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Abstract: In this paper, we use the fundamental idea of the incremental model (IM) and develop the
design framework. The design method of IM is composed of two steps. In the first step, we perform
a linear regression (LR) as the global model. In the second step, the errors obtained by the global
model are predicted by fuzzy if-then rules generated through a local linguistic model. Although the
effectiveness of IM has been demonstrated in various prediction examples, we propose an improved
incremental model (IIM) to deal with complex nonlinear characteristics. For this purpose, we employ
adaptive neuro-fuzzy networks (ANFN) or radial basis function networks (RBFN) to create local
granular networks in the design of IIM. Furthermore, we use quadratic regression (QR) as a global
model, because linear relationship of LR may not hold in many settings. Numerical studies concern
four datasets (automobile data, energy efficiency data, Boston housing data and computer hardware
data). The experimental results demonstrate that IIM outperformed the previous models.
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1. Introduction

The past few decades have witnessed several studies in various real-world problems of fuzzy
logic [1]. The issues of interpretability and transparency are still open, while the accuracy of fuzzy
models has been treated in several studies [2]. For this purpose, various clustering algorithms have
been employed in fuzzy modeling. However, these techniques are used to generate knowledge
information from numerical data. The well-known clustering-based techniques in the design of the
fuzzy inference system are hard c-means clustering, clustering introduced by Bezdek [3], clustering
introduced by Chiu [4], Gustafson–Kessel fuzzy clustering [5] and Gath–Geva clustering [6]. Recently,
several studies using clustering methods have been done on system modeling [7–9]. These context-free
clustering algorithms estimate the cluster centers without considering the characteristics between the
input and output.

Meanwhile, context-based clustering estimates cluster centers, preserving homogeneity in the
input attributes and the output [10]. The validity of these clustering methods has been presented in
the previous literature [11–15]. Among these models, the incremental model (IM) represented the
unique properties in contrast to the conventional methods. The IM is designed by the combination of
the linear part as the global scheme and knowledge representation as the local scheme [14]. Recently,
an expansion of IM was presented [16].

However, the problem of performance degradation may be encountered when a system to
be modeled has complex nonlinear characteristics, although the effectiveness of the IM has been
demonstrated in various prediction examples. In the design of IM, the Linguistic Model (LM) is similar
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to the fuzzy models of Mamdani [17] in that the premise and consequent membership functions are all
fuzzy. For that reason, we need more advanced local granular networks with the aid of information
granulation. Furthermore, the linear relationship of LR may not hold in many settings. To deal
with the nonlinear relationship in the design of the global model, we employ quadratic regression
(QR) instead of LR. Therefore, we use two networks to design local networks in the construction
of IM. Here, these networks are constructed by Context-based Fuzzy C-Means (CFCM) clustering
with the aid of information granulation. Consequently, two different networks based on fuzzy
granulation are developed. Thus, the errors obtained by QR are predicted by radial basis functions
or Takagi–Sugeno–Kang (TSK)-type fuzzy rules. The remarkable generalization capability of the
improved incremental model (IIM) is derived from the following facts: The IIM can achieve a highly
nonlinear mapping by using the combination of QR and local granular networks. The IIM also has
fuzzy if-then rules and adjustable parameters, far fewer than those used in the design of LM. We shall
use automobile fuel consumption, an energy example, Boston housing data and computer hardware
available from machine learning examples.

In Section 2, the concept and design procedure of IM are presented. The IM consists of several
computing paradigms, including LR as a global model and local LM realized by specialized CFCM
clustering. In Section 3, the two types, incremental radial basis function networks (IRBFN) and
Incremental adaptive neuro-fuzzy networks (IANFN), are described. Here, we explain QR as a global
model and the design procedure of the proposed methods. In Section 4, the experiments are performed
on four datasets. The conclusion and comments are described in Section 5.

2. Incremental Model Based on LR and Local LM

The IM constituents are composed of CFCM clustering, LR as a global model and LM as a local
model. Each of these constituent methodologies has its own strength. The seamless integration of
these methodologies forms the core of IM design.

