(s) = Π(s) −Π. A quantity ME

[
Π(s), Π

]
, where

ME[·, ·] : E4
3 ×E4

3 → [0;+∞) is a mapping, such that the inequality

‖Ψ(s) : ε‖E2
3
≤ ME

[
Π(s), Π

]
‖ε‖E2

3
(13)

holds for each ε ∈ E2
3, will be called the mismatch estimate (ME) for Π(s) with respect to Π.

Thus, the problem of assignability of Π to a given K(s) can be reduced to a minimization of
ME[·, Π] : E4

3 → [0;+∞) over an admissible set of tensors from K(s).

In its turn, the function, inf
Π(s)∈K(s)

ME
[
Π(s), ·

]
: E4

3 → [0;+∞) , introduces a “closeness measure”

for the tensor-argument, which determines how close it matches the class K(s). Note that, if mapping
ME

[
Π(s), ·

]
: E4

3 → [0;+∞) is continuous for all Π(s) ∈ K(s), then the above function is also
continuous. For completeness of presentation, this statement is proved below by formulating
its sufficiently general case as a lemma. Let Y be a metric space with a distance function,
dY[·, ·] : Y×Y→ [0;+∞) ; X and Y ⊂ Y are the nonempty sets; F[·, ·] : X ×Y → R is a given
functional. The following proposition is true.
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Lemma 1. If F[x, ·] : Y → R is continuous at y ∈ Y for all x ∈ X , then the functional, G[·] : Y → R ,
defined by G[y] = inf

x∈X
F[x, y] is also continuous at y ∈ Y .

Proof. Under the assumption of the lemma, for any x ∈ X and ε > 0 there exists δ > 0 such that,
for all y′ ∈ Y , satisfying the condition dY[y′, y] < δ, the following relation holds true:

F[x, y]− ε < F
[
x, y′

]
< F[x, y] + ε. (14)

Then, according to the definition of infimum in the real numbers, there are xy, xy′ ∈ X such that

F
[
xy, y

]
< G[y] + ε and F

[
xy′ , y′

]
< G[y′] + ε. From the same definition it follows that G[y] ≤ F

[
xy′ , y

]
and G[y′] ≤ F

[
xy, y′

]
. Thus, for these elements, it is possible to write:

G
[
y′
]
≤ F

[
xy, y′

]
< F

[
xy, y

]
+ ε < G[y] + 2ε; (15)

G[y]− 2ε ≤ F
[

xy′ , y
]
− 2ε < F

[
xy′ , y′

]
− ε < G

[
y′
]
. (16)

Hence, |G[y′]− G[y]| can take an arbitrary small value if an appropriate value of δ is chosen.
This means that G[·] is continuous at y. �

The lemma is proven.

A tensor
^
Π

(s)
∈ K(s) meeting the condition ME

[
^
Π

(s)
, Π

]
= inf

Π(s)∈K(s)
ME

[
Π(s), Π

]
will be called

the optimal approximation of Π in K(s). If necessary, a method for constructing the objective function,
ME[·, Π], will be specified. Given a ME for the optimal approximation of an elasticity tensor, one can
say about compatibility (incompatibility) of this tensor with the related class.

A sufficiently reasonable constraint on ME[·, ·] is the fulfillment of ME
[
Π(s), Π

]
= 0 when and

only when Π ∈ K(s). In particular, this condition permits the use of a metric or a norm defined on E4
3

as such mapping. In general, if the above requirement is met and the function inf
Π(s)∈K(s)

ME
[
Π(s), ·

]
is

continuous everywhere, then ME[·, ·] will be called the mapping, which defines a natural ME.
Note that ‖Ψ(s) : ε‖E2

3
≤ ‖Ψ(s)‖‖ε‖E2

3
holds for all ε ∈ E2

3. However, in the case when the

elements ε fall within the Eigen-subspace of Ψ(s), which has the maximal in modulus Eigen-value,
the above relation degenerates into an equality. In this sense, the operator norm (8) gives an exact
upper bound for a residual of the class approximation, which justifies treating ‖Ψ(s)‖ as an objective
function in estimating the class compatibility of Π. However, it would seem that the formulation of the
corresponding optimization problem in terms of the Frobenius norm (7), which implies minimization
of the alternative quantity, ‖Ψ(s)‖E4

3
, is computationally more efficient. This norm specifies an upper

bound (and hence, a rougher ME) of the operator norm, i.e., ‖Ψ(s)‖ ≤ ‖Ψ(s)‖E4
3
. Then, an equality

of the above written quantities takes place if and only if Ψ(s) has one (with regard to multiplicity)
non-zero Eigen-value. One should note that the existence of the major and minor symmetries provides
the following lower bound: ‖Ψ(s)‖ ≥ 1√

6
‖Ψ(s)‖E4

3
, which degenerates into an equality, when and only

when Ψ(s) has the only hextuple non-zero Eigen-value.
The value of ME is associated with the maximal absolute error, which occurs in stresses determined

by the generalized Hooke’s law when approximating the elasticity tensor. To characterize a relative
error, one can define RME

[
Π(s), Π

]
= ‖Π′−1‖ME

[
Π(s), Π

]
, where Π′−1 is the generalized inverse of
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Π. This quantity will be called the relative mismatch estimate (RME) for Π(s) with respect to Π. It can be
easily verified that the RME satisfies the following inequality for each ε ∈ E2

3\kerΠ:

‖Ψ(s) : ε‖E2
3

‖Π : ε‖E2
3

≤ RME
[
Π(s), Π

]
. (17)

In the present work, the optimization problems are formulated essentially with the use of the
Frobenius norm. Some specific features related to the statement and solution of such problems should
be discussed.

Due to the fact that all subspaces in
(
E4

3, ‖ · ‖E4
3

)
are the Hilbert ones, the ‖ · ‖E4

3
-optimal

approximation,
^
Π

(s)
=

^
Πα

^
O ∗ K(s)

α , by its structure, is an “◦”-orthogonal projection of Π onto

span
{
^
O ∗K(s)

α

}
. Such projection satisfies the condition: ‖

^
Π

(s)
‖

2

E4
3
+ ‖Π−

^
Π

(s)
‖

2

E4
3
= ‖Π‖2

E4
3
. Hence,

minimization of the quantity ‖Ψ(s)‖E4
3

is tantamount to maximization of ‖ΠαO ∗K(s)
α ‖E4

3
. Moreover,

the Frobenius norm properties imply that ‖
^
Πα

^
O ∗K(s)

α ‖E4
3
= ‖

^
ΠαK(s)

α ‖E4
3
. Thus, an optimization

problem for evaluating an ‖ · ‖E4
3
-optimal approximation can be stated as the problem of maximization

only with respect to O ∈ O:

Problem 1. Find O ∈ O such that:
‖ΠαK(s)

α ‖E4
3
→ max; (18)

K(s)
α ◦K(s)

β Πα =
(

O† ∗Π
)
◦K(s)

β . (19)

Or, in the case where
{

K(s)
α

}
is a “◦”-biorthogonal base system:

Problem 2. Find O ∈ O such that:

(s)

∑
α=1

((
O† ∗Π

)
◦K(s)

α

)2
→ max. (20)

As shown in [35], projecting a tensor onto a subspace, which is invariant to some orthogonal
subgroup, is equivalent to averaging [68] this tensor over the same subgroup. Thus, adhering to the
symmetry classification of elasticity tensors, one can write:

ΠαK(s)
α =

∫
G(s)

G ∗
(

O† ∗Π
)

dU(s)[G]; (21)

K(s)
α ◦K(s)

β Πα =
(

O† ∗Π
)
◦K(s)

β . (22)

Here G(s) ⊂ O is the symmetry group of tensors from K(s) and U(s)[·] : G(s) → [0; 1] , where G(s) is
the Borel sigma-algebra on G(s), is the normalized (i.e., U(s)

[
G(s)

]
= 1) Haar measure. In such a case,

an optimization problem equivalent to Problem 1 (2) can be stated as follows:

Problem 3. Find O ∈ O such that:∣∣∣∣∣
∣∣∣∣∣
∫

G(s)

G ∗
(

O† ∗Π
)

dU(s)[G]

∣∣∣∣∣
∣∣∣∣∣
E4

3

→ max. (23)



Symmetry 2017, 9, 240 10 of 27

For a finite symmetry group, an integral in Problem 3 is an arithmetic mean of the integrand values
on the elements of this group. Due to this fact, averaging in (23) may have computational advantage
over projecting in (18)–(19) or (20) (8)–(10) when searching for ‖ · ‖E4

3
-optimal approximations in the

symmetry classes, the groups of which have relatively few elements.
One should note that in the case of transverse isotropy the number of elements required for

averaging might be reduced to a finite set. Such a feature directly follows from Hermann’s theorem [69],

which asserts that the invariance of a T ∈ Er
3 to the transformation, R

2π
N

a , for a natural N > r implies

its invariance to the group of transformations,
{
(±1)r+1Rϕa

∣∣∣ϕ ∈ R
}

. Indeed, adhering to the line of
reasoning presented in [35], it is possible to easily demonstrate that at a given natural number, N,

and any T ∈ Er
3 and a ∈ E3, the quantity, 1

N

N
∑

n=1
R

2πn
N

a ∗ T, turns out to be an “◦”-orthogonal projection

of T onto the subspace in Er
3, which is invariant to the group,

{
R

2πn
N

a

∣∣∣∣n = 1, N
}

. Then, by applying

Hermann’s theorem, one can conclude that this projection is also invariant to
{
(±1)r+1Rϕa

∣∣∣ϕ ∈ R
}

,
i.e., is transversely isotropic along the vector a. In particular, this result implies that five elements will
suffice to average an elasticity tensor over the group of transverse isotropy.

Problem 1 (2, 3) always has a solution, but, in the general case, it is not unique. Indeed, as it can
be readily shown, ‖Π−ΠαO ∗K(s)

α ‖E4
3
= ‖Π−Πα

(
G ·O ·G(s)

)
∗K(s)

α ‖E4
3

holds for all G ∈ G(Π)

and G(s) ∈
dimK(s)

∩
α=1

G
(

K(s)
α

)
. Hence, if

^
Πα

^
O ∗K(s)

α is an ‖ · ‖E4
3
-optimal approximation of Π from K(s),

then
^
Πα

(
G ·

^
O ·G(s)

)
∗K(s)

α is also the approximation of such kind. This makes possible to reduce

the admissible set of Problems 1–3 to the subset, D ⊂ O, such that O = D ·G(s). Moreover, since
the Rayleigh product of an even-rank tensor by O ∈ O yields the same result as the product by
−O, it will suffice to consider only special orthogonal tensors from D. Thus, when searching the
‖ · ‖E4

3
-optimal isotropic approximation of Π, an optimization is not required at all. This approximation

is uniquely determined so its expression can be written explicitly. It is consistent with the isotropic part
of Π, the concept of which is introduced by Voight [70]. Furthermore, in the case of a ‖ · ‖E4

3
-optimal

transversely isotropic approximation, only the orientation of its isotropy axis can be used as an
optimization parameter.

