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Abstract: In this paper, we propose an extended multi-objective version of single objective
optimization algorithm called sperm swarm optimization algorithm. The proposed multi-objective
optimization algorithm based on sperm fertilization procedure (MOSFP) operates based on Pareto
dominance and a crowding factor, that crowd and filter out the list of the best sperms (global best
values). We divide the sperm swarm into three equal parts, after that, different types of turbulence
(mutation) operators are applied on these parts, such as uniform mutation, non-uniform mutation,
and without any mutation. Our algorithm is compared against three well-known algorithms in
the field of optimization. These algorithms are NSGA-II, SPEA2, and OMOPSO. These algorithms
are compared using a very popular benchmark function suites called Zitzler-Deb-Thiele (ZDT)
and Walking-Fish-Group (WFG). We also adopt three quality metrics to compare the convergence,
accuracy, and diversity of these algorithms, including, inverted generational distance (IGD), spread
(SP), and epsilon (∈). The experimental results show that the performance of the proposed MOSFP is
highly competitive, which outperformed OMOPSO in solving problems such as ZDT3, WFG5, and
WFG8. In addition, the proposed MOSFP outperformed both of NSGA-II or SPEA2 algorithms in
solving all the problems.

Keywords: multi-objective optimization (MOO); single objective optimization (SOO); Pareto front;
evolutionary algorithms; swarm intelligence algorithms

1. Introduction

The use of evolutionary algorithms in the area of multi-objective optimization has significantly
grown in the last decades. Evolutionary multi-objective optimization (EMO) is giving rise to a wide
variety of optimization algorithms. These algorithms use a set of techniques including, dominated
tree [1], adaptive grid based on data structures to store non-dominated vectors [2], and archive
techniques, etc. These techniques help different types of algorithms to provide a solution for various
multi-objective optimization problems (MOOPs) [3]. Multi-objective optimization (MOO) is a concept
based on plurality of objective functions, rather than single objective optimization (SOO) that is used to
solve a single objective function. These functions in MOO are often conflicting and non-commensurable
with each other. Based on this observation, the Pareto optimality concept has been introduced to solve
the problems of MOO instead of using the optimality concept of SOO, where the final solutions of
MOO problems have been selected among a set of Pareto optimal solutions [4].

Based on the idea of Pareto optimality, there are many single optimization algorithms that have
been extended to work on MOO problems, which some of these algorithms inspired from the metaphor
of natural or man-made processes [5]. Examples of these algorithms are genetic algorithm (GA) and
particle swarm optimization (PSO) [6,7]. Non-dominated sorting genetic algorithm (NSGA) [8] and
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non-dominated sorting genetic algorithm II (NSGA-II) [9] are the extended versions of GA that are used
to optimize different types of MOO problems. In addition, multi-objective particle swarm optimization
(MOPSO) and optimized multi-objective particle swarm optimization (OMOPSO) are the extended
versions of PSO algorithms, which are created to solve MOO problems [10,11].

These algorithms are used to find a solution for a wide variety of real world multi-objective
optimization problems (MOOPs). Examples of these problems include the Yagi–Uda antenna
design [12], the design of mobile and telecommunication networks [13], scheduling [14], rock crusher
design [15], stationary gas turbine combustion process optimization [16], nuclear fuel management [17],
defense applications [18], and distributing products through oil pipeline networks [19]. These problems
have many objectives, some of them are minimization and the other are maximization objectives.
Usually, there is a set of compromise solutions, and a trade-off between these objectives, so the aim
of the multi-objective optimization algorithm (MOOA) is to discover a range of solutions that offer a
variety of tradeoffs between these objectives [20].

Sperm swarm optimization (SSO) algorithm is a recent heuristic inspired by the fertilization
procedure, in which sperms swim in swarms until reaching the waited egg in the fallopian tubes.
SSO has been found to provide a solution for a wide variety of optimization tasks [21], but until recently
it had not been extended to deal with multiple objectives. SSO seems particularly appropriate for MOO
tasks mainly because of the high speed of convergence and good quality of solutions that the algorithm
presents for SOO [21]. For this purpose, in this paper, we intend to extend the SSO as MOOA, which
we will compare it with different types of MOOAs by using a set of quality metrics, such as inverted
generational distance (IGD), spread (SP), and epsilon (∈). These metrics are measured based on the
results of some benchmarks functions, such as Zitzler-Deb-Thiele (ZDT) and Walking-Fish-Group
(WFG) test suites that will be discussed further in later Sections. We organize this paper as follows:
Section 2 presents state of the art. The proposed multi-objective optimization algorithm based on
sperm fertilization procedure (MOSFP) is presented in Section 3. Section 4 describes the details of
the comparison strategy. Section 5 shows the experimental test and results. Section 6 presents the
discussion and we conclude the work in Section 7.

2. State of the Art

This Section provides a review on SSO algorithm, which covers its parts and limitations. In addition,
this Section summarizes the full procedure of the SSO algorithm with its mathematical rules.

Sperm Swarm Optimization Algorithm

Shehadeh et al. [21], proposed an approach called sperm swarm optimization (SSO), which was
inspired by fertilization procedure. This approach can be considered as a distributed behavioral
algorithm that can be applied to multi-dimensional search space. Through the simulation, the behavior
of motility of each individual can be affected by either the current best local solution or by the best
global solution of the sperm swarm. The former solution can be achieved by any sperm based on the
certain neighborhood, as each individual remembers its past position to determine the new position.
At the same time, the latter solution can be achieved by any sperm based on its position from the
target, as this solution will be remarked by the sperm that has a very closest position to the target (egg).
In this algorithm, a sperm that has a very closest position to the target is called the winner. Researchers
found that the sperm swarms move together, forming groups when they are swimming in viscoelastic
fluids and their behavior of moving exhibiting similar to “flocking”. They also observed a certain
movement beat and degree of synchronicity of tail movements during grouping [22]. Figure 1 shows
the winner and other sperm cells reaching for the egg [21].

The evolutionary algorithms such as GA is an inherently discrete procedure. The enhancement of
GA using adaptive selection scheme, such as in [23] is used to deal with each individual independently
and can easily perform discrete design variables. Therefore, the static variables can be used easily in
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their work. However, SSO uses the random parameters rather than static parameters, which play a
significant role in updating the position of each sperm until reaching the optimal value.
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Figure 1. The winner and other sperms reach the egg [21].

Most of the previous well-known algorithms use randomness in their evaluations. PSO [7] is one
of the most popular algorithms in the field of optimization that uses the randomness in its procedure.
C1 and C2 numerical variables, that take random values in the range of 0 to 4. The adaptiveness of
the SSO algorithm is based on two factors (i.e., temperature and pH). These variables take a range of
numerical variables randomly based on the following rules:

1. The normal pH value of a healthy female reproductive system is around 4.5–5.5 [24]. However, low
pH of mucus acidic may destroy and deactivate the motility of sperm. Therefore, during the
ovulation, the pH of vaginal acid or acidic is in the range of 7 to 4, which is very appropriate for
sperm motility and is considered very alkaline and non-toxic to sperm [25]. The pH value of the
female reproductive system is affected by the type of food consumed [26] and emotional or mood
status of the female, such as happiness or sadness, etc. [27]. Based on this information, we can
estimate that the value of pH will be varied in the range of 7 to 14.

2. The temperature of the female reproductive system plays a significant role of determining the
sperms movement direction. The scientists found that the sperm head acts like a temperature
sensor to search for a warmer area (the egg location) [28]. Furthermore, the sperm head can
response and sense to a temperature difference of <0.0006 ◦C [28]. The temperature inside
the vagina can change based on women status. The average temperature inside the vagina is
approximately between 35.1 and 37.4 ◦C [29]. However, this temperature may reach 38.5 ◦C
in some cases due to vaginal blood pressure circulation [30].Based on this information, we can
estimate that the value of temperature will be varied in the range of 35.1–38.5.

Based on the previous rules, we can notice that SSO is difference than evaluation algorithms such
as GA, in which GA is an inherently discrete procedure. GA and its adaptive methods (enhancement
methods of GA using some adaptive selection scheme, etc.), such as in [23], are used to deal with each
individual independently; therefore, it easily performs discrete design variables. Therefore, the static
variables can be used easily in their evaluation. In a different view, SSO uses the inherently continuous
technique to update the sperm velocity and location, which each sperm remembers its past location
and based on it produces a new location. SSO uses the random parameter rather than static parameters
(i.e., temperature and pH), which play a significant role in updating the position of each sperm until
reaching the optimal value. The history of samples is not cached for each sperm such as pH value and
the temperature value of the visited area. Only, the position of each sperm will be cached in memory.
This is because the position is the outcome of multiplying some numerical variables with each others’,
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such as the pH value, temperature value, and sperm best solution, etc. Therefore, the position of each
sperm is very important to be cached, in which SSO uses the cached position (old position) to compare
it with the new position and it changes the old position just in case of if the new position is better than
the old one. This is clear in the equations from 1 to 5, and procedure of Algorithm 1. In addition, it
uses mutation operations, which are used to increase the convergence. The mathematical rule that is
used in SSO to update the sperm velocity consists three parts as follows:

1. The initial velocity of the sperm: is the velocity that acquired by each sperm after the ejaculation
in the cervix zone. The sperm swarms take random positions inside the cervix and their velocity
is affected by the pH value in that position. This velocity can be represented in the following rule:

Initial_Velocity = D ·Vi · Log10(pH_Rand1) (1)

where:

• D: is the velocity damping factor, which is a random number between 0 and 1.
• Vi: is the sperm velocity.
• pH_Rand1: is the pH value, which is a random number in the range of (7, 14).