2.1. The Description of IM

Figure 1 visualizes the underlying concept of IM. Here, the dataset is approximated by the LR in
the linear part. However, LR is not suitable for predicting in this example. These elliptical parts are
performed through the local model based on CFCM clustering.
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2.2. CFCM Clustering

The CFCM clustering is performed between the input attributes and the error obtained from the
LR. These errors are used as output in the design of local LM. Figure 2 shows the contexts generated in
the error space. As shown in Figure 2, the number of contexts is six. These contexts are characterized
by linguistic labels such as negative small error, positive small error, and so on. These contexts are
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characterized by triangular membership functions. These are produced by the context generation
method [18].
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Figure 2. Six contexts with linguistic labels. LR, linear regression.

In what follows, the estimation method of clusters based on CFCM clustering is presented.
The CFCM clustering estimates the cluster centers representing characteristics between input attributes
and errors. The membership matrix is composed of degrees with a value between zero and one as the
following equation.
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The cost function for CFCM clustering is computed as follows:
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2.3. The Design Procedure of IM

Figure 3 visualizes the IM architecture. For further details on the development of LM, see [14].
The design procedure of IM can be performed via five steps.

• Step 1: Construct LR from input-output data pairs. LR performs the task of fitting data using a
linear model. After performing the regression, we obtain the input and error pairs, (xk, ek).

• Step 2: Generate the contexts in the error space.
• Step 3: Estimate cluster centers by CFCM clustering.



Symmetry 2017, 9, 266 4 of 16

• Step 4: The final output of LM is expressed as:

E = W1 ⊗ ξ1 ⊕W2 ⊗ ξ2 ⊕ . . . Wν ⊗ ξν (5)

• Step 5: Obtain the model output by combining the outputs of LR and LM.

The fuzzy rules are given in the if-then form as follows:

Ri : If the xk is Ai, then the ek is Wi.

Symmetry 2017, 9, 266 4 of 16 

 

• Step 4: The final output of LM is expressed as: 

W W Wν νΕ ξ ξ ξ1 1 2 2= ⊗ ⊕ ⊗ ⊕ .... ⊗  (5) 

• Step 5: Obtain the model output by combining the outputs of LR and LM. 

The fuzzy rules are given in the if-then form as follows: 
iR : If the kx  is Ai, then the ke  is Wi. 

 

Figure 3. Architecture of IM based on LR and local Linguistic Model (LM). 

3. Improved Incremental Models Using Local Granular Networks 

In this section, we design local granular networks based on ANFN and RBFN for the 
construction of IIM. In the design of LR, a linear relationship may not hold in various applications 
where the system has complex nonlinear characteristics. To deal with the nonlinear relationship in 
the design of the global model, we employ QR instead of LR. Thus, we use a QR in the following 
form: 

2
0 1 2z β β β= + +x x  (6)

Figure 4 visualizes the concept of IIM-based QR and local granular networks. We firstly use 
the QR model. Then, the remaining nonlinear areas are predicted by radial basis functions or 
TSK-type fuzzy rules represented by RBFN or ANFN. Figure 4 visualizes the concept of IIM using 
QR and local granular networks. 

 
Figure 4. The concept of improved IM (IIM) using QR and local granular networks. 

Linear Regression
z Y

E
11u

i1u

c1u

1pu

piu

pcu

Σ Ex

1W

pW

1ξ

pξ

1tu

tiu

tcu tW

Σ

Σ

Σ

tξ









11u

i1u

c1u

1pu

piu

pcu

Σ Ex

1W

pW

1ξ

pξ

1tu

tiu

tcu tW

Σ

Σ

Σ

tξ









LM

Quadratic Regression

Local granular networks

Figure 3. Architecture of IM based on LR and local Linguistic Model (LM).

3. Improved Incremental Models Using Local Granular Networks

In this section, we design local granular networks based on ANFN and RBFN for the construction
of IIM. In the design of LR, a linear relationship may not hold in various applications where the system
has complex nonlinear characteristics. To deal with the nonlinear relationship in the design of the
global model, we employ QR instead of LR. Thus, we use a QR in the following form:

z = β0 + β1x + β2x2 (6)

Figure 4 visualizes the concept of IIM-based QR and local granular networks. We firstly use the
QR model. Then, the remaining nonlinear areas are predicted by radial basis functions or TSK-type
fuzzy rules represented by RBFN or ANFN. Figure 4 visualizes the concept of IIM using QR and local
granular networks.
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Figure 4. The concept of improved IM (IIM) using QR and local granular networks.