Non-negativity of the elastic potential imposes the condition of positive definiteness on Π

(hereinafter in the sense that ε : Π : ε > 0 for all ε ∈ E2
3\kerΠ). Such condition is desirable

for approximating tensors as well. In [35], it is shown that positive definiteness of a 4-rank tensor
holds during its averaging over the orthogonal subgroup. Due to equivalency of this operation to
the “◦”-orthogonal projection, one can conclude that in the symmetry classes the ‖ · ‖E4

3
-optimal

approximations of a positive definite tensor are also positive definite.
The mentioned features of the Frobenius norm are quite strong arguments in the favor of using

this norm in numerical calculations. Nevertheless, optimization problems analogous to Problems
1–3, can be formulated in terms of quite arbitrary metric on E4

3. Various ways to define such metric
are considered, e.g., in [34,36,37,40]. In [36], the symmetric approximations of elasticity tensors are
constructed with the use of different approaches, which are based on the Frobenius, Log-Euclidean and
Riemannian distance functions. The last two, compared to the first one, possess some additional
invariance properties: in particular, with regard to inversion of the tensor-arguments. In [34],
the specific features of the operator norm, ‖ · ‖, are investigated theoretically, when searching for the
‖ · ‖-optimal elasticity tensor approximations. It was shown that the ‖ · ‖-optimal approximation of a
positive definite tensor, unlike the ‖ · ‖E4

3
-optimal one, may be not positive definite or unique in some

degenerate cases. The results for the evaluation of the ‖ · ‖- and ‖ · ‖E4
3
-optimal approximations in the

transversely isotropic class and their comparative analysis are presented in [40].
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Going back to the ECIP, suppose that
^
Π

(s)
∈ K(s) is the ‖ · ‖E4

3
-optimal approximation of Π, i.e.,

the solution of Problem 1 (2, 3) in K(s). Adopt the notation:
^
Ψ
(s)

=
^
Π

(s)
−Π. Then the following chain

of inequalities holds:

inf
Π(s)∈K(s)

‖Ψ(s)‖ ≤ ‖
^
Ψ
(s)
‖ ≤ ‖

^
Ψ
(s)
‖E4

3
. (24)

Since inf
Π(s)∈K(s)

‖Ψ(s)‖ is the exact upper bound for the norm of the residuals of all possible

approximations, both ‖
^
Ψ
(s)
‖ and ‖

^
Ψ
(s)
‖E4

3
give the MEs for

^
Π

(s)
, among which ‖

^
Ψ
(s)
‖ is more accurate.

Its values (or the values of the associated RME, ‖Π′−1‖‖
^
Ψ
(s)
‖) for different classes, which are arranged

in the non-increasing order, form the hierarchy of class approximations, each of which can be accepted
with one or another error level. The construction of such hierarchy is understood as a solution of the
ECIP. In its turn, the implementation of this procedure implies the statement and solution of Problem
1 (2, 3) in all classes considered in the framework of the adopted classification. It is worthy to recall

again that here
^
Ψ
(s)

does not generally minimize the norm ‖
^
Ψ
(s)
‖ and, hence, does not provide an

exact upper bound for the residual norm of the class approximation. Nevertheless, it can estimate the
latter as:

1√
6
‖
^
Ψ
(s)
‖E4

3
≤ inf

Π(s)∈K(s)
‖Ψ(s)‖ ≤ ‖

^
Ψ
(s)
‖. (25)

It should also be noted that, as in the case of the Frobenius norm, ‖Ψ(s)‖ keeps its value in
the family of tensors of the form Π(s) = Πα

(
G ·O ·G(s)

)
∗ K(s)

α , where G ∈ G(Π) and G(s) ∈
dimK(s)

∩
α=1

G
(

K(s)
α

)
.

In the space of optimization parameters, the topology of the hypersurfaces defined by the
objectives of Problems 1–3 is generally rather complex. There may exist multiple local and global
minimums, so that the direct use of determined numerical methods is obstructed. However, for the
majority of practical applications, there is no need for an exact approximation of the solutions to a
global minimum, so that the optimization problems can be solved by using the heuristic algorithms,
e.g., the particle swarm optimization method [71] employed in [39,41]. It seems plausible to use as a
criterion of assigning a material by its properties to one or another class a small value of the residual
caused by the related approximation in its constitutive equation. Hence, the possibility of obtaining an
acceptable upper estimate for this value gives a convincing reason for such assignment.

In what follows, three types of the quantities, which characterize MEs for the class approximations
obtained by the numerical global optimization, will be considered. Each of them is shortly defined
in Table 2. All positive definite tensors from a specified class are taken as an admissible set for
approximations being optimized. Also, three types of RMEs will be used. They are supposed to
be introduced by multiplying the associated MEs just as before, by the maximal Eigen-value of the
generalized inverse of an elasticity tensor under approximation.

Table 2. MEs for numerically optimized class approximations.

Notation Expression Minimized Objective

ME(s)
I

‖Ψ(s)‖E4
3

‖Ψ(s)‖E4
3

ME(s)
I I ‖Ψ(s)‖ ‖Ψ(s)‖E4

3

ME(s)
I I I ‖Ψ(s)‖ ‖Ψ(s)‖
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4. Elasticity of Polycrystalline Aggregates

During the multi-level modeling of a material, its macroscopic physical and mechanical
characteristics are being obtained by averaging the similar properties of its structural elements on the
subjacent scale levels. For a single-phase polycrystal, the RVE of which consists of crystallites with the
same specific weight, the simplest variant of the averaging operation can be written as:

ΠM =
1
M

M

∑
m=1

o(m) ∗ ∏∏∏. (26)

Here M is the number of crystallites in the material’s RVE, ΠM is the macroscopic elasticity tensor,
∏∏∏ is the elasticity tensor of a single crystallite and o(m) are crystallite orientation tensors. Further
study is restricted to using only this form of averaging, which is also known as averaging by Voigt.
Such definition refers to that the effective elasticity tensor obtained from (26) establishes a relation
between the stress tensor averaged over crystallites and the macroscopic strain tensor under the
assumption of the Voigt hypothesis. It should be remembered that there exist more complex and
physically justified homogenization procedures, which consider additional stereological parameters of
the internal structure [72].

Given a statistically uniform distribution of crystallite orientations in a polycrystal, its physical
and mechanical properties are assumed to be isotropic. However, due to the presence of stochasticity,
one can speak only approximately about compatibility of the properties under consideration with any
of the classes. Numerical estimation of this proximity degree makes possible to determine the size
of the RVE of the polycrystal being investigated, which is essential in the context of constructing the
multi-level models and determining its parameters.

Consider a polycrystalline aggregate of M crystallites with random orientations, o(m). Suppose
that ME[·, ·] defines a natural ME. Then, inf

Π(s)∈K(s)
ME

[
Π(s), ΠM

]
is a real-valued random variable (in

the sense that for any subset from the Borel sigma-algebra on R its pre-image belongs to the Borel
sigma-algebra on OM). The concept of convergence of the aggregate elasticity tensor to a class, as
the number of crystallites increases, can be formalized as follows. The elasticity tensor, ΠM, of a
polycrystalline aggregate of M crystallites converges to a class, K(s), as M→ ∞ if

lim
M→∞

inf
Π(s)∈K(s)

ME
[
Π(s), ΠM

]
= 0 almost surely. (27)

Note that from (26) it follows that ‖ΠM‖E4
3
≤ ‖p‖E4

3
, so that at a fixed p a random sequence,

{ΠM}, is uniformly bounded. Thus, with respect to continuity,
{

inf
Π(s)∈K(s)

ME
[
Π(s), ΠM

]}
is also

uniformly bounded. Condition (27) implies that this sequence converges almost surely. Hence [73], it
will also converge in the mean, i.e.,:

lim
M→∞

M
[

inf
Π(s)∈K(s)

ME
[
Π(s), ΠM

]]
= 0, (28)

where M[·] is the mathematical expectation.

Given a uniform orientation distribution, due to (28) an empirical estimate of ‖∏∏∏′−1‖M
[

ME(iso)
I M

]
or

‖∏∏∏′−1‖M
[

ME(iso)
I I M

]
can be used to evaluate the level of accuracy, to which an aggregate of M crystallites

can be considered as an RVE of the simulated polycrystal. In Figure 2, such estimates are constructed
for polycrystalline copper. For each fixed number of crystallites, M, an independent repeated sampling
of 100 realizations of polycrystalline aggregates with uniformly distributed random orientations is

generated. Then, the values of ME(iso)
I M and ME(iso)

I I M corresponding to the obtained realizations are

calculated and their sample means,
〈

ME(iso)
I M

〉
and

〈
ME(iso)

I I M

〉
, are evaluated. The dependences of
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these mean values on M are approximated by the power functions as
〈

ME(iso)
I M

〉
≈ ME(iso)

I 1 M−λI

and
〈

ME(iso)
I I M

〉
≈ ME(iso)

I I 1 M−λI I . Here, λI , λI I ∈ R are the parameters determined by the logarithmic
least-square method. The values of these parameters for aggregates of some metals are given in
Table 3. Regression curves (straight lines on the log-log plot) are presented in Figure 3. The obtained
results make possible to estimate the necessary number of crystallites in a macroscopic polycrystalline
sample, which is statistically representative for a given margin of error. In [74,75], similar estimates
are constructed for relative standard deviation of macroscopic Young and shear moduli, which are
obtained for single- and double-phase polycrystals by Hill’s averaging [76].Symmetry 2017, 9, 240  14 of 28 
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Table 3. Regression parameters for mean dimensionless MEs in the isotropic class as functions of the
number of crystallites with respect to the elasticity tensors of random polycrystalline aggregates with
uniformly distributed orientations.