2. Personal sperm current best solution: is the best solution that achieved so far by the sperm. As we
mentioned previously, sperm head acts like a temperature sensor, which prefers to swim towards
warmer temperatures (egg location) [28]. In addition, sperm moves forward to search on the
guidance (higher concentrations of molecules) that produced and released by the egg, which this
guidance knew as Chemo-taxis [31]. From this information, we can realize that the sperm will
not swim backward to the cervix, but, will go forward towards warmer temperatures (the egg
location in fallopian tubes). Based on that, this position can be achieved by comparing the sperm
current position on X-axis and Y-axis with a sperm past position that is stored in the memory.
The past position can be replaced by the current position if the current position is better than the
past position. Personal sperm current best solution can be represented in the following equation:

Current_Best_Solution = Log10(pH_Rand2)·
Log10(Temp_Rand1) · (sb_solution[]− current[])

(2)

where:

• sb_ solution []: is the best solution that has been achieved so far, which denoted by Sperm
Best (sb_ solution).

• pH_Rand2: is the pH value, which is a random number in the range of (7, 14).
• Temp_Rand1: is the area temperature, which is a random number in range (35.1, 38.5).

3. Global best value is used to determine which sperm’s data is currently closest to the target (at the
end, this sperm will represent as the winner). The value of sperm global best value is represented
as the following equation:

Global_Best_Solution = Log10(pH_Rand3)·
Log10(Temp_Rand2) · (sgb_solution[]− current[])

(3)

where:

• sgb_solution[]: is the best solution of any sperm has achieved so far which denoted by Sperm
Global Best (sgb_solution).

• pH_Rand3: is the pH value, which is a random number in the range of (7, 14).
• Temp_Rand2: is the area temperature, which is a random number in the range of (35.1, 38.5).
• current[]: is the current best solution represented by the following equation.
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current[] = current[] + v[] (4)

where v[] is the sperm velocity which measured by companies the previous velocities in one
equation as follows:

v[] = Initial_Velocity + Current_Best_Solution
+Global_Best_Solution

(5)

We take the log for both pH and temperature parameters to normalize these values to become small
values. This will help to achieve an acceptable slow velocity that simulates the normal movements of
real sperm.

In this paper, we intend to extend SSO algorithm as a multi objective algorithm using Pareto
dominance and the concept of winner. The winner is the nearest sperm to the egg. The value of this
sperm is considered as the best value of the swarm. The value of the winner (global best value) is
used as a reference for all of the other sperm in the swarm to adjust their velocities on the search space
domain. The benefits of MOOA over single objective optimization algorithm (SOOA) is the ability
of MOOA in finding the correct trade-off between possibly conflicting terms by providing a set of
solutions that explore these trade-offs, so that the optimal choice can be made easily. This helps to
utilize SSO algorithm in solving many MOOPs such as the problems that mentioned in the introduction
Section. The steps of SSO algorithm procedure can be summarized in Algorithm 1.

Algorithm 1 Sperm swarm optimization (SSO)

1: Begin
2: Step 1: initialize positions for all sperms.
3: Step 2: for i=1:number of sperm do
4: Step 3: evaluate the fitness for each sperm
5: If obtained fitness > sperm best solution then
6: Set the current value as the sperm best solution
7: End if
8: End for
9: Step 4: choose the sperm global best solution based on the winner.
10: Step 5: for i=1:number of sperm Do
11: Do the swim using velocity update rule
12: Update sperm location on the search space
13: End for
14: Step 6: for i=1:number of sperm Do
15: Apply mutation operation on the sperm value
16: End for
17: Step 7: while maximum iterations not achieved return to step 2 and repeat until reaching the
17: maximum number of iterations.
18: End procedure.

3. Multi-Objective Optimization Algorithm Based on Sperm Fertilization Procedure (MOSFP)

The main idea of every MOOAs is to find Pareto optimal set. The Pareto optimal set is used to
balance the conflicting objectives and manage the trade-offs between them. Vilfredo Pareto (the Italian
economist), is the founder of the concept of Pareto optimality, which is conceptualized in his work
called manual of political economy (MPE) in 1906 [32]. The Pareto optimality definition based on some
basic concepts can be introduced as follows:
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• Domination: x1, may dominate a position vector, x2 (x1 < x2), if and only if fk(x1) ≤ fk(x2),
∀k = 1, · · · · ·nk and fk(x1) < fk(x2), for at least one k [33].

• Pareto optimal: A vector x∗ ∈ F is defined as Pareto-optimal if no vector exists x ∈ F such that
fk(x) ≤ fk(x∗), k ∈ N, and fm(x) < fm(x∗) for at least one m ∈ N. An objective vector z∗ = f (x∗)
is called Pareto optimal if the corresponding vector x∗ is the Pareto optimal. The set of the Pareto
optimal decision vectors x∗ ∈ F is denoted by P ⊆ F [34].

• x∗ ∈ F is the Pareto optimal of a position vector if no position vector that dominates it,
x 6= x∗ ∈ F. The Pareto optimal solution is non-dominated solution, which not dominated by
other solutions [34].

• Pareto optimal set: is a set containing all the Pareto optimal vectors Ps = {x◦|¬∃x1≺x◦} [35].
• Pareto front (PF): is defined as PF = {( f1(x), f2(x), · · · · · f

N(x))|x ∈ ps} [35].

The first step in any MOOA is to minimize the distance between the true Pareto front and the
solutions. To achieve this objective, appropriate fitness functions must be defined. Aggregation based
method is a traditional method of assigning fitness function, where a weighted sum of the objective
functions is used to define the fitness function [36].

There are many limitations of a classic approach, such as the tendency to be inefficient and very
susceptible to precise accumulation of goals [32]. For these reasons, the MOOAs have been proposed
by many researchers, including complex methods to obtain optimal weights of the objective function
such as neural network [37]. Some of the researchers also proposed the Pareto dominance for fitness
assignment, where the fitness is proportional to the dominance rank of solutions. Pareto dominance
is used in many algorithms to generate and identify a list of best solutions that are used to solve the
MOOPs. MOPSO is considered as one of the popular algorithms that uses this technique [38].

In the proposed MOSFP, the crowding factor [39] has been used to help in building the criterion of
a second discrimination (additional to Pareto dominance). This also helps in making a decision about
winners that should be reserved when the algorithm executes the maximum list size. In our algorithm,
the winner has been chosen based on means of a binary tournament that is related to crowding value of
the winners. All of the best values (winners) have been crowded as a set. The size of the set of winners
(SoW) is identified, in which the maximum size of them are equal to the size of the population or the
swarm. After each generation, the SoW and the corresponding crowding values related to them are
updated. In the case of the size of SoW is greater than the maximum defined size, the best winners are
defined based on their crowding value, and after that, they are reserved and the others are eliminated.

The crowding factor is used in many types of research such as [11,40,41]. This technique helps to
control and manage the winners without requiring any kind of selection criterion. In this algorithm,
we propose the use of mutation operations that are used in many optimization algorithms, such as
NSGA-II, MOPSO, and OMOPSO [8,10,11]. There are many types of the mutation, such as uniform
mutation and non-uniform mutation. The uniform mutation provides a constant of variability range
for each decision variable, while in non-uniform mutation, the variability range for each decision
variable is not constant. We propose the use of different mutation level by combining both uniform
and non-uniform mutations as in [11]. These operators play a significant role by modifying the values
of the decision variables of a sperm. In addition, we intend of not using mutation at all in case the
previous mutation operations failed to find the proper results, this part of the population (population
without mutation) will reserve on good results. In this procedure, the swarms are divided to three
equal parts, including, part that will have non-uniform mutation, part will have uniform mutation, and
part without any mutation. By using this procedure, the MOSFP can explore uniform, non-uniform
mutations search space as the process progresses. Algorithm 2 shows the mutation part of the MOSFP
algorithm. As it is clear in Algorithm 2, we take modulus of 3 on the population size to divide the
population size into three equal parts. On the first part, we apply non-uniform mutation; on the
second part, we apply uniform mutation; while, on the third part, we do not apply any mutation at all.
We use the concept ∈ − dominance that has been used in [11,42,43]. This concept is used to fix the size
of non-dominance solutions (external archive). We can say that a decision vector x1 ∈ − dominance
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a decision vector x2 for some ∈> 0 if and only if: fi(x1)/(1+ ∈) ≤ fi(x2), ∀i = 1, . . . . ., m and
fi(x1)/(1+ ∈) ≤ fi(x2), for at least i = 1, . . . . ., m. ∈ − value is a user defined value, which is used to
determine the size of the final external archive. In our algorithm like [11], we use the same value of for
all objective functions, which are changed based on the amount of points in the final Pareto front.

Algorithm 2 Mutation

1: Begin
2: Step 1: for i = 0 to population size do
3: If (i % 3 == 0) then
4: Sperms_ mutated with a non-uniform mutation operator
5: Else if (i % 3 == 1) then
7: Sperms_ mutated with a uniform mutation operator
8: Else
9: Sperms_ without mutation
10: End if
11: End for
12: End procedure.