3.1. Incremental RBFN

The proposed IRBFN is presented in Figure 5. The IRBFN is constructed via a similar procedure
as that of IM. Here, the clusters estimated by CFCM clustering are used as the radial basis functions in
the hidden layer of the local RBFN. The local granular network is represented by the linear relation
between the receptive fields and the weights as follows:

E =
c×p

∑
i=1

wici (7)
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Figure 5. Architecture of incremental radial basis function networks (IRBFN).

The learning methods are implemented in two ways. In the first scheme, the parameters between
the hidden and the output layer are obtained by the least-square estimator, when the parameters in the
hidden layer are fixed. Next, the parameters such as the weights and cluster centers are adjusted by
the BP (Back-Propagation) algorithm. The output of the IRBFN is obtained by the combination of QR
and local RBFN as follows:

Y = z + E (8)

The pseudocode in the design of the proposed IRBFN is shown below.
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Initial setting:

1. Divide randomly for the training and testing data.
2. Normalize the input data between zero and one.
3. Design QR as the global model and obtain the modeling error.

Processing: iterate t = 1, 2, . . . , 10.

1. Set the number of contexts and clusters.
2. Generate the contexts in the error space.
3. Design local RBFN using CFCM clustering to compensate the error.
4. Estimate the weights of the output layer based on the LSE method as one-pass; or adjust the

centers estimated by CFCM and initial weights using the BP algorithm.
5. Obtain the output of the local RBFN.

E =
c×p

∑
i=1

wici

Final output: Combine the output of local RBFN with QR.

Y = z + E

3.2. Incremental ANFN

Figure 6 shows the architecture of the proposed IANFN. The IANFN is designed by QR and
local TSK-type ANFN. The first layer of ANFN is constructed by the CFCM clustering as the
scatter partitioning.
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For simplicity, we consider the TSK-type fuzzy model. The network output is computed as follows:

E =
r

∑
i=1

wi fi =
∑i wi fi

∑i wi
(9)

Figure 7 visualizes the schema of the proposed IANFN.
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4. Experimental Results

In this section, we use four different datasets. These data pairs are randomly divided into the
training (60%) and testing (40%) dataset, respectively. The experiment is also repeated 10 times [19].
The prediction performances are measured by the conventional RMSE (Root Mean Squared Error)
as follows:

RMSE =

√√√√ 1
N

N

∑
k=1

(yk − targetk)
2 (10)

where yk and targetk are the model output and actual target output, respectively.

4.1. Automobile MPG Dataset

The input attributes consist of weight, acceleration, model year, cylinder number, displacement
and horsepower [20,21]. We randomly divided the dataset into training and testing datasets.
For simplicity, the IM is constructed by p = c = 6, when LR is used as the global model. Figure 8 shows
the contexts generated by the error. Each context is expressed by a triangular fuzzy set representing
linguistic labels. Figure 9 visualizes the cluster centers corresponding to each context shown in Figure 8.
In Figure 8, the circles and squares denote the data and centers, respectively. Furthermore, each axis
denotes the displacement and horsepower, respectively.

In what follows, we performed the experiments on an IRBFN with two types (LSE, BP) and an
IANFN, when the global model is QR. In the design of the IRBFN and IANFN, we selected p = c = 3
and p = 4, c = 2, showing a good generalization performance, respectively. Figure 10 shows four
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contexts generated from the error space in the case of the IANFN. Figure 11 shows the cluster centers
corresponding to each context shown in Figure 10. Figure 12 shows the simulation result of the
proposed IANFN. Table 1 lists the RMSE values of the proposed approach and the previous methods.
Here the trn-RMSE and chk-RMSE denote the RMSE for training and testing data set, respectively.
The average values of RMSE were calculated by 10-fold cross validation [22]. The IIM performed well
in comparison to the previous methods. Here, the proposed IANFN achieved the best performance
in the generalization capability. The IIM obviously outperformed the IRBFN and IANFN based on
LR, as well as the previous methods. Moreover, it was found from the results that the IIM had fuzzy
if-then rules and adjustable parameters, far fewer than those used in the design of LM itself without
using LR. The result clearly showed that the fundamental IM was improved by IRBFN and IANFN
with LR or QR as the global model.