Crystal Elastic Moduli, GPa
‖Π′−1‖ME(iso)

I 1
λI ‖Π′−1‖ME(iso)

I I 1
λII

Π1111 Π1122 Π2323 Π1133 Π3333

Transversely Isotropic Elasticity

Mg 59.7 26.2 16.4 21.7 61.7 0.22 0.50 0.19 0.55
α-Ti 162.4 92.0 46.7 69.0 180.7 0.52 0.51 0.36 0.54
Zn 161.0 34.2 38.3 50.1 61.0 3.08 0.51 2.36 0.54

Cubic Elasticity

Al 108.4 62.3 28.5 - - 0.26 0.51 0.14 0.48
Cu 168.4 121.4 75.4 - - 2.42 0.51 1.36 0.48
α-Fe 287.0 141.0 116.0 - - 0.65 0.50 0.35 0.47
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5. Changes in Elastic Symmetry of Polycrystals during Inelastic Deformation

In polycrystals, severe inelastic deformation is usually accompanied by a significant reorientation
of their anisotropic crystallites, in which the symmetry of physical and mechanical characteristics is
determined mainly by their lattice type. The symmetry of analogical macroscopic properties depends
on polycrystalline texture and is able to change during such processes.

In this section, the results of the numerical investigation of changes in the elastic symmetry of
the RVE of a single-phased polycrystalline copper during inelastic deformation are presented. Simple
shear, quasi-axial tension and upsetting tests are considered. The crystallite orientation distributions
are obtained with the help of the two-level crystal elasto-visco-plasticity model discussed in [54].
The equations for the co-rotational spins,ω(m), of the crystallites are taken from [77]:

ω(m) = k(m)
1 · le(m) · k(m)

2

(
k(m)

1 k(m)
2 − k(m)

2 k(m)
1

)
+ k(m)

3 · le(m) · k(m)
1

(
k(m)

3 k(m)
1 − k(m)

1 k(m)
3

)
+

+k(m)
3 · le(m) · k(m)

2

(
k(m)

3 k(m)
2 − k(m)

2 k(m)
3

)
.

(29)

Here, le(m) ∈ E2
3 are the velocity gradient tensors of elastic deformations and the bases,

{
k(m)

i

}
, are

introduced in such a way that, at each moment, k(m)
2 are the normalized crystallographic vectors, k(m)

1

are the unit vectors from crystallographic planes, which satisfy k(m)
1 · k(m)

2 = 0, and k(m)
3 = k(m)

1 × k(m)
2 .

For each crystallite, its elasticity tensor is assumed to be constant with respect to the associated system
of the defined vectors.

The applied mechanical loads are kinematical and their deformation gradient tensors are of the
form: F = F

[ .
ε, t
]
, where

.
ε ∈ R is a velocity parameter (which takes a constant value in the examined

processes), t ∈ [0; T] is the current time and T ∈ R is the duration of the process considered. The
magnitude of deformation accumulated in the material to time t is characterized by the parameter,
ε =

.
εt. MEs are evaluated for isotropic, transversely isotropic, cubic and orthotropic classes (the short

symbolic indexes are iso, tra, cub and ort, respectively).
The sequence of computational operations is as follows. First, a polycrystalline aggregate of

M = 1000 crystallites with a random uniform orientation distribution is generated. At each moment of
the simulated deformation process, the components of the macroscopic elasticity tensor are calculated
by applying the averaging procedure given by (26). For the examined classes, the parameters of the
‖ · ‖E4

3
-optimal (and, in the case of isotropic class, the ‖ · ‖-optimal) approximations of this tensor are

obtained by solving numerically Problem 1 (2, 3). The next step is to calculate the RMEs (corresponding

to the above mentioned approximations), which are taken to be the values of RME(s)
I and RME(s)

I I

(RME(iso)
I I I ), forming a hierarchy of elastic symmetry classes at the current deformation stage.
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For the obtained cubic and orthotropic approximations, the orientations of their canonical bases
are presented with the help of the Euler angles: α ∈ [−π;π), β ∈ [0;π] and γ ∈ [−π;π). These
parameters describe the rotational transform, O, in (11) as follows:

{
Oij
}
=

 cosα cosβ cosγ− sinα sinγ − sinα cosγ− cosα cosβ sinγ cosα sinβ
sinα cosβ cosγ+ cosα sinγ cosα cosγ− sinα cosβ sinγ sinα sinβ

− sinβ cosγ sinβ sinγ cosβ

. (30)

In the further figures, their values are provided for all tensors of the form O = O ·G(s), G(s) ∈
G(s)+, where O ∈ O+ is a numerical solution of Problem 1 (2, 3), and the groups, G(s)+, consist of the
following elements:

G(cub)+ =
{

G ∈ O+
∣∣G · li = lj

}
; (31)

G(ort)+ =
{

I, Rπl1
, Rπl2

, Rπl3

}
. (32)

In the case of the orthotropic approximations, the base tensors are ordered so that their sequent
longitudinal elastic moduli decrease.

To characterize the transversely isotropic approximations, the spherical orientation angles of their
isotropy axes are considered: ϕ ∈ [−π,π) and θ ∈ [0,π]. Using these parameters, the mentioned
approximations can be evaluated by substituting O = Rarccos(l3·i)

l3×i into (11) where i = cosϕ sin θl1 +

sin θ sinϕl2 + cos θl3 is the unit vector directed along the isotropy axis. In such a case, the following
parametrization takes a place:

{
Oij
}
=

 cos θ cos2ϕ+ sin2ϕ (cos θ− 1) cos θ sinϕ sin θ cosϕ
(cos θ− 1) cosϕ sinϕ cos θ sin2ϕ+ cos2ϕ sin θ sinϕ
− sin θ cosϕ − sin θ sinϕ cos θ

. (33)

In the related figures, the orientation angles are plotted for the obtained direction vectors, i,
together with the angles for −i.

In the initial configuration (t = 0), the elasticity tensor of the examined polycrystalline realization
has the following component matrix (in the LCS basis; the Voight notation is used):

{
Πij kl

}
=



209.436 100.757 101.007 0.131 −0.126 −0.705
100.757 210.254 100.189 −0.215 −0.474 0.186
101.007 100.189 210.004 0.084 0.6 0.519

0.131 −0.215 0.084 55.007 0.519 −0.126
−0.126 −0.474 0.6 0.519 54.189 −0.215
−0.705 0.186 0.519 −0.126 −0.215 54.757


. (34)

With an acceptable accuracy, this tensor can be treated as an isotropic one; the value of RME(iso)
I I I

corresponding to it does not exceed 1.89%.

5.1. Simple Shear

The deformation gradient tensor of the realized loading regime is F = l1l1 + l2l2 + l3l3 −
.
εtl2l3,

where
.
ε = 0.001 c−1. The numerical calculation is carried out until t = 1600 s. The direct pole figures

(DPFs) for the basic crystallographic directions corresponding to different deformation stages are
depicted in Figure 4.
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Noticeable inhomogeneity of the orientation distribution acquired by the aggregate causes
weakening of isotropy of its macroscopic elastic properties, as evidenced by the growth of the
corresponding RMEs shown in Figure 5a. It is worthy of note that in this process the values of

RME(iso)
I I and RME(iso)

I I I almost coincide. An analogous growth of RMEs also holds for other symmetry

classes as demonstrated by changes in RME(s)
I and RME(s)

I I shown in Figures 5b and 6. At the
sufficiently high levels of accumulated deformations, the error in the assignment of the material
to the elastic orthotropic class significantly increases, so that more suitable approximations can be
searched for within the monoclinic class. The families of the orientation parameters for the calculated
approximations are presented in Figure 6.
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Figure 6. Changes in the ‖ · ‖E4
3
-optimal approximation orientation parameters and the corresponding

values of RME(s)
I I for the elasticity tensor of the polycrystalline copper aggregate during the simple

shear test.

The dependence of ‖Π′−1‖
−1

(which is equal to the minimal non-zero Eigen-value of Π) on the
loading parameter is shown in Figure 7. This quantity is a multiplier which turns an RME to the
associated ME. Due to a relatively small range of its values, the results presented for RMEs turn out to
be qualitatively similar to the results obtained for MEs.



Symmetry 2017, 9, 240 18 of 27

Symmetry 2017, 9, 240  18 of 28 

 

 

 

Figure 6. Changes in the ⋅ 4
3

-optimal approximation orientation parameters and the corresponding 

values of 
( )s
IIRME  for the elasticity tensor of the polycrystalline copper aggregate during the simple 

shear test. 

The dependence of 
−−′

11Π  (which is equal to the minimal non-zero Eigen-value of Π ) on the 

loading parameter is shown in Figure 7. This quantity is a multiplier which turns an RME to the 
associated ME. Due to a relatively small range of its values, the results presented for RMEs turn out 
to be qualitatively similar to the results obtained for MEs. 

 
Figure 7. Changes in the minimal non-zero Eigen-value of the elasticity tensor of the polycrystalline 
copper aggregate during the simple shear test. 

  

Figure 7. Changes in the minimal non-zero Eigen-value of the elasticity tensor of the polycrystalline
copper aggregate during the simple shear test.

5.2. Quasi-Axial Tension

The deformation gradient tensor of the realized loading regime is F = e−0.5
.
εt(l1l1 + l2l2) + e

.
εtl3l3,

where
.
ε = 0.001 c−1. The numerical calculation is carried out until t = 500 s. The DPFs for the basic

crystallographic directions at different deformation stages are depicted in Figure 8.
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Figure 8. Changes in the DPFs (projecting along l3) of the polycrystalline copper aggregate during the
quasi-axial tension test: (a) <111>; (b) <110>; (c) <100>.

The RME curves of the aggregate elasticity tensor for the isotropic class are given in Figure 9.
As it is readily seen, the growth of the obtained estimates is monotonic, therefore in this case
also, inhomogeneity of the orientation distribution leads to weakening of the macroscopic elastic

isotropy. One can point out that RME(iso)
I I and RME(iso)

I I I are close to each other, especially at the initial
deformation stages.