The full procedure of MOSFP is summarized in Algorithm 3. At the beginning of the procedure,
MOSFP initializes the sperm swarm. SoW is introduced based on the non-dominated sperms.
In addition, the crowding factor, later on will be calculated. At each generation, for each sperm,
the swim and the mutation procedure that is described in Algorithm 2 have been performed. In order
to perform the swim of each sperm, the following equation (sperm velocity update rule) has been used:

Vi(t) = D · Log10(pH_Rand1) ·Vi + Log10(pH_Rand2) · Log10(Temp_Rand1)

·
(

xsbesti
− xi(t)) + Log10(pH_Rand3) · Log10(Temp_Rand2) · (xsgbest − xi(t))

(6)

where D is a velocity damping factor, which takes a random value in the range of (0, 1); pH_Rand1,
pH_Rand2, and pH_Rand3 are the pH values of the visited regions, which take a value in the range of
(7, 14). The process of updating the personal sperm current best solution is based on two cases; first,
if the value of personal sperm current best solution is dominated by the new sperm; second, if the
personal sperm current best solution with the new sperm value are non-dominated with respect to
each other. Later on, if all sperms have been updated, the SoW will be updated too, which the sperms
that achieve the new positions that are better than the old positions will have the possibility to join the
winner set. After that, the ∈ −archive will take the place on the procedure to be updated. Finally, the
crowding values of SoW are processed to be updated, as many of the winners are eliminated in case of
exceeding the determined size of the winners set. This process is repeated many times until it reached
the determined number of iterations (imax). The parameter needed by this algorithm are (1) S_size
(swarm size), (2) i (number of iterations), (3) mutRate (mutation rate, which is automatically computed),
and (4) ∈, which is the value of the bounding size of the ∈ −archive.
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Algorithm 3 Multi-objective optimization algorithm based on sperm fertilization procedure (MOSFP)

1: Begin
2: Step 1: initialize positions for all sperms.
3: Step 2: initialize Winners.
4: Step 2: archive the Winners in ∈ −archive
5: Step 3: crowd the winners using crowding operation.
6: Step 4: define counter (i) and define number of maximum iterations (iMax).
7: Step 5: do //this do is a do - while
8: For <each sperm> do
9: Select winner from the sperm swarm
10: Update sperms positions using the predefined sperm velocity update rule (perform
swim)
11: Perform mutation procedure (Algorithm 1)
12: Evaluate the fitness for each sperm
13: Update personal sperm current best solution
14: End for
15: Update Set of Winners (SoW)
16: Archive winner in ∈ −archive
17: Crowd the SoW using crowding operation
18: Update value of counter (i)
19: Step 6: While i < iMax

20: Step 7: archive results in ∈ −archive
21: End procedure.

4. Comparison Strategy

Several test functions have been used to compare our algorithm with the mostly used MOOAs.
In order to apply the quantitative assessment of the efficiency and performance of MOOA, three issues
should be taken into consideration [38,44].

1. Minimize the distance between the global Pareto front (the well-known Pareto front of any
problem) and the Pareto front that produced by our approach.

2. Maximize the spread of the solutions that produced by our approach, so uniform distribution of
vectors can be achieved.

3. Maximize the convergence of algorithm to obtain a good quality of the Pareto optimal set found.

Based on these notions, we can apply one metric to estimate each of the three issues previously
mentioned. We chose the frequently used metrics for this purpose as in [38,44,45]. These metrics are
inverted generational distance (IGD), which is used to cover the notion number 1, spread (SP), which is
used to cover notion number 2, and epsilon (∈), which is used to cover notion number 3. These metrics
that adopted in this test are summarized in the following points:

Inverted Generational Distance (IGD): the generational distance measurement was proposed
by Van Veldhuizen et al. [46–48]. This measurement is used to estimate how far the Pareto front of an
algorithm from the true Pareto front of any problem. This metric can be calculated by:

IGD =

(√
n

∑
t=1

d2
i

)
/n (7)

where n is the number of non-dominated vectors that found by any algorithm, di is the Euclidean distance
that measured in object space between the true Pareto front of any problem and the vectors that generated
by any algorithm. It is clear that IGD metric should be near or equal to zero. In other meaning, if IGD = 0,
all of the elements generated are in the true Pareto front of the problem [49,50]. We use IGD to test the
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first issue, which is mentioned previously, by comparing a true Pareto front of a problem (the reference
Pareto front) with a Pareto front that produced by any algorithm of the same problem.

Spread (SP): is the diversity metric that is used to measure the extent of spread and distribution of
solutions in the set S of optimal solution. Figure 2 illustrates the spread metric of five non-dominated
solutions of S, which are spread in two cases. In the first case shown in Figure 2a, there is a poor
spread, but a good distribution, in which S does not contain the radical points, such as (1, 0), (0, 1)
on the 2-dimensional Pareto front. On the other hand, in the second case shown in Figure 2b, there
is unfavorable distribution, but a good spread of an optimal solution set [51]. We use SP to test the
second issue that mentioned previously. SP can be measured by the following equation [52]:

∆(S, P) =
d f +dl

|S|−1
∑

i=1
|di−d|

d f + dl + (|S| − 1) · d
(8)

where:

• di: is the Euclidean distance measured based on the distance between consecutive solutions,
• d: is the average of di

• d f and dl : are the minimum Euclidean distance measured based on the distance between solutions
in S to the radical (bounding) solutions of the Pareto front (P).

Epsilon (∈): is a binary indicator operates by considering all of the objectives to give a factor
by which an approximation set is worse than another. Formally, let M and N be two approximation
sets, then ∈ (M, N) equals the minimum factor ∈, which for any solution in set M there is at least one
solution in N that is not considered as worse by a factor of ∈ considering all the objects [53]. This metric
is very important to determine the quality of the obtained solution set by each algorithm [54].
We calculate ∈ to test the third issue that mentioned previously.

We chose the previous mentioned metrics as in [38,44,45], which epsilon is used to measure the
algorithm convergence, spread is used to measure the spread of the solution, while IGD is a metric
that combines both of these components [44].
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To estimate the performance of our approach, we choose the most popular MOOAs by consensus
of the specialists in the field of MOO. These algorithms are NSGA-II, strength Pareto evolutionary
algorithm 2 (SPEA2), and OMOPSO. The study in [54] found that NSGA-II and SPEA2 are the most
popular optimization methods among other evolutionary algorithms. Another study in [55] proved
that OMOPSO is the most famous optimization approach between other swarm intelligence approaches
because it has a higher performance and good quality of results. For these reasons, these algorithms
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have been chosen to compare their results with MOSFP using the same hardware, environment and
platform for each algorithm. We organize these algorithms along with their characteristics as follows:

• Non-dominated Sorting Genetic Algorithm (NSGA-II): is one of the most popular algorithms
in MOO area. This algorithm performs a set of operators that deduced from the single objective
Genetic Algorithm (GA). These operations are selection, crossover and mutation operators [9].
The pseudo-code of NSGA-II is summarized in Algorithm 4 [8].

Algorithm 4 Non-dominated sorting genetic algorithm II (NSGA-II)

1: Begin
2: Step 1: initialize Population
3: Generate random population – size M
4: Step 2: evaluate objective values
5: Step 3: assign rank (level) based on Pareto dominance-“sort”
6: Step 4: generate child population
7: Step 5: binary tournament selection
8: Step 6: recombination and mutation
9: Step 7: for i=1 to number of generations do
10: With parent and child population
11: Assign rank (level) based on Pareto – “sort”
12: Generate sets on non-dominated fronts
13: Loop (inside) by adding solutions to next generation
14: Starting from the “first” front until M individuals found
15: Determine crowding distances between points on each front
16: Select points (elitist) on the lower front (with lower rank)and are outside a crowding
16: distance
17: Create next generation
18: Binary tournament Selection
19: Recombination and mutation
20: Increment generation index
21: End for
22: End Procedure.

• Strength Pareto Evolutionary Algorithm 2 (SPEA2): is a multi-objective algorithm, which
is created as an improvement version of strength Pareto evolutionary algorithm (SPEA)
algorithm [56]. This algorithm proposed by Zitzler et al. [57]. The procedure of this algorithm
works based on dominance, which each single individual dominates or is dominated by other
solutions. The nearest neighbor technique is used to guide the search. In addition, this algorithm
operates based on preserving the boundary solutions by using archive truncation method [58].
Algorithm 5 summarizes the pseudo-code of this algorithm [59].

• Optimized Multi-objective Particle Swarm Optimization (OMOPSO): proposed by Sierra et al. [11].
This algorithm performs a set of operators to solve MOOPs, such as crowding the global best
solutions that known as leaders, performs mutation, after that, performs an archive of the leaders.
The pseudo-code of OMOPSO is summarized in Algorithm 6.

In order to compare our algorithm with the previously mentioned algorithms, we use two
techniques, including, quantitative and qualitative tests. For the quantitative test, we adopt the
IGD, SP, and ∈ measures, while for the qualitative test, we compare between the quality of Pareto
fronts that is achieved by our algorithm and the Pareto fronts that achieved by the other algorithms.
For these purposes, two test suites called Zitzler-Deb-Thiele (ZDT), and Walking-Fish-Group
(WFG) have been used in this work.
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Algorithm 5 Strength Pareto evolutionary algorithm 2 (SPEA2)

1: Begin
2: Step 1: initialize population P
3: Step 2: evaluate objective functions
4: Step 3: create external archive A
5: Step 4: for i=1 to number of generations do
6: Compute fitness of individual in P and A
7: Add non-dominated individuals from P and A
8: If capacity of A is exceeded Then
9: Remove individuals from A by truncation operator
10: End If
11: Perform binary tournament selection to create mating pool
12: Perform crossover
13: Perform mutation
14: End for
15: End Procedure.