Table 1. Performance comparison.

Methods No. of Rules trn-RMSE chk-RMSE

LR - 3.38 3.47
LM [12] 36 2.80 3.32
RBFN (CFCM) [11] 36 2.34 3.18
IM [14] 36 2.41 3.10

IRBFN (LR) [21]
LSE 36 2.03 3.04
BP 36 2.62 2.92

IANFN (LR) [21] 8 2.10 2.74

IIM

Proposed
IRBFN

LSE 9 1.74 2.63
BP 9 2.36 2.87

Proposed IANFN 8 2.05 2.46
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4.2. Energy Efficiency Data

The energy analysis was obtained by twelve building shapes [23]. The dataset includes 768 data
pairs and eight attributes. The output variables are the heating and cooling load with real-valued
responses. Figures 13 and 14 show the simulation results through ANFN and IANFN, respectively.
Figures 15–17 show the results of 10-fold cross validation for the proposed methods. Here trn-RMSE
and chk-RMSE denote the RMSE value for the training and testing dataset in the case of heating
load prediction, respectively. Table 2 lists the RMSE values for the proposed approach and the
previous methods. It was found from the results that IIM outperformed the previous methods in
the generalization capability. The simulation results demonstrated that the IIM is both effective and
superior to previous approaches. In particular, the incremental methods outperformed the typical IM.
However, IANFN + LR presented superiority in the approximation capability, although IANFN + QR
presented superiority in the generalization capability.

Symmetry 2017, 9, 266 10 of 16 

 

4.2. Energy Efficiency Data 

The energy analysis was obtained by twelve building shapes [23]. The dataset includes 768 
data pairs and eight attributes. The output variables are the heating and cooling load with 
real-valued responses. Figures 13 and 14 show the simulation results through ANFN and IANFN, 
respectively. Figures 15–17 show the results of 10-fold cross validation for the proposed methods. 
Here trn-RMSE and chk-RMSE denote the RMSE value for the training and testing dataset in the 
case of heating load prediction, respectively. Table 2 lists the RMSE values for the proposed 
approach and the previous methods. It was found from the results that IIM outperformed the 
previous methods in the generalization capability. The simulation results demonstrated that the IIM 
is both effective and superior to previous approaches. In particular, the incremental methods 
outperformed the typical IM. However, IANFN + LR presented superiority in the approximation 
capability, although IANFN + QR presented superiority in the generalization capability. 

 

Figure 13. Compensation by ANFN. 

 

Figure 14. IANFN result for heating load. 

0 50 100 150 200 250 300
-8

-6

-4

-2

0

2

4

6

8

num.of testing data

er
ro

r

 

 
modeling error of QR
prediction by local ANFN

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

num.of training data

ou
tp

ut

 

 
actual output
model output

0 50 100 150 200 250 300
0

10

20

30

40

50

60

num.of testing data

ou
tp

ut

 

 

actual output
model output

Figure 13. Compensation by ANFN.

Symmetry 2017, 9, 266 10 of 16 

 

4.2. Energy Efficiency Data 

The energy analysis was obtained by twelve building shapes [23]. The dataset includes 768 
data pairs and eight attributes. The output variables are the heating and cooling load with 
real-valued responses. Figures 13 and 14 show the simulation results through ANFN and IANFN, 
respectively. Figures 15–17 show the results of 10-fold cross validation for the proposed methods. 
Here trn-RMSE and chk-RMSE denote the RMSE value for the training and testing dataset in the 
case of heating load prediction, respectively. Table 2 lists the RMSE values for the proposed 
approach and the previous methods. It was found from the results that IIM outperformed the 
previous methods in the generalization capability. The simulation results demonstrated that the IIM 
is both effective and superior to previous approaches. In particular, the incremental methods 
outperformed the typical IM. However, IANFN + LR presented superiority in the approximation 
capability, although IANFN + QR presented superiority in the generalization capability. 