The variation of RMEs in other symmetry classes is presented in Figures 9b and 10. Weak
incompatibility with transversely isotropic and orthotropic classes holds at all stages of the process
under examination. It means that the material retains the orthotropic and transversely isotropic
properties. At the same time, the RMEs in the cubic symmetry class increase, which testifies to
weakening of the related symmetry properties. The families of the orientation parameters for the
calculated approximations are provided in Figure 10.
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The results obtained for MEs are similar to the results presented for RMEs. The transition
multiplier curve is plotted in Figure 11.
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5.3. Quasi-Axial Upsetting

The deformation gradient tensor of the loading regime is given as F = e0.5
.
εt(l1l1 + l2l2) + e−

.
εtl3l3,

where
.
ε = 0.001 c−1. The numerical calculation is carried out until t = 1600 s. The DPFs for the basic

crystallographic directions at different deformation stages are depicted in Figure 12.
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Changes in RMEs in isotropic class are presented in Figure 13. A characteristic feature of these
graphs is their essential non-monotonic character. Within certain intervals of the deformation process,
the aggregate elastic properties are found to be close to isotropic ones despite noticeable inhomogeneity
of the orientation distribution observable on the DPFs Worthy of note is the fact that at the end of
the examined process the RMEs in the isotropic class practically regain their initial values, while the
aggregate attains a pronounced crystallographic texture. Such result speaks in favor of feasibility of
textures with isotropic macroscopic elastic properties in polycrystalline materials. Note that in the case

under consideration RME(iso)
I I and RME(iso)

I I I also take close values.
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The dependences for RMEs in other symmetry classes are shown in Figures 13b and 14.
Incompatibility with the transversely isotropic and orthotropic classes changes insignificantly. In the
cubic symmetry class, the observed dependence is analogous to that obtained in the case of isotropy.
The incompatibility maximum occurs at ε = 1.024. The families of the orientation parameters for the
calculated approximations are given in Figure 14.
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can be shown that this problem is equivalent to the following one. 

Figure 14. Changes in the ‖ · ‖E4
3
-optimal approximation orientation parameters and the corresponding

values of RME(s)
I I for the elasticity tensor of the polycrystalline copper aggregate during the quasi-axial

upsetting test.

The graphs of the MEs variation are similar to those obtained for RMEs. It is to be noted that the
transition multiplier changes non-monotonically, too. Its curve is plotted in Figure 15.
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6. Discussion and Conclusions

The presented investigations have revealed a peculiar feature of the examined quasi-axial
deformation processes, which is the retention of elastic orthotropy and transverse isotropy. Moreover,
an additional examination has shown that at the loading stages characterized by quite strong
incompatibility (increase of a RME by more than two times compared to its initial value) of the
material with higher symmetry classes the deviation of the identified isotropy axis from the direction
vector of the process, l3, proves to be small (does not exceed: 4.09◦ for the tension and 5.58◦ for
the upsetting processes). A similar situation holds for deviation of one of the rotation axes to be
determined in the orthotropic class (does not exceed: 4.51◦ for the tension and 5.36◦ for the upsetting
processes). These results are consistent with the supposition of the relationship between the symmetry
properties of a deformation process and the elastic properties of a material under deformation.

According to the results of the numerical investigation, the process of quasi-axial upsetting of a
polycrystalline aggregate can involve the formation of inhomogeneous orientation distributions, for
which the macroscopic elastic properties are close to the isotropic class. Theoretical substantiation for
the existence of such textures can be obtained, e.g., by studying the problem of determining a discrete

orientation set,
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}
∈ O+M, which minimizes inf
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o(m) ∗ ∏∏∏

]
for a given ∏∏∏ ∈ E4

3.

It can be shown that this problem is equivalent to the following one.



Symmetry 2017, 9, 240 23 of 27

Problem 4. Find
{

o(m)
}
∈ O+M such that:

∣∣∣∣∣
∣∣∣∣∣ M

∑
m=1

o(m) ∗ ∏∏∏

∣∣∣∣∣
∣∣∣∣∣
E4

3

→ min. (35)

Here, M can be associated with the number of orientation modes, over which the crystallite
orientations are distributed in equal proportions. Problem 4 has at least a one-parametric family
of solutions, which differs from one another by a Rayleigh product with an arbitrary orthogonal

transformation. MEs for the ‖ · ‖E4
3
-optimal isotropic approximations (ME(iso)

I ) and the associated

RMEs (RME(iso)
I ) with respect to the elasticity tensors obtained for the polycrystalline copper

aggregates with optimal orientation modes are summarized in Table 4 for M = 2, 4. Such modes for
o(1) = I are depicted on the DPFs for the basic crystallographic directions.

Table 4. Crystallite mutual orientations in the polycrystalline copper aggregates with the most ‖ · ‖E4
3
-

isotropic elastic properties.

M Optimal Mutual
Orientations

DPFs (Projecting along l3) ME(iso)
I ,

GPa
RME(iso)

I
<111> <110> <100>

2

Symmetry 2017, 9, 240  24 of 28 

 

Problem 4. Find ( ){ } +∈m Mο   such that: 

( )

=

∗ →
4
3

1
min .

M
m

m
o п


 (35) 

Here, M  can be associated with the number of orientation modes, over which the crystallite 
orientations are distributed in equal proportions. Problem 4 has at least a one-parametric family of 
solutions, which differs from one another by a Rayleigh product with an arbitrary orthogonal 

transformation. MEs for the ⋅ 4
3

-optimal isotropic approximations (
( )iso
IME ) and the associated 

RMEs (
( )iso
IRME ) with respect to the elasticity tensors obtained for the polycrystalline copper 

aggregates with optimal orientation modes are summarized in Table 4 for = 2,4M . Such modes for 
( ) =1o I  are depicted on the DPFs for the basic crystallographic directions. 

Table 4. Crystallite mutual orientations in the polycrystalline copper aggregates with the  
most ⋅ 4

3
- isotropic elastic properties. 

M  Optimal  
Mutual Orientations 

DPFs (Projecting along 3l ) ( )iso
IME , 

GPa 
( )iso
IRME  <111> <110> <100> 

2 

 
   

57.897 0.710 

3 

 
   

18.951 0.192 

4 1 

 
   

0 0 

1 The general case is considered in [78]. 

It should be pointed out that, as shown in [79], in the case of even ≥ 4M , for crystallites with 
cubic elastic symmetry there always exists a set of M  orientations, over which averaging of the form 
(26) results in isotropy of macroscopic elastic properties. A configuration of such orientations for 

= 4M  is described in [78]. It coincides with the configuration presented in Table 4.  
Similar sufficient conditions for transverse isotropy can be obtained by virtue of Hermann’s 

theorem. It can be readily proven that if the rotation axis, ∈ 3a  , of the phase characteristic tensor, 

∈ 3
rχ  , is of order N , then an effective characteristics tensor of the form 

π +ϕ

=

= ∗ 0
2

1

1 mM
NM

mM aX R χ , 

where ϕ ∈0  , is transversely isotropic along a  for > rM
N

. In particular, this implies that, for 

transverse isotropy of elastic properties of a single-phase polycrystal consisting of cubic symmetric 

Symmetry 2017, 9, 240  24 of 28 

 

Problem 4. Find ( ){ } +∈m Mο   such that: 

( )

=

∗ →
4
3

1
min .

M
m

m
o п


 (35) 

Here, M  can be associated with the number of orientation modes, over which the crystallite 
orientations are distributed in equal proportions. Problem 4 has at least a one-parametric family of 
solutions, which differs from one another by a Rayleigh product with an arbitrary orthogonal 

transformation. MEs for the ⋅ 4
3

-optimal isotropic approximations (
( )iso
IME ) and the associated 

RMEs (
( )iso
IRME ) with respect to the elasticity tensors obtained for the polycrystalline copper 

aggregates with optimal orientation modes are summarized in Table 4 for = 2,4M . Such modes for 
( ) =1o I  are depicted on the DPFs for the basic crystallographic directions. 

Table 4. Crystallite mutual orientations in the polycrystalline copper aggregates with the  
most ⋅ 4

3
- isotropic elastic properties. 

M  Optimal  
Mutual Orientations 

DPFs (Projecting along 3l ) ( )iso
IME , 

GPa 
( )iso
IRME  <111> <110> <100> 

2 

 
   

57.897 0.710 

3 

 
   

18.951 0.192 

4 1 

 
   

0 0 

1 The general case is considered in [78]. 

It should be pointed out that, as shown in [79], in the case of even ≥ 4M , for crystallites with 
cubic elastic symmetry there always exists a set of M  orientations, over which averaging of the form 
(26) results in isotropy of macroscopic elastic properties. A configuration of such orientations for 

= 4M  is described in [78]. It coincides with the configuration presented in Table 4.  
Similar sufficient conditions for transverse isotropy can be obtained by virtue of Hermann’s 

theorem. It can be readily proven that if the rotation axis, ∈ 3a  , of the phase characteristic tensor, 

∈ 3
rχ  , is of order N , then an effective characteristics tensor of the form 

π +ϕ

=

= ∗ 0
2

1

1 mM
NM

mM aX R χ , 

where ϕ ∈0  , is transversely isotropic along a  for > rM
N

. In particular, this implies that, for 

transverse isotropy of elastic properties of a single-phase polycrystal consisting of cubic symmetric 

Symmetry 2017, 9, 240  24 of 28 

 

Problem 4. Find ( ){ } +∈m Mο   such that: 

( )

=

∗ →
4
3

1
min .

M
m

m
o п


 (35) 

Here, M  can be associated with the number of orientation modes, over which the crystallite 
orientations are distributed in equal proportions. Problem 4 has at least a one-parametric family of 
solutions, which differs from one another by a Rayleigh product with an arbitrary orthogonal 

transformation. MEs for the ⋅ 4
3

-optimal isotropic approximations (
( )iso
IME ) and the associated 

RMEs (
( )iso
IRME ) with respect to the elasticity tensors obtained for the polycrystalline copper 

aggregates with optimal orientation modes are summarized in Table 4 for = 2,4M . Such modes for 
( ) =1o I  are depicted on the DPFs for the basic crystallographic directions. 

Table 4. Crystallite mutual orientations in the polycrystalline copper aggregates with the  
most ⋅ 4

3
- isotropic elastic properties. 

M  Optimal  
Mutual Orientations 

DPFs (Projecting along 3l ) ( )iso
IME , 

GPa 
( )iso
IRME  <111> <110> <100> 

2 

 
   

57.897 0.710 

3 

 
   

18.951 0.192 

4 1 

 
   

0 0 

1 The general case is considered in [78]. 

It should be pointed out that, as shown in [79], in the case of even ≥ 4M , for crystallites with 
cubic elastic symmetry there always exists a set of M  orientations, over which averaging of the form 
(26) results in isotropy of macroscopic elastic properties. A configuration of such orientations for 

= 4M  is described in [78]. It coincides with the configuration presented in Table 4.  
Similar sufficient conditions for transverse isotropy can be obtained by virtue of Hermann’s 

theorem. It can be readily proven that if the rotation axis, ∈ 3a  , of the phase characteristic tensor, 

∈ 3
rχ  , is of order N , then an effective characteristics tensor of the form 

π +ϕ

=

= ∗ 0
2

1

1 mM
NM

mM aX R χ , 

where ϕ ∈0  , is transversely isotropic along a  for > rM
N

. In particular, this implies that, for 

transverse isotropy of elastic properties of a single-phase polycrystal consisting of cubic symmetric 

Symmetry 2017, 9, 240  24 of 28 

 

Problem 4. Find ( ){ } +∈m Mο   such that: 

( )

=

∗ →
4
3

1
min .