• Zitzler-Deb-Thiele (ZDT) Test Suite: this suite is proposed by Zitzler et al. [60]. ZDT suite is
the most widely utilized suite of benchmark functions in evolutionary algorithms and swarm
intelligence algorithms literature. The characteristics of ZDT problems are analyzed in Table 1.
From the table, we can notice that the geometry of ZDT1 is convex, and the geometry of ZDT2 is
concave. In addition, ZDT3 is disconnected on both the Pareto front and the Pareto optimal set,
while the other functions consist of convex or concave components. The ZDT benchmark functions
share many characteristics, including, how multimodality can cause a disconnected Pareto
problems such as in ZDT3, and many-to-one Pareto problem, such as in ZDT6. These functions
utilize only a single parameter, which means that these functions own only one variable. There are
many advantages of using ZDT problem as a benchmark function for MOOAs, including, that
this suite is well defined and employed in many research papers, which facilitate the comparisons
with new MOOA. In addition, the Pareto optimal fronts of this suite are easy to apply and to
understand [61]. For these reasons, we choose this suite to test our proposed algorithm.

Algorithm 6 Optimized multi-objective particle swarm optimization (OMOPSO)

1: Begin
2: Step 1: initialize swarm and leaders. Send leaders to ∈archive
3: Step 2: crowding(leaders), g = 0
4: Step 3: While g < max number of iterations (gmax)
5: For <each particle> do
6: Select leader. Flight. Mutation. Evaluation. Update pbest
7: End for
8: Update leaders, Send leaders to ∈-archive
9: Crowding(leaders), g++
10: End while
11: Step 4: Report results in ∈-archive
12: End Procedure.

• Walking-Fish-Group (WFG) Test Suite: WFG suite consists of nine problems introduced by [62].
The characteristics of these problems are outlined in Table 2 [60]. WFG1 and WFG7 are the only
both unimodal and separable. WFG6 and WFG9 are the non-separable reduction problems, and
they are more difficult than that of WFG3 and WFG2. WFG4 is a multimodality problem with a
large “hill sizes” and it is more difficult than that of WFG9. WFG1 employs different parameters
by using dissimilar weights in its variable weighted sum reduction. The parameters of WFG7
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are dependent on the position and distance-related parameters, whereas WFG9 is more complex,
which its distance-related parameters depend on other distance-related parameters. WFG8 is
different than WFG9, wherein its distance-related parameters depend on other position and
distance-related parameters. WFG5 is highly deceptive function and can be more difficult than
that of WFG9.

Table 1. Analysis of ZDT benchmark functions [60].

Name ZDT1 ZDT2 ZDT3 ZDT6

Objective f1 f2 f1 f2 f1 f2 f1 f2
R3: # Parameters 1 3 1 3 1 3 1 3

F2: Separability S S S S S S S S
F5: Modality U U U U U M U U

R1: No Extremal 7 7 7 7

R2: No Medial 3 3 3 3

R5: Diss. Domains 7 7 7 7

R6: Diss. Ranges 7 7 3 3

R7: Optima known 3 3 3 3

F1: Geometry convex concave disconnected concave
F3: Bias - - - +

F4a: Pareto
Many-to-one - - - +

F4b: Flat Regions - - - -

Table 2. Analysis of WFG benchmark functions [60].

Name Objective F2: Separability Modality Bias Geometry
WFG1 f1:M S U Polynomial, flat Convex, Mixed

WFG2 f1:M-1
fM

NS U − Convex,
disconnectedNS M

WFG3 f1:M NS U − Linear, degenerate
WFG4 f1:M S M − Concave
WFG5 f1:M S D − Concave
WFG6 f1:M NS U − Concave
WFG7 f1:M S U Parameter dependent Concave
WFG8 f1:M NS U Parameter dependent Concave
WFG9 f1:M NS M, D Parameter dependent Concave

The WFG test suite is considered as a comprehensive problem, which consists of a wide range of
various problems, including, deceptive problems, a mixed shape Pareto front problems, non-separable
problems, a truly degenerate problems, problems with dependencies between both distance and
position-related parameters, and problems scalable in the number of position related parameters.
The WFG test suite can be considered as one of the most commonly used suite of providing a truer
means of estimating the performance of MOOAs [63]. For these reasons, we choose this suite to test
our proposed algorithm. The mathematical definition of ZDT and WFG problems has been defined in
the Appendix A.

The abbreviation in Tables 1 and 2 are “NS” for non-separable, “S” for separable, “M” for
multimodal, “U” for unimodal, “D” for deceptive. The symbols “3” and “+” indicate whether a given
recommendation is adhered to, whereas the symbols “+” and “−” indicate the presence or absence of
some features.

5. Experimental Test and Results

We implement the MOSFP algorithm using jMetal tool in the Java language and integrate the
implementation into NetBeans IDE 8.1. All of the tests are carried out on a computer with Intel dual core
CPU T3200 and 3 GB RAM running Windows 7. We use standard parameters, as recommended in [63],
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to compare between the proposed MOSFP algorithm and the other algorithms. These parameters are
summarized in Table 3. The parameters of all the algorithms are kept in all of the examples presented
next. We report the results obtained from executing 100 independent runs of each algorithm for each
test function. In each test function, we set the total number of fitness function evaluations to 5000.
Three metrics namely, ∈, SP, and IGD are measured and their best, worst, average, and median of each
metric based on 5000 runs are presented.

Table 3. Parameters of the algorithms.

Parameters MOSFP OMOPSO NSGA-II SPEA2
Population size 100 100 100 100
Archive size (winner) 100 100 (Elite) 100 100
Mating pool size - - - 100
Maximum generation 5000 5000 5000 5000
Crossover probability - - 0.9 0.9
Mutation probability 1/d where d is the variable code size

A. ZDT Test Suites

Overall, the OMOPSO algorithm obtained the best average of ∈, SP, and IGD measurement for
ZDT test functions, while the proposed MOSFP is in the second followed by NSGA-II and SPEA2 as
outlined in Table 4. However, for ZDT3 test function, the proposed MOSFP attained the best average
∈ among all of the algorithms. Despite the ranking, the proposed MOSFP has shown a comparable
performance with the OMOPSO algorithm as their difference of average ∈, SP, and IGD measurement
are minimal. Both the OMOPSO and MOSFP preserved extreme superior points of the Pareto front
such as (0, 1) and (1, 0) for ZDT1 and ZDT2 functions as depicted in Figures 3 and 4. Also, both the
OMOPSO and MOSFP preserved the Pareto front extreme superior points of (0, 1) for ZDT3 function
and (1, 0) for ZDT6 function, as shown in Figures 5 and 6. In opposite, NSGA-II and SPEA2 failed to
obtain these optimal extreme values of the Pareto front for all ZDT functions.

B. WFG Test Suites

Table 5 summarized the best, worst, average, and median of ∈, SP, and IGD measured from
5000 runs for WFG test functions. In this test, the OMOPSO algorithm has the best overall performance
among all of the algorithms. However, the proposed MOSFP outperformed the OMOPSO, NSGA-II,
and SPEA2 algorithms in solving WFG5 and WFG8 functions in terms of ∈ measurement and the best
average of IGD for WFG5 function.
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Table 4. Comparison of experimental results between multi-objective optimization algorithm based on sperm fertilization procedure (MOSFP), optimized
multi-objective particle swarm optimization (OMOPSO), non-dominated sorting genetic algorithm II (NSGA-II), and strength Pareto evolutionary algorithm
2 (SPEA2) in terms of epsilon (∈) spread (SP), and inverted generational distance (IGD) for Zitzler-Deb-Thiele (ZDT) test functions.

Method

Metrics

∈ SP IGD

Best Worst Aver. Med. Best Worst Aver. Med. Best Worst Aver. Med.

ZDT1
MOSFP 5.01 × 10−3 5.57 × 10−3 5.27 × 10−3 5.25 × 10−3 2.76 × 10−2 9.85 × 10−2 6.23 × 10−2 6.22 × 10−2 3.44 × 10−5 3.61 × 10−5 3.51 × 10−5 3.51 × 10−5

OMOPSO 4.92 × 10−3 5.40 × 10−3 5.15 × 10−3 5.15 × 10−3 3.29 × 10−2 8.74 × 10−2 5.54 × 10−2 5.52 × 10−2 3.39 × 10−5 3.60 × 10−5 3.48 × 10−5 3.48 × 10−5

NSGA-II 1.11 × 10−1 2.67 × 10−1 1.61 × 10−1 1.51 × 10−1 5.84 × 10−1 8.17 × 10−1 6.80 × 10−1 6.87 × 10−1 7.65 × 10−4 1.92 × 10−3 1.18 × 10−3 1.14 × 10−3

SPEA2 1.60 × 10−1 4.58 × 10−1 2.82 × 10−1 2.74 × 10−1 8.92 × 10−1 6.11 × 10−1 7.43 × 10−1 7.35 × 10−1 1.04 × 10−3 2.71 × 10−3 1.76 × 10−3 1.72 × 10−3

ZDT2
MOSFP 5.018 × 10−3 5.65 × 10−3 5.27 × 10−3 5.28 × 10−3 2.75 × 10−2 9.95 × 10−2 5.62 × 10−2 5.41 × 10−2 3.41 × 10−5 3.60 × 10−5 3.49 × 10−5 3.49 × 10−5

OMOPSO 4.93 × 10−3 5.32 × 10−3 5.13 × 10−3 5.14 × 10−3 2.45 × 10−2 8.30 × 10−2 5.53 × 10−2 5.56 × 10−2 3.43 × 10−5 3.56 × 10−5 3.48 × 10−5 3.47 × 10−5

NSGA-II 3.46 × 10−1 1.457 6.32 × 10−1 5.88 × 10−1 6.38 × 10−1 1.011 8.33 × 10−1 8.32 × 10−1 1.54 × 10−3 9.44 × 10−3 3.10 × 10−3 2.75 × 10−3