 

Figure 13. Compensation by ANFN. 

 

Figure 14. IANFN result for heating load. 

0 50 100 150 200 250 300
-8

-6

-4

-2

0

2

4

6

8

num.of testing data

er
ro

r

 

 
modeling error of QR
prediction by local ANFN

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

num.of training data

ou
tp

ut

 

 
actual output
model output

0 50 100 150 200 250 300
0

10

20

30

40

50

60

num.of testing data

ou
tp

ut

 

 

actual output
model output

Figure 14. IANFN result for heating load.



Symmetry 2017, 9, 266 11 of 16Symmetry 2017, 9, 266 11 of 16 

 

 
Figure 15. Results of 10-fold cross validation for IRBFN-LSE (heating load).  

 

Figure 16. Results of 10-fold cross validation for IRBFN-BP (heating load). 

 
Figure 17. Results of 10-fold cross validation for IANFN (heating load). 

0 1 2 3 4 5 6 7 8 9 10 11
1.8

2

2.2

2.4

2.6

2.8

3

10-fold cross validation

R
M

S
E

 

 
trn-RMSE
chk-RMSE

0 1 2 3 4 5 6 7 8 9 10 11
1.5

2

2.5

3

10-fold cross validation

R
M

S
E

 

 
trn-RMSE
chk-RMSE

0 1 2 3 4 5 6 7 8 9 10 11
0.5

1

1.5

2

10-fold cross validation

R
M

S
E

 

 
trn-RMSE
chk-RMSE

Figure 15. Results of 10-fold cross validation for IRBFN-LSE (heating load).

Symmetry 2017, 9, 266 11 of 16 

 

 
Figure 15. Results of 10-fold cross validation for IRBFN-LSE (heating load).  

 

Figure 16. Results of 10-fold cross validation for IRBFN-BP (heating load). 

 
Figure 17. Results of 10-fold cross validation for IANFN (heating load). 

0 1 2 3 4 5 6 7 8 9 10 11
1.8

2

2.2

2.4

2.6

2.8

3

10-fold cross validation

R
M

S
E

 

 
trn-RMSE
chk-RMSE

0 1 2 3 4 5 6 7 8 9 10 11
1.5

2

2.5

3

10-fold cross validation

R
M

S
E

 

 
trn-RMSE
chk-RMSE

0 1 2 3 4 5 6 7 8 9 10 11
0.5

1

1.5

2

10-fold cross validation

R
M

S
E

 

 
trn-RMSE
chk-RMSE

Figure 16. Results of 10-fold cross validation for IRBFN-BP (heating load).

Symmetry 2017, 9, 266 11 of 16 

 

 
Figure 15. Results of 10-fold cross validation for IRBFN-LSE (heating load).  

 

Figure 16. Results of 10-fold cross validation for IRBFN-BP (heating load). 

 
Figure 17. Results of 10-fold cross validation for IANFN (heating load). 

0 1 2 3 4 5 6 7 8 9 10 11
1.8

2

2.2

2.4

2.6

2.8

3

10-fold cross validation

R
M

S
E

 

 
trn-RMSE
chk-RMSE

0 1 2 3 4 5 6 7 8 9 10 11
1.5

2

2.5

3

10-fold cross validation

R
M

S
E

 

 
trn-RMSE
chk-RMSE

0 1 2 3 4 5 6 7 8 9 10 11
0.5

1

1.5

2

10-fold cross validation

R
M

S
E

 

 
trn-RMSE
chk-RMSE

Figure 17. Results of 10-fold cross validation for IANFN (heating load).



Symmetry 2017, 9, 266 12 of 16

Table 2. Performance comparison.