M
m

m
o п


 (35) 

Here, M  can be associated with the number of orientation modes, over which the crystallite 
orientations are distributed in equal proportions. Problem 4 has at least a one-parametric family of 
solutions, which differs from one another by a Rayleigh product with an arbitrary orthogonal 

transformation. MEs for the ⋅ 4
3

-optimal isotropic approximations (
( )iso
IME ) and the associated 

RMEs (
( )iso
IRME ) with respect to the elasticity tensors obtained for the polycrystalline copper 

aggregates with optimal orientation modes are summarized in Table 4 for = 2,4M . Such modes for 
( ) =1o I  are depicted on the DPFs for the basic crystallographic directions. 

Table 4. Crystallite mutual orientations in the polycrystalline copper aggregates with the  
most ⋅ 4

3
- isotropic elastic properties. 

M  Optimal  
Mutual Orientations 

DPFs (Projecting along 3l ) ( )iso
IME , 

GPa 
( )iso
IRME  <111> <110> <100> 

2 

 
   

57.897 0.710 

3 

 
   

18.951 0.192 

4 1 

 
   

0 0 

1 The general case is considered in [78]. 

It should be pointed out that, as shown in [79], in the case of even ≥ 4M , for crystallites with 
cubic elastic symmetry there always exists a set of M  orientations, over which averaging of the form 
(26) results in isotropy of macroscopic elastic properties. A configuration of such orientations for 

= 4M  is described in [78]. It coincides with the configuration presented in Table 4.  
Similar sufficient conditions for transverse isotropy can be obtained by virtue of Hermann’s 

theorem. It can be readily proven that if the rotation axis, ∈ 3a  , of the phase characteristic tensor, 

∈ 3
rχ  , is of order N , then an effective characteristics tensor of the form 

π +ϕ

=

= ∗ 0
2

1

1 mM
NM

mM aX R χ , 

where ϕ ∈0  , is transversely isotropic along a  for > rM
N

. In particular, this implies that, for 

transverse isotropy of elastic properties of a single-phase polycrystal consisting of cubic symmetric 

57.897 0.710

3

Symmetry 2017, 9, 240  24 of 28 

 

Problem 4. Find ( ){ } +∈m Mο   such that: 

( )

=

∗ →
4
3

1
min .

M
m

m
o п


 (35) 

Here, M  can be associated with the number of orientation modes, over which the crystallite 
orientations are distributed in equal proportions. Problem 4 has at least a one-parametric family of 
solutions, which differs from one another by a Rayleigh product with an arbitrary orthogonal 

transformation. MEs for the ⋅ 4
3

-optimal isotropic approximations (
( )iso
IME ) and the associated 

RMEs (
( )iso
IRME ) with respect to the elasticity tensors obtained for the polycrystalline copper 

aggregates with optimal orientation modes are summarized in Table 4 for = 2,4M . Such modes for 
( ) =1o I  are depicted on the DPFs for the basic crystallographic directions. 

Table 4. Crystallite mutual orientations in the polycrystalline copper aggregates with the  
most ⋅ 4

3
- isotropic elastic properties. 

M  Optimal  
Mutual Orientations 

DPFs (Projecting along 3l ) ( )iso
IME , 

GPa 
( )iso
IRME  <111> <110> <100> 

2 

 
   

57.897 0.710 

3 

 
   

18.951 0.192 

4 1 

 
   

0 0 

1 The general case is considered in [78]. 

It should be pointed out that, as shown in [79], in the case of even ≥ 4M , for crystallites with 
cubic elastic symmetry there always exists a set of M  orientations, over which averaging of the form 
(26) results in isotropy of macroscopic elastic properties. A configuration of such orientations for 

= 4M  is described in [78]. It coincides with the configuration presented in Table 4.  
Similar sufficient conditions for transverse isotropy can be obtained by virtue of Hermann’s 

theorem. It can be readily proven that if the rotation axis, ∈ 3a  , of the phase characteristic tensor, 

∈ 3
rχ  , is of order N , then an effective characteristics tensor of the form 

π +ϕ

=

= ∗ 0
2

1

1 mM
NM

mM aX R χ , 

where ϕ ∈0  , is transversely isotropic along a  for > rM
N

. In particular, this implies that, for 

transverse isotropy of elastic properties of a single-phase polycrystal consisting of cubic symmetric 

Symmetry 2017, 9, 240  24 of 28 

 

Problem 4. Find ( ){ } +∈m Mο   such that: 

( )

=

∗ →
4
3

1
min .

M
m

m
o п


 (35) 

Here, M  can be associated with the number of orientation modes, over which the crystallite 
orientations are distributed in equal proportions. Problem 4 has at least a one-parametric family of 
solutions, which differs from one another by a Rayleigh product with an arbitrary orthogonal 

transformation. MEs for the ⋅ 4
3

-optimal isotropic approximations (
( )iso
IME ) and the associated 

RMEs (
( )iso
IRME ) with respect to the elasticity tensors obtained for the polycrystalline copper 

aggregates with optimal orientation modes are summarized in Table 4 for = 2,4M . Such modes for 
( ) =1o I  are depicted on the DPFs for the basic crystallographic directions. 

Table 4. Crystallite mutual orientations in the polycrystalline copper aggregates with the  
most ⋅ 4

3
- isotropic elastic properties. 

M  Optimal  
Mutual Orientations 

DPFs (Projecting along 3l ) ( )iso
IME , 

GPa 
( )iso
IRME  <111> <110> <100> 

2 

 
   

57.897 0.710 

3 

 
   

18.951 0.192 

4 1 

 
   

0 0 

1 The general case is considered in [78]. 

It should be pointed out that, as shown in [79], in the case of even ≥ 4M , for crystallites with 
cubic elastic symmetry there always exists a set of M  orientations, over which averaging of the form 
(26) results in isotropy of macroscopic elastic properties. A configuration of such orientations for 

= 4M  is described in [78]. It coincides with the configuration presented in Table 4.  
Similar sufficient conditions for transverse isotropy can be obtained by virtue of Hermann’s 

theorem. It can be readily proven that if the rotation axis, ∈ 3a  , of the phase characteristic tensor, 

∈ 3
rχ  , is of order N , then an effective characteristics tensor of the form 

π +ϕ

=

= ∗ 0
2

1

1 mM
NM

mM aX R χ , 

where ϕ ∈0  , is transversely isotropic along a  for > rM
N

. In particular, this implies that, for 

transverse isotropy of elastic properties of a single-phase polycrystal consisting of cubic symmetric 

Symmetry 2017, 9, 240  24 of 28 

 

Problem 4. Find ( ){ } +∈m Mο   such that: 

( )

=

∗ →
4
3

1
min .

M
m

m
o п


 (35) 

Here, M  can be associated with the number of orientation modes, over which the crystallite 
orientations are distributed in equal proportions. Problem 4 has at least a one-parametric family of 
solutions, which differs from one another by a Rayleigh product with an arbitrary orthogonal 

transformation. MEs for the ⋅ 4
3

-optimal isotropic approximations (
( )iso
IME ) and the associated 

RMEs (
( )iso
IRME ) with respect to the elasticity tensors obtained for the polycrystalline copper 

aggregates with optimal orientation modes are summarized in Table 4 for = 2,4M . Such modes for 
( ) =1o I  are depicted on the DPFs for the basic crystallographic directions. 

Table 4. Crystallite mutual orientations in the polycrystalline copper aggregates with the  
most ⋅ 4

3
- isotropic elastic properties. 

M  Optimal  
Mutual Orientations 

DPFs (Projecting along 3l ) ( )iso
IME , 

GPa 
( )iso
IRME  <111> <110> <100> 

2 

 
   

57.897 0.710 

3 

 
   

18.951 0.192 

4 1 

 
   

0 0 

1 The general case is considered in [78]. 

It should be pointed out that, as shown in [79], in the case of even ≥ 4M , for crystallites with 
cubic elastic symmetry there always exists a set of M  orientations, over which averaging of the form 
(26) results in isotropy of macroscopic elastic properties. A configuration of such orientations for 

= 4M  is described in [78]. It coincides with the configuration presented in Table 4.  
Similar sufficient conditions for transverse isotropy can be obtained by virtue of Hermann’s 

theorem. It can be readily proven that if the rotation axis, ∈ 3a  , of the phase characteristic tensor, 

∈ 3
rχ  , is of order N , then an effective characteristics tensor of the form 

π +ϕ

=

= ∗ 0
2

1

1 mM
NM

mM aX R χ , 

where ϕ ∈0  , is transversely isotropic along a  for > rM
N

. In particular, this implies that, for 

transverse isotropy of elastic properties of a single-phase polycrystal consisting of cubic symmetric 

Symmetry 2017, 9, 240  24 of 28 

 

Problem 4. Find ( ){ } +∈m Mο   such that: 

( )

=

∗ →
4
3

1
min .

M
m

m
o п


 (35) 

Here, M  can be associated with the number of orientation modes, over which the crystallite 
orientations are distributed in equal proportions. Problem 4 has at least a one-parametric family of 
solutions, which differs from one another by a Rayleigh product with an arbitrary orthogonal 

transformation. MEs for the ⋅ 4
3

-optimal isotropic approximations (
( )iso
IME ) and the associated 

RMEs (
( )iso
IRME ) with respect to the elasticity tensors obtained for the polycrystalline copper 

aggregates with optimal orientation modes are summarized in Table 4 for = 2,4M . Such modes for 
( ) =1o I  are depicted on the DPFs for the basic crystallographic directions. 

Table 4. Crystallite mutual orientations in the polycrystalline copper aggregates with the  
most ⋅ 4

3
- isotropic elastic properties. 

M  Optimal  
Mutual Orientations 

DPFs (Projecting along 3l ) ( )iso
IME , 

GPa 
( )iso
IRME  <111> <110> <100> 

2 

 
   

57.897 0.710 

3 

 
   

18.951 0.192 

4 1 

 
   

0 0 

1 The general case is considered in [78]. 

It should be pointed out that, as shown in [79], in the case of even ≥ 4M , for crystallites with 
cubic elastic symmetry there always exists a set of M  orientations, over which averaging of the form 
(26) results in isotropy of macroscopic elastic properties. A configuration of such orientations for 

= 4M  is described in [78]. It coincides with the configuration presented in Table 4.  
Similar sufficient conditions for transverse isotropy can be obtained by virtue of Hermann’s 

theorem. It can be readily proven that if the rotation axis, ∈ 3a  , of the phase characteristic tensor, 

∈ 3
rχ  , is of order N , then an effective characteristics tensor of the form 

π +ϕ

=

= ∗ 0
2

1

1 mM
NM

mM aX R χ , 

where ϕ ∈0  , is transversely isotropic along a  for > rM
N

. In particular, this implies that, for 

transverse isotropy of elastic properties of a single-phase polycrystal consisting of cubic symmetric 

18.951 0.192

4 1

Symmetry 2017, 9, 240  24 of 28 

 

Problem 4. Find ( ){ } +∈m Mο   such that: 

( )

=

∗ →
4
3

1
min .