SPEA2 5.21 × 10−1 1.775 1.107 1.051 8.14 × 10−1 1.0162 9.38 × 10−1 9.51 × 10−1 2.50 × 10−3 1.16 × 10−2 6.34 × 10−3 5.31 × 10−3

ZDT3
MOSFP 3.37 × 10−3 5.28 × 10−3 4.13 × 10−3 4.11 × 10−3 6.99 × 10−1 7.02 × 10−1 7.01 × 10−1 7.01 × 10−1 2.78 × 10−5 3.08 × 10−5 2.91 × 10−5 2.91 × 10−5

OMOPSO 3.54 × 10−3 5.25 × 10−3 4.18 × 10−3 4.06 × 10−3 6.99 × 10−1 7.01 × 10−1 7.00 × 10−1 7.00 × 10−1 2.74 × 10−5 3.04 × 10−5 2.86 × 10−5 2.86 × 10−5

NSGA-II 1.51 × 10−1 3.36 × 10−1 2.10 × 10−1 2.01 × 10−1 7.82 × 10−1 9.39 × 10−1 8.63 × 10−1 8.62 × 10−1 3.96 × 10−4 1.40 × 10−3 8.73 × 10−4 8.87 × 10−4

SPEA2 1.91 × 10−1 6.06 × 10−1 2.92 × 10−1 2.86 × 10−1 7.88 × 10−1 9.37 × 10−1 8.64 × 10−1 8.62 × 10−1 7.43 × 10−4 1.98 × 10−3 1.30 × 10−3 1.31 × 10−3

ZDT6
MOSFP 5.32 × 10−3 6.53 × 10−3 5.90 × 10−3 5.91 × 10−3 1.33 × 10−1 1.81 × 10−1 1.55 × 10−1 1.55 × 10−1 3.21 × 10−5 3.35 × 10−5 3.27 × 10−5 3.27 × 10−5

OMOPSO 4.73 × 10−3 9.00 × 10−3 5.59 × 10−3 5.42 × 10−3 5.59 × 10−2 2.53 × 10−1 1.13 × 10−1 1.08 × 10−1 3.09 × 10−5 3.41 × 10−5 3.19 × 10−5 3.17 × 10−5

NSGA-II 2.34 × 10−2 3.53 × 10−2 2.71 × 10−2 2.65 × 10−2 6.04 × 10−2 1.36 7.41 × 10−1 9.53 × 10−1 4.67 × 10−5 1.37 × 10−3 2.03 × 10−4 1.60 × 10−4

SPEA2 1.85 × 10−2 3.84 × 10−1 6.98 × 10−2 6.09 × 10−2 9.03 × 10−1 1.436 1.332 1.345 1.99 × 10−4 2.29 × 10−4 2.04 × 10−4 2.03 × 10−4
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Figure 4. Pareto fronts obtained by all the algorithms for ZDT2.
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Table 5. Comparison of experimental results between MOSFP, OMOPSO, NSGA-II, and SPEA2 in terms of epsilon (∈ ) spread (SP), and inverted generational distance
(IGD) for WFG test functions.

Method

Metrics

∈ SP IGD

Best Worst Aver. Med. Best Worst Aver. Med. Best Worst Aver. Med.
WFG1

MOSFP 8.59× 10−1 1.199 1.092 1.094 8.01 × 10−1 1.057 9.31 × 10−1 9.31 × 10−1 2.72 × 10−3 4.93 × 10−3 4.33 × 10−3 4.37 × 10−3

OMOPSO 7.68 × 10−2 1.022 1.61 × 10−1 1.45 × 10−1 7.41 × 10−1 1.238 8.42 × 10−1 8.33 × 10−1 3.04 × 10−5 3.49 × 10−3 1.05 × 10−4 4.81 × 10−5

NSGA-II 1.441 2.020 1.740 1.746 8.63 × 10−1 1.030 9.37 × 10−1 9.33 × 10−1 3.93 × 10−3 6.17 × 10−3 5.06 × 10−3 5.07 × 10−3

SPEA2 1.562 2.227 1.923 1.922 8.08 × 10−1 1.266 1.080 1.070 4.46 × 10−3 7.02 × 10−3 5.77 × 10−3 5.73 × 10−3

WFG2
MOSFP 1.14 × 10−2 1.92 × 10−2 1.42 × 10−2 1.39 × 10−2 7.57 × 10−1 7.96 × 10−1 7.77 × 10−1 7.74 × 10−1 5.07 × 10−5 7.37 × 10−5 5.91 × 10−5 5.90 × 10−5

OMOPSO 7.48 × 10−3 1.04 × 10−2 9.01 × 10−3 8.94 × 10−3 7.56 × 10−1 7.59 × 10−1 7.57 × 10−1 7.57 × 10−1 3.81 × 10−5 4.22 × 10−5 4.01 × 10−5 4.00 × 10−5

NSGA-II 1.59 × 10−2 8.15 × 10−1 4.83 × 10−1 7.99 × 10−1 7.86 × 10−1 1.006 8.59 × 10−1 8.50 × 10−1 6.21 × 10−5 1.77 × 10−3 1.06 × 10−3 1.73 × 10−3

SPEA2 1.64 × 10−2 8.18 × 10−1 5.03 × 10−1 8.01 × 10−1 8.01 × 10−1 1.076 9.27 × 10−1 9.22 × 10−1 6.85 × 10−5 1.77 × 10−3 1.11 × 10−3 1.73 × 10−3

WFG3
MOSFP 1.55 × 10−2 1.81 × 10−2 1.81 × 10−2 1.66 × 10−2 2.40 × 10−2 6.63 × 10−2 4.22 × 10−2 4.29 × 10−2 4.48 × 10−5 4.81 × 10−5 4.62 × 10−5 4.61 × 10−5

OMOPSO 1.39 × 10−2 1.51 × 10−2 1.43 × 10−2 1.43 × 10−2 1.54 × 10−2 4.85 × 10−2 2.95 × 10−2 2.89 × 10−2 4.37 × 10−5 4.64 × 10−5 4.49 × 10−5 4.5 × 10−5

NSGA-II 3.37 × 10−2 7.05 × 10−2 4.60 × 10−2 4.43 × 10−2 2.62 × 10−1 4.10 × 10−1 3.44 × 10−1 3.44 × 10−1 7.06 × 10−5 1.35 × 10−4 8.55 × 10−5 8.34 × 10−5

SPEA2 2.74 × 10−2 1.12 × 10−1 4.87 × 10−2 4.44 × 10−2 1.70 × 10−1 3.09 × 10−1 2.16 × 10−1 2.16 × 10−1 5.99 × 10−5 1.32 × 10−4 8.58 × 10−5 8.60 × 10−5

WFG4
MOSFP 2.87 × 10−2 1.91 × 10−1 4.71 × 10−2 4.16 × 10−2 3.10 × 10−1 4.38 × 10−1 3.72 × 10−1 3.74 × 10−1 1.13 × 10−4 1.55 × 10−4 1.25 × 10−4 1.24 × 10−4

OMOPSO 1.25 × 10−2 4.47 × 10−2 1.90 × 10−2 1.52 × 10−2 9.02 × 10−2 2.43 × 10−1 1.38 × 10−1 1.27 × 10−1 8.13 × 10−5 1.14 × 10−4 8.86 × 10−5 8.51 × 10−5

NSGA-II 6.26 × 10−2 1.55 × 10−1 1.09 × 10−1 1.10 × 10−1 4.55 × 10−1 6.69 × 10−1 5.56 × 10−1 5.53 × 10−1 2.90 × 10−4 4.30 × 10−4 3.60 × 10−4 3.54 × 10−4

SPEA2 3.01 × 10−2 4.17 × 10−1 1.04 × 10−1 7.02 × 10−2 2.46 × 10−1 3.51 × 10−1 3.00 × 10−1 3.02 × 10−1 1.01 × 10−4 1.74 × 10−4 1.16 × 10−4 1.14 × 10−4

WFG5
MOSFP 4.99 × 10−2 6.52 × 10−2 5.61 × 10−2 5.59 × 10−2 9.78 × 10−2 1.76 × 10−1 1.40 × 10−1 1.40 × 10−1 2.66 × 10−4 4.24 × 10−4 3.00 × 10−4 2.95 × 10−4

OMOPSO 4.93 × 10−2 9.35 × 10−2 5.73 × 10−2 5.71 × 10−2 9.05 × 10−2 3.47 × 10−1 1.19 × 10−1 1.18 × 10−1 2.57 × 10−4 6.84 × 10−4 3.05 × 10−4 2.95 × 10−4

NSGA-II 5.30 × 10−2 1.33 × 10−1 1.04 × 10−1 1.04 × 10−1 3.15 × 10−1 4.55 × 10−1 3.88 × 10−1 3.85 × 10−1 3.14 × 10−4 1.15 × 10−3 8.11 × 10−4 8.26 × 10−4

SPEA2 9.73 × 10−2 1.50 × 10−1 1.19 × 10−1 1.17 × 10−1 2.29 × 10−1 3.34 × 10−1 2.82 × 10−1 2.81 × 10−1 7.32 × 10−4 1.30 × 10−3 9.75 × 10−4 947 × 10−4

WFG6
MOSFP 1.55 × 10−2 2.08 × 10−2 1.70 × 10−2 1.69 × 10−2 8.58 × 10−2 1.52 × 10−1 1.20 × 10−1 1.22 × 10−1 4.98 × 10−5 5.46 × 10−5 5.21 × 10−5 5.21 × 10−5