Methods No. of Rules trn-RMSE chk-RMSE

LR - 2.94 2.91
LM [12] 36 3.70 4.02
RBFN (CFCM) [11] 36 2.77 3.11
IM [14] 36 2.46 2.80

IRBFN (LR) [21]
LSE 36 2.28 2.83
BP 36 2.35 2.73

IANFN (LR) [21] 8 1.05 1.32

IIM

Proposed
IRBFN

LSE 9 2.26 2.38
BP 9 2.12 2.19

Proposed IANFN 8 1.11 1.26

The experiments on cooling load were performed in the same manner as for heating load
prediction. Figure 18 shows the prediction using ANFN as a local granular network. Figure 19
shows the results for cooling load. Figures 20–22 show the RMSE results for the proposed methods.
Here, trn-RMSE and chk-RMSE denote the RMSE value in the case of cooling load prediction. Table 3
lists the performance comparison for cooling load. The IRBFN and IANFN with LR outperformed the
previous methods, as well as IM itself. Furthermore, the experimental results demonstrated that the
proposed methods outperformed LR, LM, CFCM-RBFN and IM itself.

Table 3. Performance comparison.

Methods No. of Rules trn-RMSE chk-RMSE

LR - 3.18 3.21
LM [12] 36 3.87 4.30
RBFN (CFCM) [11] 36 2.87 3.39
IM [14] 36 2.66 3.10

IRBFN (LR) [21]
LSE 36 2.46 3.10
BP 36 2.56 3.09

IANFN (LR) [21] 8 1.93 2.38

IIM

Proposed
IRBFN

LSE 9 2.61 2.76
BP 9 2.46 2.64

Proposed IANFN 8 1.858 2.153
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Figure 20. 10-fold cross validation for IRBFN-LSE (cooling load).

Symmetry 2017, 9, 266 13 of 16 

 

 

Figure 19. IRBFN-LSE result for cooling load. 

 

Figure 20. 10-fold cross validation for IRBFN-LSE (cooling load). 

 
Figure 21. 10-fold cross validation for IRBFN-BP (cooling load). 

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

num.of training data

ou
tp

ut

 

 
actual output
model output

0 50 100 150 200 250 300
0

10

20

30

40

50

60

num.of testing data

ou
tp

ut

 

 
actual output
model output

Figure 21. 10-fold cross validation for IRBFN-BP (cooling load).
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Firstly, the Boston housing dataset deals with the problem of real estate price prediction. In this
example, we used twelve input variables except for one binary attribute. The data include 506 data
pairs. Next, the computer hardware dataset is related to the CPU performance. This data consist
of 209 data pairs with eight attributes except for the vendor name. The output to be predicted is
estimated relative performance. The experimental method was performed in the same manner as
in Sections 4.1 and 4.2. Tables 4 and 5 list the comparison results of RMSE for the Boston housing
and computer hardware dataset, respectively. To search for an appropriate IIM in terms of the best
generalization capability, we tried different models with the number of clusters and contexts varying
from 2–8. Here, the proposed IANFN achieved the best performance at the generalization capability.
The IIM obviously outperformed the IRBFN and IANFN based on LR. In particular, the IIM with QR
showed good approximation capability showing a big difference in performance due to strong the
nonlinear characteristics of computer hardware data.
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BP 9 2.45 3.73

Proposed IANFN 8 1.94 3.69



Symmetry 2017, 9, 266 15 of 16

Table 5. Performance comparison.

Methods No. of Rules trn-RMSE chk-RMSE

LR - 31.62 33.08
IM [14] 36 19.58 26.70

IRBFN (LR) [21]
LSE 36 14.59 26.76
BP 36 16.47 26.540

IANFN (LR) [21] 6 3.35 27.850

IIM

Proposed
IRBFN

LSE 9 2.60 19.98
BP 9 3.64 20.09

Proposed IANFN 6 2.45 20.36

5. Conclusions

We developed two IMs (IRBFN and IANFN) based on IIM combined with QR. The simulation
results demonstrated that both IIM types outperformed the various previous approaches. The proposed
methods have the ability to construct powerful networks using the improved incremental models
from only target system sample data. The integration of global and local network results in a new
framework of computational intelligence. Because of its numerical computation, the proposed method
can be applied to a number of new application domains. These application domains are mostly
computationally intensive and include adaptive signal processing, adaptive control, nonlinear system
modeling, nonlinear regression and pattern recognition.
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