M
m

m
o п


 (35) 

Here, M  can be associated with the number of orientation modes, over which the crystallite 
orientations are distributed in equal proportions. Problem 4 has at least a one-parametric family of 
solutions, which differs from one another by a Rayleigh product with an arbitrary orthogonal 

transformation. MEs for the ⋅ 4
3

-optimal isotropic approximations (
( )iso
IME ) and the associated 

RMEs (
( )iso
IRME ) with respect to the elasticity tensors obtained for the polycrystalline copper 

aggregates with optimal orientation modes are summarized in Table 4 for = 2,4M . Such modes for 
( ) =1o I  are depicted on the DPFs for the basic crystallographic directions. 

Table 4. Crystallite mutual orientations in the polycrystalline copper aggregates with the  
most ⋅ 4

3
- isotropic elastic properties. 

M  Optimal  
Mutual Orientations 

DPFs (Projecting along 3l ) ( )iso
IME , 

GPa 
( )iso
IRME  <111> <110> <100> 

2 

 
   

57.897 0.710 

3 

 
   

18.951 0.192 

4 1 

 
   

0 0 

1 The general case is considered in [78]. 

It should be pointed out that, as shown in [79], in the case of even ≥ 4M , for crystallites with 
cubic elastic symmetry there always exists a set of M  orientations, over which averaging of the form 
(26) results in isotropy of macroscopic elastic properties. A configuration of such orientations for 

= 4M  is described in [78]. It coincides with the configuration presented in Table 4.  
Similar sufficient conditions for transverse isotropy can be obtained by virtue of Hermann’s 

theorem. It can be readily proven that if the rotation axis, ∈ 3a  , of the phase characteristic tensor, 

∈ 3
rχ  , is of order N , then an effective characteristics tensor of the form 

π +ϕ

=

= ∗ 0
2

1

1 mM
NM

mM aX R χ , 

where ϕ ∈0  , is transversely isotropic along a  for > rM
N

. In particular, this implies that, for 

transverse isotropy of elastic properties of a single-phase polycrystal consisting of cubic symmetric 

Symmetry 2017, 9, 240  24 of 28 

 

Problem 4. Find ( ){ } +∈m Mο   such that: 

( )

=

∗ →
4
3

1
min .

M
m

m
o п


 (35) 

Here, M  can be associated with the number of orientation modes, over which the crystallite 
orientations are distributed in equal proportions. Problem 4 has at least a one-parametric family of 
solutions, which differs from one another by a Rayleigh product with an arbitrary orthogonal 

transformation. MEs for the ⋅ 4
3

-optimal isotropic approximations (
( )iso
IME ) and the associated 

RMEs (
( )iso
IRME ) with respect to the elasticity tensors obtained for the polycrystalline copper 

aggregates with optimal orientation modes are summarized in Table 4 for = 2,4M . Such modes for 
( ) =1o I  are depicted on the DPFs for the basic crystallographic directions. 

Table 4. Crystallite mutual orientations in the polycrystalline copper aggregates with the  
most ⋅ 4

3
- isotropic elastic properties. 

M  Optimal  
Mutual Orientations 

DPFs (Projecting along 3l ) ( )iso
IME , 

GPa 
( )iso
IRME  <111> <110> <100> 

2 

 
   

57.897 0.710 

3 

 
   

18.951 0.192 

4 1 

 
   

0 0 

1 The general case is considered in [78]. 

It should be pointed out that, as shown in [79], in the case of even ≥ 4M , for crystallites with 
cubic elastic symmetry there always exists a set of M  orientations, over which averaging of the form 
(26) results in isotropy of macroscopic elastic properties. A configuration of such orientations for 

= 4M  is described in [78]. It coincides with the configuration presented in Table 4.  
Similar sufficient conditions for transverse isotropy can be obtained by virtue of Hermann’s 

theorem. It can be readily proven that if the rotation axis, ∈ 3a  , of the phase characteristic tensor, 

∈ 3
rχ  , is of order N , then an effective characteristics tensor of the form 

π +ϕ

=

= ∗ 0
2

1

1 mM
NM

mM aX R χ , 

where ϕ ∈0  , is transversely isotropic along a  for > rM
N

. In particular, this implies that, for 

transverse isotropy of elastic properties of a single-phase polycrystal consisting of cubic symmetric 

Symmetry 2017, 9, 240  24 of 28 

 

Problem 4. Find ( ){ } +∈m Mο   such that: 

( )

=

∗ →
4
3

1
min .

M
m

m
o п


 (35) 

Here, M  can be associated with the number of orientation modes, over which the crystallite 
orientations are distributed in equal proportions. Problem 4 has at least a one-parametric family of 
solutions, which differs from one another by a Rayleigh product with an arbitrary orthogonal 

transformation. MEs for the ⋅ 4
3

-optimal isotropic approximations (
( )iso
IME ) and the associated 

RMEs (
( )iso
IRME ) with respect to the elasticity tensors obtained for the polycrystalline copper 

aggregates with optimal orientation modes are summarized in Table 4 for = 2,4M . Such modes for 
( ) =1o I  are depicted on the DPFs for the basic crystallographic directions. 

Table 4. Crystallite mutual orientations in the polycrystalline copper aggregates with the  
most ⋅ 4

3
- isotropic elastic properties. 

M  Optimal  
Mutual Orientations 

DPFs (Projecting along 3l ) ( )iso
IME , 

GPa 
( )iso
IRME  <111> <110> <100> 

2 

 
   

57.897 0.710 

3 

 
   

18.951 0.192 

4 1 

 
   

0 0 

1 The general case is considered in [78]. 

It should be pointed out that, as shown in [79], in the case of even ≥ 4M , for crystallites with 
cubic elastic symmetry there always exists a set of M  orientations, over which averaging of the form 
(26) results in isotropy of macroscopic elastic properties. A configuration of such orientations for 

= 4M  is described in [78]. It coincides with the configuration presented in Table 4.  
Similar sufficient conditions for transverse isotropy can be obtained by virtue of Hermann’s 

theorem. It can be readily proven that if the rotation axis, ∈ 3a  , of the phase characteristic tensor, 

∈ 3
rχ  , is of order N , then an effective characteristics tensor of the form 

π +ϕ

=

= ∗ 0
2

1

1 mM
NM

mM aX R χ , 

where ϕ ∈0  , is transversely isotropic along a  for > rM
N

. In particular, this implies that, for 

transverse isotropy of elastic properties of a single-phase polycrystal consisting of cubic symmetric 

Symmetry 2017, 9, 240  24 of 28 

 

Problem 4. Find ( ){ } +∈m Mο   such that: 

( )

=

∗ →
4
3

1
min .

M
m

m
o п


 (35) 

Here, M  can be associated with the number of orientation modes, over which the crystallite 
orientations are distributed in equal proportions. Problem 4 has at least a one-parametric family of 
solutions, which differs from one another by a Rayleigh product with an arbitrary orthogonal 

transformation. MEs for the ⋅ 4
3

-optimal isotropic approximations (
( )iso
IME ) and the associated 

RMEs (
( )iso
IRME ) with respect to the elasticity tensors obtained for the polycrystalline copper 

aggregates with optimal orientation modes are summarized in Table 4 for = 2,4M . Such modes for 
( ) =1o I  are depicted on the DPFs for the basic crystallographic directions. 

Table 4. Crystallite mutual orientations in the polycrystalline copper aggregates with the  
most ⋅ 4

3
- isotropic elastic properties. 

M  Optimal  
Mutual Orientations 

DPFs (Projecting along 3l ) ( )iso
IME , 

GPa 
( )iso
IRME  <111> <110> <100> 

2 

 
   

57.897 0.710 

3 

 
   

18.951 0.192 

4 1 

 
   

0 0 

1 The general case is considered in [78]. 

It should be pointed out that, as shown in [79], in the case of even ≥ 4M , for crystallites with 
cubic elastic symmetry there always exists a set of M  orientations, over which averaging of the form 
(26) results in isotropy of macroscopic elastic properties. A configuration of such orientations for 

= 4M  is described in [78]. It coincides with the configuration presented in Table 4.  
Similar sufficient conditions for transverse isotropy can be obtained by virtue of Hermann’s 

theorem. It can be readily proven that if the rotation axis, ∈ 3a  , of the phase characteristic tensor, 

∈ 3
rχ  , is of order N , then an effective characteristics tensor of the form 

π +ϕ

=

= ∗ 0
2

1

1 mM
NM

mM aX R χ , 

where ϕ ∈0  , is transversely isotropic along a  for > rM
N

. In particular, this implies that, for 

transverse isotropy of elastic properties of a single-phase polycrystal consisting of cubic symmetric 
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1 The general case is considered in [78].

It should be pointed out that, as shown in [79], in the case of even M ≥ 4, for crystallites with
cubic elastic symmetry there always exists a set of M orientations, over which averaging of the form
(26) results in isotropy of macroscopic elastic properties. A configuration of such orientations for
M = 4 is described in [78]. It coincides with the configuration presented in Table 4.

Similar sufficient conditions for transverse isotropy can be obtained by virtue of Hermann’s
theorem. It can be readily proven that if the rotation axis, a ∈ E3, of the phase characteristic tensor,

χ ∈ Er
3, is of order N, then an effective characteristics tensor of the form X = 1

M

M
∑

m=1
R

2πm
NM +ϕ0

a ∗ χ, where

ϕ0 ∈ R, is transversely isotropic along a for M > r
N . In particular, this implies that, for transverse

isotropy of elastic properties of a single-phase polycrystal consisting of cubic symmetric crystallites,
two orientation modes will suffice. It can be also of interest to find textures, which show the best fit
to a given macroscopic elasticity class, K(s). In terms of the orientation measure [80], P[·] : O→ [0; 1] ,
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where O is the Borel sigma-algebra on O, and the ME function, ME[·, ·] : E4
3 ×E4

3 → [0;+∞) , such
problem can be formulated as follows:

Problem 5. Find P[·] ∈ P such that:

inf
Π(s)∈K(s)

ME

Π(s),
∫
O

o ∗ ∏∏∏dP[o]

→ inf, (36)

where P ⊂ P(O) is the admissible set, P(O) is the space of probability measures defined on O. One
should remark that if ME[·, ·] satisfies the conditions of Lemma 1, then the functional of Problem 5 is
bounded in P(O).