OMOPSO 1.29 × 10−2 1.45 × 10−2 1.36 × 10−2 1.36 × 10−2 7.70 × 10−2 1.42 × 10−1 1.05 × 10−1 1.06 × 10−1 4.71 × 10−5 5.16 × 10−5 4.90 × 10−5 4.88 × 10−5

NSGA-II 3.49 × 10−2 1.30 × 10−1 6.10 × 10−2 5.75 × 10−2 3.19 × 10−1 5.17 × 10−1 3.92 × 10−1 3.86 × 10−1 7.59 × 10−5 5.32 × 10−4 1.64 × 10−4 1.45 × 10−4

SPEA2 3.41 × 10−2 2.13 × 10−1 8.74 × 10−2 7.79 × 10−2 2.52 × 10−1 6.56 × 10−1 3.61 × 10−1 3.44 × 10−1 7.17 × 10−5 4.08 × 10−4 1.76 × 10−4 1.67 × 10−4

WFG7
MOSFP 1.47 × 10−2 1.89 × 10−2 1.57 × 10−2 1.56 × 10−2 9.38 × 10−2 1.44 × 10−1 1.20 × 10−1 1.20 × 10−1 4.94 × 10−5 5.38 × 10−5 5.14 × 10−5 5.14 × 10−5

OMOPSO 1.29 × 10−2 1.45 × 10−2 1.36 × 10−2 1.36 × 10−2 8.68 × 10−2 1.38 × 10−1 1.10 × 10−1 1.09 × 10−1 4.71 × 10−5 5.10 × 10−5 4.93 × 10−5 4.93 × 10−5

NSGA-II 2.98 × 10−2 7.71 × 10−2 4.23 × 10−2 3.98 × 10−2 3.13 × 10−1 4.48 × 10−1 3.82 × 10−1 3.79 × 10−1 6.75 × 10−5 8.45 × 10−5 7.47 × 10−5 7.42 × 10−5

SPEA2 2.85 × 10−2 3.34 × 10−1 8.82 × 10−2 7.23 × 10−2 2.41 × 10−1 4.41 × 10−1 2.92 × 10−1 2.89 × 10−1 6.00 × 10−5 3.34 × 10−4 7.35 × 10−5 6.85 × 10−5
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Table 5. Cont.

Method

Metrics

∈ SP IGD

Best Worst Aver. Med. Best Worst Aver. Med. Best Worst Aver. Med.
WFG8

MOSFP 3.05 × 10−1 4.82 × 10−1 3.66 × 10−1 3.66 × 10−1 6.30 × 10−1 1.071 7.54 × 10−1 7.34 × 10−1 1.73 × 10−3 2.18 × 10−3 2.02 × 10−3 2.02 × 10−3

OMOPSO 5.31 × 10−2 4.89 × 10−1 3.78 × 10−1 4.87 × 10−1 4.05 × 10−1 7.83 × 10−1 5.06 × 10−1 4.89 × 10−1 2.33 × 10−4 2.11 × 10−3 1.79 × 10−3 2.08 × 10−3

NSGA-II 1.94 × 10−1 7.27 × 10−1 4.62 × 10−1 4.97 × 10−1 6.60 × 10−1 9.34 × 10−1 7.95 × 10−1 7.94 × 10−1 1.10 × 10−3 2.61 × 10−3 2.26 × 10−3 2.37 × 10−3

SPEA2 3.99 × 10−1 8.15 × 10−1 6.14 × 10−1 6.00 × 10−1 6.45 × 10−1 9.09 × 10−1 7.67 × 10−1 7.58 × 10−1 2.04 × 10−3 2.68 × 10−3 2.44 × 10−3 2.46 × 10−3

WFG9
MOSFP 3.59 × 10−2 1.05 × 10−1 9.26 × 10−2 9.28 × 10−2 1.37 × 10−1 2.27 × 10−1 1.84 × 10−1 1.83 × 10−1 8.15 × 10−5 9.25 × 10−5 8.69 × 10−5 8.70 × 10−5

OMOPSO 1.53 × 10−2 8.35 × 10−2 7.58 × 10−2 7.81 × 10−2 6.31 × 10−2 1.20 × 10−1 9.51 × 10−2 9.56 × 10−2 5.32 × 10−5 5.77 × 10−5 5.50 × 10−5 5.50 × 10−5

NSGA-II 8.76 × 10−2 1.76 × 10−1 1.09 × 10−1 1.04 × 10−1 3.05 × 10−1 4.39 × 10−1 3.63 × 10−1 3.65 × 10−1 8.17 × 10−5 1.19 × 10−4 9.87 × 10−5 9.81 × 10−5

SPEA2 8.86 × 10−2 2.44 × 10−1 1.30 × 10−1 1.21 × 10−1 2.29 × 10−1 3.25 × 10−1 2.86 × 10−1 2.86 × 10−1 7.76 × 10−5 1.54 × 10−4 9.38 × 10−5 9.32 × 10−5



Symmetry 2017, 9, 241 19 of 29

From Figures 7–15, the proposed MOSFP demonstrates a high ability in obtaining the optimal
extreme superior points of the true Pareto front i.e., (0, 4) and (2, 0) for WFG test functions.
The proposed MOSFP obtained a close approximation of extreme superior points to the optimal
point of the true Pareto front in solving WFG2, WFG3, WFG4, WFG5, WFG6, WFG7, and WFG9 test
functions. For WFG8 function, all of the algorithms obtained inaccurate approximation of extreme
superior points of true Pareto front. However, both the OMOPSO and MOSFP algorithms exhibit a
better spread than NSGA-II and SPEA2 when their Pareto front is distributed into three parts when
compared to NSGA-II and SPEA2 that are distributed into two parts. The same can also be observed
in WFG1 test function when OMOPSO and MOSFP are more spread than NSGA-II and SPEA2.
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Figure 7. Pareto fronts obtained by all the algorithms for WFG1.



Symmetry 2017, 9, 241 20 of 29

Symmetry 2017, 9, 241  17 of 27 

 

Figure 7. Pareto fronts obtained by all the algorithms for WFG1. 

Figure 8. Pareto fronts obtained by all the algorithms for WFG2. 

(2.42, 
6.3×10−1)

(1.66, 
1.94)

0

1

2

3

0 1 2 3

F2

F1

WFG1 Pareto front of NSGA-II

(8.8×10−1, 
4.8 ×10−1)

(2.6×10−1, 
1)

0

2

4

6

0 1 2 3

F2

F1

WFG1 Pareto front of MOSFP

(0.0, 4.0)
(1.99, -

1.07×10−7

)

-2

0

2

4

6

0 1 2 3

F2

F1

WFG1 Pareto front of OMOPSO

(2.05, 
1.69)

(2.75, 
8.3×10−1)0

0.5
1

1.5
2

0 1 2 3

F2

F1

WFG1 Pareto front of SPEA2

(1.0×10−1, 
3.19)

(2.00, 
7.42×10−4

)

(4.0×10−4, 
4.0)

(1.92, 
7.7×10−1)

0
1
2
3
4
5

0 1 2 3

F2

F1

WFG2 Pareto front of MOSFP

(2.009, 
1.1×10−2)

(5.0×10−3, 
3.926)

(1.92, 
7.8×10−1)(1.1×10−1, 

3.189)

0
1
2
3
4
5

0 1 2 3

F2

F1

WFG2 Pareto front of NSGA-II

(1.3×10−2, 
3.905)

(1.1×10−1, 
3.203)

(1.937, 
6.6×10−1)

(1.993 
4.5×10−2)0

1
2
3
4
5

0 1 2 3

F2

F1

WFG2 Pareto front of SPEA2

(1.91, 
7.9×10−1)

(2.1×10−6, 
4)

(1.0×10−1, 
3.18)

(2.0, 
7.7×10−6)

0

1

2

3

4

5

0 1 2 3

F2

F1

WFG2 Pareto front of OMOPSO

Figure 8. Pareto fronts obtained by all the algorithms for WFG2.
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Figure 9. Pareto fronts obtained by all the algorithms for WFG3.



Symmetry 2017, 9, 241 21 of 29

Symmetry 2017, 9, 241  18 of 27 

 

Figure 9. Pareto fronts obtained by all the algorithms for WFG3. 

  

  

Figure 10. Pareto fronts obtained by all the algorithms for WFG4. 

(2.0, 
2.3×10−4)

(2.7×10−4, 
4.0)

0

2

4

6

0 1 2 3

F2

F1

WFG3 Pareto front of MOSFP

(1.99, 
5.6×10−2)

(2.6×10−1, 
3.98)

0

2

4

6

0 1 2 3

F2

F1

WFG3 Pareto front of NSGA-II

(1.99, 
4.0×10−2)

(1.1×10−1, 
3.80)

0
1
2
3
4

0 1 2 3

F2

F1

WFG3 Pareto front of SPEA2

(2.0, 
5.7×10−6)

(6.1×10−6, 
4.0)

0

2

4

6

0 1 2 3

F2

F1

WFG3 Pareto front of OMOPSO

(1.2×10−1, 
4.07)

(2.01, 
1.0×10−1)0

2

4

6

0 1 2 3

F2

F1

WFG4 Pareto front of MOSFP

(2.0, 
4.0×10−2)

(3.0×10−1, 
4.02)

0

2

4

6

0 1 2 3

F2

F1

WFG4 Pareto front of NSGA-II

(2.0, 
1.0×10−2)

(3.0×10−2,  
4.0)

0

2

4

6

0 1 2 3

F2

F1

WFG4 Pareto front of SPEA2

(3.0×10−2, 
4.01)

(2.0, 0.0)0

2

4

6

0 1 2 3

F1

F1

WFG4 Pareto front of OMOPSO

Figure 10. Pareto fronts obtained by all the algorithms for WFG4.
Symmetry 2017, 9, 241  19 of 27 

 

  

  

Figure 11. Pareto fronts obtained by all the algorithms for WFG5. 