In conclusion, it should be also mentioned that RME(iso)
I I and RME(iso)

I I I , i.e., the operator norms
of the ‖ · ‖E4

3
- and ‖ · ‖-optimal isotropic approximations, respectively, obtained in the numerical

experiments, are close to each other. Since from the computational viewpoint the advantage of the
Frobenius norm is quite evident, the choice of this norm for solving the ECIP seems quite reasonable.

To sum up, in the presented work, the problem of determining the elastic anisotropy type of
polycrystalline materials is discussed. The concept of 4-rank tensor class as the union of congruent
specially structured subspaces was introduced. This definition makes it possible to formally classify the
elasticity tensors allowing the classification by their symmetry properties. The problem of identification
of the linear elasticity class for a material with elastic moduli known in some basis was formulated.
To solve this problem, a general approach based on the approximation of the elasticity tensor by
the class analogies was proposed. Residual estimates of such approximations governed by a linear
elasticity law form a hierarchy of classes, to which the examined material can be assigned according to
their elastic properties with sufficient accuracy. The formulated mathematical framework was then
applied to theoretical study of single-phase polycrystalline elasticity. For some metals, the dependences
that can be used to determine the number of crystallites in a polycrystalline sample such that will
allow it to be considered as a RVE of the material within an acceptable error were obtained. Using a
two-level model of elasto-visco-plasticity, changes in elastic incompatibility of a polycrystalline copper
RVE with different symmetry classes are analyzed.

Acknowledgments: The work is supported by Russian Science Foundation (Grant No. 17-19-01292).

Author Contributions: Peter V. Trusov and Kirill V. Ostapovich contributed equally in this work. Both the authors
have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Acharjee, S.; Zabaras, N. A proper orthogonal decomposition approach to microstructure model reduction
in Rodrigues space with applications to optimal control of microstructure-sensitive properties. Acta Mater.
2003, 51, 5627–5646. [CrossRef]

2. Adams, B.L.; Henrie, A.; Henrie, B.; Lyon, M.; Kalidindi, S.R.; Garmestani, H. Microstructure-sensitive
design of a compliant beam. J. Mech. Phys. Solids 2001, 49, 1639–1663. [CrossRef]

3. Clement, A. Prediction of deformation texture using a physical principle of conservatiol. Mater. Sci. Eng.
1982, 55, 203–210. [CrossRef]

4. Ganapathysubramanian, S.; Zabaras, N. Design across length scales: A reduced-order model of polycrystal
plasticity for the control of microstructure-sensitive material properties. Comput. Methods Appl. Mech. Eng.
2004, 193, 5017–5034. [CrossRef]

5. Ganapathysubramanian, S.; Zabaras, N. Modeling the thermoelastic-viscoplastic response of polycrystals
using a continuum representation over the orientation space. Int. J. Plast. 2005, 21, 119–144. [CrossRef]

6. Kumar, A.; Dawson, P.R. Computational modeling of f.c.c. deformation textures over Rodrigues’ space.
Acta Mater. 2000, 48, 2719–2736. [CrossRef]

http://dx.doi.org/10.1016/S1359-6454(03)00427-0
http://dx.doi.org/10.1016/S0022-5096(01)00016-3
http://dx.doi.org/10.1016/0025-5416(82)90133-1
http://dx.doi.org/10.1016/j.cma.2004.04.004
http://dx.doi.org/10.1016/j.ijplas.2004.04.005
http://dx.doi.org/10.1016/S1359-6454(00)00044-6


Symmetry 2017, 9, 240 25 of 27

7. Kuramae, H.; Sakamoto, H.; Morimoto, H.; Nakamachi, E. Process metallurgy design for high-formability
aluminum alloy sheet metal generation by using two-scale FEM. Procedia Eng. 2011, 10, 2250–2255. [CrossRef]

8. McDowell, D.L.; Olson, G.B. Concurrent design of hierarchical materials and structures. Sci. Model.
Simul. SMNS 2008, 15, 207–240. [CrossRef]

9. Nakamachi, E.; Kuramae, H.; Sakamoto, H.; Morimoto, H. Process metallurgy design of aluminum alloy
sheet rolling by using two-scale finite element analysis and optimization algorithm. Int. J. Mech. Sci. 2010,
52, 146–157. [CrossRef]

10. Proust, G.; Kalidindi, S.R. Procedures for construction of anisotropic elastic-plastic property closures for
face-centered cubic polycrystals using first-order bounding relations. J. Mech. Phys. Solids 2006, 54, 1744–1762.
[CrossRef]

11. Sundararaghavan, V.; Zabaras, N. On the synergy between texture classification and deformation process
sequence selection for the control of texture-dependent properties. Acta Mater. 2005, 53, 1015–1027. [CrossRef]

12. Sundararaghavan, V.; Zabaras, N. Classification and reconstruction of three-dimensional microstructures
using support vector machines. Comput. Mater. Sci. 2005, 32, 223–239. [CrossRef]

13. Sundararaghavan, V.; Zabaras, N. Design of microstructure-sensitive properties in elasto-viscoplastic
polycrystals using multi-scale homogenization. Int. J. Plast. 2006, 22, 1799–1824. [CrossRef]

14. Sundararaghavan, V.; Zabaras, N. A statistical learning approach for the design of polycrystalline materials.
Stat. Anal. Data Min. 2009, 1, 306–321. [CrossRef]

15. Busso, E.P.; Matériaux, C.; Paristech, M. Multiscale Approaches: From the Nanomechanics to the
Micromechanics. In Computational and Experimental Mechanics of Advanced Materials; Springer: Vienna,
Austria, 2010; pp. 141–165.

16. Luscher, D.J.; McDowell, D.L. An extended multiscale principle of virtual velocities approach for evolving
microstructure. Procedia Eng. 2009, 1, 117–121. [CrossRef]

17. Luscher, D.J.; McDowell, D.L.; Bronkhorst, C.A. A second gradient theoretical framework for hierarchical
multiscale modeling of materials. Int. J. Plast. 2010, 26, 1248–1275. [CrossRef]

18. Trusov, P.V.; Shveykin, A.I. Multilevel crystal plasticity models of single- and polycrystals. Direct models.
Phys. Mesomech. 2013, 16, 99–124. [CrossRef]

19. Trusov, P.V.; Shveykin, A.I. Multilevel crystal plasticity models of single- and polycrystals. Statistical Models.
Phys. Mesomech. 2013, 16, 23–33. [CrossRef]

20. Bunge, H.J. Texture Analysis in Materials Science. Mathematical Methods; Butterworths: London, UK, 1982;
ISBN 978-0-408-10642-9.

21. Kalidindi, S.R.; Houskamp, J.R.; Lyons, M.; Adams, B.L. Microstructure sensitive design of an orthotropic
plate subjected to tensile load. Int. J. Plast. 2004, 20, 1561–1575. [CrossRef]

22. Kalidindi, S.R.; Houskamp, J.; Proust, G.; Duvvuru, H. Microstructure sensitive design with first order
homogenization theories and finite element codes. Mater. Sci. Forum 2005, 495–497, 23–30. [CrossRef]

23. Sundararaghavan, V.; Zabaras, N. A dynamic material library for the representation of single-phase
polyhedral microstructures. Acta Mater. 2004, 52, 4111–4119. [CrossRef]

24. Kumar, A.; Dawson, P.R. Modeling crystallographic texture evolution with finite elements over neo-Eulerian
orientation spaces. Comput. Methods Appl. Mech. Eng. 1998, 153, 259–302. [CrossRef]

25. Becker, R.; Panchanadeeswaran, S. Crystal rotations represented as rodrigues vectors. Textures Microstruct.
1989, 10, 167–194. [CrossRef]

26. Morawiec, A.; Field, D.P. Rodrigues parameterization for orientation and misorientation distributions.
Philos. Mag. A 1996, 73, 1113–1130. [CrossRef]

27. Truesdell, C.A. A First Course in Rational Continuum Mechanics; Academic Press: New York, NY, USA, 1991.
28. Cowin, S.C.; Mehrabadi, M.M. On the identification of material symmetry for anisotropic elastic materials.

Q. J. Mech. Appl. Math. 1987, 40, 451–476. [CrossRef]
29. Gurevich, G.B. Foundations of the Theory of Algebraic Invariants; Noordhoff: Groningen, The Netherlands, 1964.
30. Rychlewski, J. On Hooke’s law. J. Appl. Math. Mech. 1984, 48, 303–314. [CrossRef]
31. Ostrosablin, N.I. On invariants of a fourth-rank tensor of elasticity moduli. Sib. Zh. Ind. Mat. 1998, 1,

155–163.
32. Spencer, A.J.M. Isotropic Polynomial Invariants and Tensor Functions. In Applications of Tensor Functions in

Solid Mechanics; Boehler, J.P., Ed.; Springer: Vienna, Austria, 1987; pp. 141–169.

http://dx.doi.org/10.1016/j.proeng.2011.04.372
http://dx.doi.org/10.1007/s10820-008-9100-6
http://dx.doi.org/10.1016/j.ijmecsci.2009.08.009
http://dx.doi.org/10.1016/j.jmps.2006.01.010
http://dx.doi.org/10.1016/j.actamat.2004.11.001
http://dx.doi.org/10.1016/j.commatsci.2004.07.004
http://dx.doi.org/10.1016/j.ijplas.2006.01.001
http://dx.doi.org/10.1002/sam.10017
http://dx.doi.org/10.1016/j.proeng.2009.06.028
http://dx.doi.org/10.1016/j.ijplas.2010.05.006
http://dx.doi.org/10.1134/S1029959913020021
http://dx.doi.org/10.1134/S1029959913010037
http://dx.doi.org/10.1016/j.ijplas.2003.11.007
http://dx.doi.org/10.4028/www.scientific.net/MSF.495-497.23
http://dx.doi.org/10.1016/j.actamat.2004.05.024
http://dx.doi.org/10.1016/S0045-7825(97)00072-8
http://dx.doi.org/10.1155/TSM.10.167
http://dx.doi.org/10.1080/01418619608243708
http://dx.doi.org/10.1093/qjmam/40.4.451
http://dx.doi.org/10.1016/0021-8928(84)90137-0


Symmetry 2017, 9, 240 26 of 27

33. Zhilin, P.A. The modified theory of the tensor symmetry and tensor invariants. Izv. Vyss. Uchebn. Zaved.
Sev.-Kavkaz. Reg. Estestv. Nauki 2003, 1, 176–195.