  

  

Figure 12. Pareto fronts obtained by all the algorithms for WFG6. 

(1.2×10−1, 
4.046)

(2.04, 
8.7×10-2)0

2

4

6

0 1 2 3

F2

F1

WFG5 Pareto front of MOSFP

(1.3×10−1, 
4.046)

(2.050, 
5.3×10−2)0

2

4

6

0 1 2 3

F2

F1

WFG5 Pareto front of NSGA-II

(2.050, 
1.81×10−1

)

(2.2×10−1, 
4.044)

0

2

4

6

0 1 2 3

F2

F1

WFG5 Pareto front of SPEA2

(1.3×10−1, 
4.046)

(2.05, 
5.5×10−1)0

2

4

6

0 1 2 3

F2

F1

WFG5 Pareto front of OMOPSO

(2.0, 
7.8×10−2)

(4.2×10−4, 
4)

0

2

4

6

0 1 2 3

F2

F1

WFG6 Pareto front of MOSFP

(3.9×10−1, 
4.024)

(2.02, 
3.2×10−2)0

2

4

6

0 1 2 3

F2

F2

WFG6 Pareto front of NSGA-II

(1.8×10−2, 
4.012)

(2.03, 
8.3×10−2)0

2

4

6

0 1 2 3

F2

F1

WFG6 Pareto front of SPEA2

(5.8×10−6, 
4) (2.0, 

8.3×10−6)0

2

4

6

0.00E+00 1.00E+00 2.00E+00 3.00E+00

F2

F1

WFG6 Pareto front of OMOPSO

Figure 11. Pareto fronts obtained by all the algorithms for WFG5.



Symmetry 2017, 9, 241 22 of 29

Symmetry 2017, 9, 241  19 of 27 

 

  

  

Figure 11. Pareto fronts obtained by all the algorithms for WFG5. 

  

  

Figure 12. Pareto fronts obtained by all the algorithms for WFG6. 

(1.2×10−1, 
4.046)

(2.04, 
8.7×10-2)0

2

4

6

0 1 2 3

F2

F1

WFG5 Pareto front of MOSFP

(1.3×10−1, 
4.046)

(2.050, 
5.3×10−2)0

2

4

6

0 1 2 3

F2

F1

WFG5 Pareto front of NSGA-II

(2.050, 
1.81×10−1

)

(2.2×10−1, 
4.044)

0

2

4

6

0 1 2 3

F2

F1

WFG5 Pareto front of SPEA2

(1.3×10−1, 
4.046)

(2.05, 
5.5×10−1)0

2

4

6

0 1 2 3

F2

F1

WFG5 Pareto front of OMOPSO

(2.0, 
7.8×10−2)

(4.2×10−4, 
4)

0

2

4

6

0 1 2 3

F2

F1

WFG6 Pareto front of MOSFP

(3.9×10−1, 
4.024)

(2.02, 
3.2×10−2)0

2

4

6

0 1 2 3

F2

F2

WFG6 Pareto front of NSGA-II

(1.8×10−2, 
4.012)

(2.03, 
8.3×10−2)0

2

4

6

0 1 2 3

F2

F1

WFG6 Pareto front of SPEA2

(5.8×10−6, 
4) (2.0, 

8.3×10−6)0

2

4

6

0.00E+00 1.00E+00 2.00E+00 3.00E+00

F2

F1

WFG6 Pareto front of OMOPSO

Figure 12. Pareto fronts obtained by all the algorithms for WFG6.
Symmetry 2017, 9, 241  20 of 27 

 

  

  

Figure 13. Pareto fronts obtained by all the algorithms for WFG7. 

  

  

Figure 14. Pareto fronts obtained by all the algorithms for WFG8. 

(2.0, 
1.5×10−4)

(3.5×10−4, 
4.0)

0

2

4

6

0 1 2 3

F2

F1

WFG7 Pareto front of MOSFP

(2.005, 
1.6×10−2)

(1.1×10−2, 
4.003)

0

2

4

6

0 1 2 3

F2

F1

WFG7 Pareto front of NSGA-II

(2.009, 
1.6×10−2)

(1.6×10−1, 
4.048)

0

2

4

6

0 1 2 3

F2

F1

WFG7 Pareto front of SPEA2

(4.3×10-6, 
4)

(2, 
2.6×10−6)0

2

4

6

0 1 2 3

F2

F1

WFG7 Pareto front of OMOPSO

(2.526, 
7.3×10−1)

(3.6×10−1, 
4.254)

0

2

4

6

0 1 2 3

F2

F1

WFG8 Pareto front of MOSFP

(2.284, 
9.9×10−1)

(2.5×10−1, 
4.257)

0

2

4

6

0 1 2 3

F2

F1

WFG8 Pareto front of NSGA-II

(3.0×10−1, 
4.265)

(2.356, 
3.5×10−1)0

2

4

6

0 1 2 3

F2

F1

WFG8 Pareto front of SPEA2

(2.560, 
6.2×10−1)

(3.9×10−1, 
4.27)

0

2

4

6

0 1 2 3

F2

F1

WFG8 Pareto front of OMOPSO

Figure 13. Pareto fronts obtained by all the algorithms for WFG7.



Symmetry 2017, 9, 241 23 of 29

Symmetry 2017, 9, 241  20 of 27 

 

  

  

Figure 13. Pareto fronts obtained by all the algorithms for WFG7. 

  

  

Figure 14. Pareto fronts obtained by all the algorithms for WFG8. 

(2.0, 
1.5×10−4)

(3.5×10−4, 
4.0)

0

2

4

6

0 1 2 3

F2

F1

WFG7 Pareto front of MOSFP

(2.005, 
1.6×10−2)

(1.1×10−2, 
4.003)

0

2

4

6

0 1 2 3

F2

F1

WFG7 Pareto front of NSGA-II

(2.009, 
1.6×10−2)

(1.6×10−1, 
4.048)

0

2

4

6

0 1 2 3

F2

F1

WFG7 Pareto front of SPEA2

(4.3×10-6, 
4)

(2, 
2.6×10−6)0

2

4

6

0 1 2 3

F2

F1

WFG7 Pareto front of OMOPSO

(2.526, 
7.3×10−1)

(3.6×10−1, 
4.254)

0

2

4

6

0 1 2 3

F2

F1

WFG8 Pareto front of MOSFP

(2.284, 
9.9×10−1)

(2.5×10−1, 
4.257)

0

2

4

6

0 1 2 3

F2

F1

WFG8 Pareto front of NSGA-II

(3.0×10−1, 
4.265)

(2.356, 
3.5×10−1)0

2

4

6

0 1 2 3

F2

F1

WFG8 Pareto front of SPEA2

(2.560, 
6.2×10−1)

(3.9×10−1, 
4.27)

0

2

4

6

0 1 2 3

F2

F1

WFG8 Pareto front of OMOPSO

Figure 14. Pareto fronts obtained by all the algorithms for WFG8.
Symmetry 2017, 9, 241  21 of 27 

 

Figure 15. Pareto fronts obtained by all the algorithms for WFG9. 

6. Discussion 

In this paper, MOSFP, OMOPSO, NSGA-II, and SPEA2 have been tested on ZDT and WFG 
benchmark functions. Three standard metrics are measured in the experiments, namely epsilon, 
spread, and inverted generational distance. For each algorithm tested in the experiment, the 
maximum generation for each function is set to 5000. The test is repeated 100 times for each objective 
to ensure the convergence of the results. 

Overall, the proposed MOSFP algorithm outperformed both NSGA-II and SPEA2 algorithms in 
all of the benchmarks functions. Furthermore, MOSFP attained a high amount of points and a good 
approximation of the true Pareto front of all the benchmark functions. Additionally, MOSFP 
outperformed OMOPSO in solving the WFG5 problems, and obtained better solution sets than 
OMOPSO for true Pareto front of both ZDT3 and WFG8. The high-quality performance of the 
proposed MOSFP was reflected on the metrics of epsilon and IGD of WFG5, and epsilon of both ZDT3 
and WFG8. This shows that the proposed MOSFP has a better convergence than the OMOPSO 
algorithm to explore the search space domain. Particularly, in solving the very complex disconnected 
functions, such as ZDT3 and benchmark suites that contain more than two objective functions, such 
as WFG5 and WFG8. 

Based on that, MOSFP has the potential in solving the coverage problem of wireless sensor 
network (WSN), in which finding the optimal coverage required of finding the optimal distribution 
of sensor nodes on area estimated by kilometers or hectares [64]. Furthermore, MOSFP has the ability 
more than other algorithms in solving the problems with more than two objective functions, such as 
finding the optimal quality of services (QoS) of wireless, mobile and telecommunication networks 
[64–66], finding the optimal length and spacing of Yagi–Uda antenna design [12], engineering 
applications [63], finding the optimal products distribution through oil pipeline networks [19], and 
finding the optimal task allocation of stationary gas turbine [16]. 

7. Conclusions 

The multi-objective optimization is used to manage the tradeoffs between a set of conflict 
objectives that consists of minimization problems and maximization problems. This management 

(2.014, 
1.2×10−1)

(1.0×10−1, 
3.99)

0

2

4

6

0 1 2 3

F2

F1

WFG9 Pareto front of MOSFP

(2.048, 
1.5×10−1)

(1.2×10−1, 
4.003)

0

2

4

6

0 1 2 3

F2

F1

WFG9 Pareto front of NSGA-II

(2.019, 
1.4×10−1)

(1.2×10−1, 
4.004)

0

2

4

6

0 1 2 3

F2

F1

WFG9 Pareto front of SPEA2

(1.999, 
1.0×10−1)

(1.0×10−1, 
3.994)

0

2

4

6

0 1 2 3

F2

F1

WFG9 Pareto front of OMOPSO

Figure 15. Pareto fronts obtained by all the algorithms for WFG9.



Symmetry 2017, 9, 241 24 of 29

6. Discussion

In this paper, MOSFP, OMOPSO, NSGA-II, and SPEA2 have been tested on ZDT and WFG
benchmark functions. Three standard metrics are measured in the experiments, namely epsilon,
spread, and inverted generational distance. For each algorithm tested in the experiment, the maximum
generation for each function is set to 5000. The test is repeated 100 times for each objective to ensure
the convergence of the results.

Overall, the proposed MOSFP algorithm outperformed both NSGA-II and SPEA2 algorithms
in all of the benchmarks functions. Furthermore, MOSFP attained a high amount of points and a
good approximation of the true Pareto front of all the benchmark functions. Additionally, MOSFP
outperformed OMOPSO in solving the WFG5 problems, and obtained better solution sets than
OMOPSO for true Pareto front of both ZDT3 and WFG8. The high-quality performance of the
proposed MOSFP was reflected on the metrics of epsilon and IGD of WFG5, and epsilon of both
ZDT3 and WFG8. This shows that the proposed MOSFP has a better convergence than the OMOPSO
algorithm to explore the search space domain. Particularly, in solving the very complex disconnected
functions, such as ZDT3 and benchmark suites that contain more than two objective functions, such as
WFG5 and WFG8.

Based on that, MOSFP has the potential in solving the coverage problem of wireless sensor
network (WSN), in which finding the optimal coverage required of finding the optimal distribution
of sensor nodes on area estimated by kilometers or hectares [64]. Furthermore, MOSFP has the
ability more than other algorithms in solving the problems with more than two objective functions,
such as finding the optimal quality of services (QoS) of wireless, mobile and telecommunication
networks [64–66], finding the optimal length and spacing of Yagi–Uda antenna design [12], engineering
applications [63], finding the optimal products distribution through oil pipeline networks [19], and
finding the optimal task allocation of stationary gas turbine [16].

7. Conclusions

The multi-objective optimization is used to manage the tradeoffs between a set of conflict
objectives that consists of minimization problems and maximization problems. This management
helps to find the optimal solution for these problems. Based on that, many single objective algorithms
have been extended to deal with multi-objective problems. Examples of these algorithms are GA,
which is extended to the NSGA-II and PSO algorithms, which is extended to different approaches such
as OMOPSO.

SSO algorithm is a promising heuristic based algorithm that is inspired by sperm motility.
This algorithm is suitable for solving different types of SOO, but requires an enhancement to work
on MOOPs. In this paper, a MOO version of SSO algorithm has been developed using crowding,
∈ − dominance archive, and mutation operations. We have proposed MOSFP, an extension of SSO
for the multi-objective problem. The presented algorithm is easy to implement and improves the SSO
capabilities of search space exploration by using a crowding and archive operators. Crowding operator
is used to enhance the distribution and spreading of non-dominated solutions along the Pareto front,
while the archive operator is used to fix the size of non-dominance solutions, which helps to increase
the speed of the algorithm. The proposed algorithm is validated in two ways. First, we used the
standard measurements and metrics that are currently adopted in the evolutionary MOO community.
ZDT and WFG test suites have been chosen for this purpose. Three metrics, epsilon (∈), spread
(SP), and inverted generational distance (IGD) have been chosen to compare between the proposed
algorithm and other algorithms, such as OMOPSO, NSGA-II, and SPEA2. Second, the Pareto front of
each algorithm for each objective function has been drawn, after that, compared based on the extreme
superior points belonging to the true Pareto front. The results of these comparisons demonstrated
that our method is a viable alternative since MOSFP has a higher ability to solve the problems of two
objectives represented by ZDT test suites and problems of more than two objectives, represented by
WFG test suites. Moreover, the average quality of MOSFP performance, spread and convergence are
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better than some of the best multi-objective optimization and evolutionary methods, known to date
such as NSGA-II and SPEA2.

In the future, we will enhance the MOSFP by hybridizing it with other evolutionary or swarm
intelligence algorithms to increase its efficiency and performance. Also, we will test it by solving
different types of real world problems, such as the problems of wireless networks
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Appendix A

Part I: Zitzler-Deb-Thiele (ZDT) Test Suite

No Problem Model Domain

1 ZDT1

f1(x) = x1
f2(x) = g(x) · (2−

√
f1(x)/g(x))

g(x) = 1 + 9
n−1

n
∑

i=2
x2

i

[0, 1]× [−1, 1]n

2 ZDT2

f1(x) = x1
f2(x) = g(x) · (2− ( f1(x)/g(x))2)

g(x) = 1 + 9
n−1

n
∑

i=2
x2

i

[0, 1]× [−1, 1]n

3 ZDT3

f1(x) = x1
f2(x) = g(x) · (2−

√
f1(x)/g(x)−( f1(x)/g(x)) · sin(10π f1))

g(x) = 1 + 9
n−1

n
∑

i=2
x2

i

[0, 1]× [−1, 1]n

4 ZDT6

f1(x) = 1− e−4x1

f2(x) = g(x) · (2− ( f1(x)/g(x))2)

g(x) = 1 + 9
n−1 ·

n
∑

i=2
x2

i

[0, 1]× [−1, 1]n

Part II: Walking-Fish-Group (WFG) Test Suite

No. Problem Type Model

5 WFG1

Shape hm=1:M−1 = convexm hm = mixedM(with α = 1 and A = 5) t1
i=1:k = yi

t1 t1
i=k+1:n = s_linear(yi, 0.35) t1

i=k+1:n = s_linear(yi, 0.35)

t2 t2
i=1:k = yi

t2
i=k+1:n = b_ f lat(yi, 0.8, 0.75, 0.85)

t3 t3
i=1:n = b_poly(yi, 0.02)

t4
t4
i=1:M−1 = r_sum({y(i−1)k/(M− 1) + 1, · · ··, yik/(M− 1)},
{2((i− 1)k/(M− 1) + 1), · · ··, 2ik/(M− 1)})

t4
M = r_sum({yk+1,····,yn}, {2(k + 1), · · ·, 2n})
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No. Problem Type Model

6 WFG2

Shape hm=1:M−1 = convexm hm = discM(with α = β = 1 and A = 5)
t1 As t1 from WFG1. (linear shift)

t2 t2
i=1:k = yi

t2
i=k+1:k+1/2 = r_nonsep({yk + 2(i− k)− 1, yk + 2(i− k)}, 2)

t3
t3
i=1:M−1 = r_sum({y(i−1)k/(M− 1) + 1, · · ··, yik/(M− 1)},
{1, · · ··, 1})

t3
M = r_sum({yk+1,····,yk+l/2

}, {1, · · ·, 1})

7 WFG3
Shape hm=1:M = linearm(Degenerate)
t1:3 As t1:3 from WFG2. (linear shift, non-separable reduction, and weighted sum reduction.)

8 WFG4

Shape hm=1:M = concavem

t1 t1
i=1:n = s_multi(yi, 30, 10, 0.35)

t2 t2
i=1:M−1 = s_sum({y(i− 1)k/(M− 1) + 1,···· , yik/(M− 1)}, {1, · · ··, 1})

t2
M = s_sum({yk+1,····, yn}, {1, · · ··, 1})

9 WFG5
Shape hm=1:M = concavem

t1 t1
i=1:n = s_decept(yi, 0.35, 0.001, 0.05)

t2 As t2 from WFG4 (Weighted sum reduction.)

10 WFG6

Shape hm=1:M = concavem

t1 As t1 from WFG1. (Linear shift.)

t2 t2
i=1:M−1 = s_sum({y(i−1)k/(M−1)+1,····, yik/(M−1)}, {k/(M−1)})

t2
M = s_sum({yk+1,····, yn}, l)

11 WFG7

Shape hm=1:M = concavem

t1 t1
i=1:k = b_param(yi, s_sum({yi+1,····, yn}, {1, · · ··, 1}), 0,98

49.98 , 0.02, 50) t1
i=k+1:n = yi

t2 As t1 from WFG1. (Linear shift).
t3 As t2 from WFG4. (weighted sum reduction.)

12 WFG8

Shape hm=1:M = concavem

t1 t1
i=1:k = yi

t1
i=k+1:n = b_param(yi, r_sum({y1,····, yi−1}, {1, · · ··, 1}), 0,08

49.98 , 0.02, 50)
t2 As t1 from WFG1. (Linear shift).
t3 As t2 from WFG4. (weighted sum reduction.)

13 WFG9

Shape hm=1:M = concavem

t1 t1
i=1:n−1 = b_param(yi, r_sum({yi+1,····, yn}, {1, · · ··, 1}), 0.98

49.98 , 0.02, 50)
t1
i=n = yn

t2 t2
i=1:k = s_decept(yi, 0.35, 0.001, 0.05)

t2
i=k+1:n = s_multi(yi, 30, 95, 0.35)

t3 As t2 from WFG6. (non-separable reduction.)
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