34. Bos, L.; Slawinski, M.A. 2-Norm Effective Isotropic Hookean Solids. J. Elast. 2015, 120, 1–22. [CrossRef]
35. Gazis, D.C.; Tadjbakhsh, I.; Toupin, R.A. The elasticity tensor of a given symmetry nearest to an anisotropic

elastic tensor. Acta Cryst. 1963, 16, 917–922. [CrossRef]
36. Moakher, M.; Norris, A.N. The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower

symmetry. J. Elast. 2006, 85, 215–263. [CrossRef]
37. Norris, A.N. The isotropic material closest to a given anisotropic material. Mater. Struct. 2006, 1, 223–238.

[CrossRef]
38. Arts, R.J.; Helbig, K.; Rasolofosaon, P.N.J. General anisotropic elastic tensor in rocks: Approximation,

invariants, and particular directions. In SEG Technical Program Expanded Abstracts 1991; Society of Exploration
Geophysicists: Tulsa, OK, USA, 1991; pp. 1534–1537. [CrossRef]

39. Danek, T.; Kochetov, M.; Slawinski, M.A. Uncertainty analysis of effective elasticity tensors using
quaternion-based global optimization and Monte-Carlo method. Q. J. Mech. Appl. Math. 2013, 66, 253–272.
[CrossRef]

40. Danek, T.; Slawinski, A. On effective transversely isotropic elasticity tensors based on Frobenius and L2

operator norms. Dolomit. Res. Notes Approx. 2014, 7, 1–6. [CrossRef]
41. Danek, T.; Slawinski, M.A. On choosing effective elasticity tensors using a monte-carlo method. Acta Geophys.

2015, 63, 45–61. [CrossRef]
42. Diner, Ç.; Kochetov, M.; Slawinski, M. Identifying symmetry classes of elasticity tensors using monoclinic

distance function. J. Elast. 2011, 102, 175–190. [CrossRef]
43. Kochetov, M.; Slawinski, M.A. On obtaining effective transversely isotropic elasticity tensors. J. Elast. 2009,

94, 1–13. [CrossRef]
44. Ostapovich, K.V.; Trusov, P.V. On elastic anisotropy: Symmetry identification. Mekhanika Kompositsionnykh

Mater. I Konstr. 2016, 22, 69–84.
45. Sevostianov, I.; Kachanov, M. On approximate symmetries of the elastic properties and elliptic orthotropy.

Int. J. Eng. Sci. 2008, 46, 211–223. [CrossRef]
46. Hayes, M. A simple statical approach to the measurement of the elastic constants in anisotropic media.

J. Mater. Sci. 1969, 4, 10–14. [CrossRef]
47. Norris, A.N. On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions

for the existence of symmetry planes. Q. J. Mech. Appl. Math. 1989, 42, 413–426. [CrossRef]
48. Tsvelodub, I.Y. Determining the elastic characteristics of homogeneous anisotropic bodies. J. Appl. Mech.

Tech. Phys. 1994, 35, 455–458. [CrossRef]
49. Khristich, D.V. Criterion of experimental identification of isotropic and cubic materials. Izv. Tul. Gos. Univ.

Est. Nauki 2012, 1, 110–118.
50. Khristich, D.V. Criterion of experimental identification of rhombic, monoclinic and triclinic materials. Izv. Tul.

Gos. Univ. Est. Nauk. 2013, 1, 166–178.
51. Khristich, D.V. On the problem of material main anisotropy axes identification. Izv. Tul. Gos. Univ. Est. Nauki

2014, 1, 203–213.
52. Sokolova, M.Y.; Khristich, D.V. Program of experiments to determine the type of initial elastic anisotropy of

material. J. Appl. Mech. Tech. Phys. 2015, 56, 913–919. [CrossRef]
53. Astapov, Y.V.; Khristich, D.V. Numerical modeling of experiments by detecting of initial anisotropy type of

elastic materials. Comput. Contin. Mech. 2015, 8, 386–396. [CrossRef]
54. Shveykin, A.I.; Trusov, P.V. Correlation between geometrically nonlinear elasto-visco-plastic constitutive

relations formulated in terms of the actual and unloaded configurations for crystallites. Phys. Mesomech.
2016, 19, 48–57.

55. Hazewinkel, M.; Gubareni, N.; Kirichenko, V.V. Algebras, Rings and Modules; Kluwer: Dordrecht,
The Netherlands, 2004; Volume 1.

56. Trusov, P.V.; Dudar’, O.I.; Keller, I.E. Tensor Algebra and Analysis; Perm State Technical University: Perm,
Russia, 1998.

57. Curnier, A. Computational Methods in Solid Mechanics; Kluwer: Dordrecht, The Netherlands, 1994.
58. Bertram, A. Elasticity and Plasticity of Large Deformations; Springer: Berlin/Heidelberg, Germany; New York,

NY, USA, 2012; ISBN 978-3-642-24614-2.

http://dx.doi.org/10.1007/s10659-014-9497-y
http://dx.doi.org/10.1107/S0365110X63002449
http://dx.doi.org/10.1007/s10659-006-9082-0
http://dx.doi.org/10.2140/jomms.2006.1.223
http://dx.doi.org/10.1190/1.1888997
http://dx.doi.org/10.1093/qjmam/hbt004
http://dx.doi.org/10.14658/pupj-drna-2014-Special_Issue-2
http://dx.doi.org/10.2478/s11600-013-0197-y
http://dx.doi.org/10.1007/s10659-010-9272-7
http://dx.doi.org/10.1007/s10659-008-9180-2
http://dx.doi.org/10.1016/j.ijengsci.2007.11.003
http://dx.doi.org/10.1007/BF00555041
http://dx.doi.org/10.1093/qjmam/42.3.413
http://dx.doi.org/10.1007/BF02369887
http://dx.doi.org/10.1134/S0021894415050193
http://dx.doi.org/10.7242/1999-6691/2015.8.4.33


Symmetry 2017, 9, 240 27 of 27

59. Olshevsky, V. Structured Matrices in Mathematics, Computer Science, and Engineering I; American Mathematical
Society: Washington, DC, USA, 2001; ISBN 0821819216.

60. Trenogin, V.A. Functional Analysis; Nauka: Moscow, Russia, 1980.
61. Love, A. A Treatise on the Mathematical Theory of Elasticity; Dover: New York, NY, USA, 1944.
62. Green, A.E.; Adkins, J.E. Large Elastic Deformations and Non-Linear Continuum Mechanics; Oxford Clarenden

Press: Oxford, UK, 1960.
63. Bóna, A.; Bucataru, I.; Slawinski, M.A. Material symmetries of elasticity tensors. Q. J. Mech. Appl. Math. 2004,

57, 583–598. [CrossRef]
64. Forte, S.; Vianello, M. Symmetry classes for elasticity tensors. J. Elast. 1996, 43, 81–108. [CrossRef]
65. Minkevich, L.M. Presentation of elasticity and compliance tensors via eigentensors. Issues Dyn. Mech. Syst.

Vib. Eff. 1973, 1, 107–110.
66. Ostrosablin, N.I. On the structure of the elasticity moduli tensor. Elastic eigenstates. Dyn. Contin. Media

1984, 1, 113–125.
67. Sutcliffe, S. Spectral Decomposition of the Elasticity Tensor. J. Appl. Mech. 1992, 59, 762. [CrossRef]
68. Weyl, H. The Classical Groups: Their Invariants and Representations, 2nd ed.; Princeton University Press:

Princeton, NJ, USA, 1997.
69. Sirotin, Y.I.; Shaskolskaya, M.P. Fundamentals of Crystal Physics; Mir Publishers: Moscow, Russia, 1982.
70. Voigt, W. Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik); Teubner Verlag: Leipzig, Germany, 1928.
71. Clerc, M.; Kennedy, J. The particle swarm—Explosion, stability, and convergence in a multidimensional

complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [CrossRef]
72. Bunge, H.J.; Kiewel, R.; Reinert, T.; Fritsche, L. Elastic properties of polycrystals—Influence of texture and

stereology. J. Mech. Phys. Solids 2000, 48, 29–66. [CrossRef]
73. Borovkov, A.A. Probability Theory; Springer: London, UK, 2013.
74. Kuksa, L.V.; Arzamaskova, L.M.; Sergeev, A.V. Vectorial models of cubic, hexagonal, trigonal crystals and

elasticity scale effect of composites based on them. Izv. Volgogr. Gos. Tekh. Univ. 2005, 1, 85–90.
75. Kuksa, L.V.; Arzamaskova, L.M. Comparative studies on scale effect of physical and mechanical properties

of single-phase and two-phase polycrystalline materials. Izv. Volgogr. Gos. Tekh. Univ. 2009, 11, 127–133.
76. Shermergor, T.D. Theory of Elasticity of Micro-Inhomogeneous Media; Nauka: Moscow, Russia, 1977.
77. Trusov, P.V.; Shveykin, A.I.; Yanz, A.Y. Motion decomposition, frame-independent derivatives and

constitutive relations at large displacement gradients from the viewpoint of multilevel modeling.
Phys. Mesomech. 2016, 19, 47–65.

78. Böhlke, T.; Bertram, A. Isotropic orientation distributions of cubic crystals. J. Mech. Phys. Solids 2001, 49,
2459–2470. [CrossRef]

79. Bertram, A.; Böhlke, T.; Gaffke, N.; Heiligers, B.; Offinger, R. On the generation of discrete isotropic
orientation distributions for linear elastic cubic crystals. J. Elast. 2000, 58, 233–248. [CrossRef]

80. Paroni, R.; Man, C.-S. Constitutive equations of elastic polycrystalline materials. Arch. Ration. Mech. Anal.
1999, 150, 153–177. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/qjmam/57.4.583
http://dx.doi.org/10.1007/BF00042505
http://dx.doi.org/10.1115/1.2894040
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1016/S0022-5096(99)00020-4
http://dx.doi.org/10.1016/S0022-5096(01)00063-1
http://dx.doi.org/10.1023/A:1007655817328
http://dx.doi.org/10.1007/s002050050184
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminaries 
	Elasticity Class Identification 
	Elasticity of Polycrystalline Aggregates 
	Changes in Elastic Symmetry of Polycrystals during Inelastic Deformation 
	Simple Shear 
	Quasi-Axial Tension 
	Quasi-Axial Upsetting 

	Discussion and Conclusions 

