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Abstract: Analytical treatment of the composition of higher-order graphs representing linear relations
between variables is developed. A path formalism to deal with problems in graph theory is introduced.
It is shown how paths in the composed graph representing individual contributions to variables
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information and gives an alternative to classical graph approach.
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1. Introduction

A flow graph is a graphical representation of a system of linear equations. It is introduced by
Euler [1], this notion is especially useful in simplifying the treatment of certain linear problems arising
e.g., in optical systems [2], classical and quantum field theory [3,4], and network theory [5], just to
mention some relevant examples [6]. While this approach is worthy for 2 × 2 systems, for higher-order
arrangements it becomes cumbersome. In consequence, to introduce an alternative treatment to
solve these higher-order composition graph problems seems to be a relevant task. In this way, some
significant contributions were presented earlier [7,8].

Flow graphs are applicable to several fields, such as System of Systems (SoS) implementations.
Moreover, higher order graph reduction method could be used as a tool in optimizing the design of
SoS, such as, obtaining self-managed smart grids, creating communication networks between all of
the possible nodes of systems, setting up a secure transport and auxiliary routes of transportation
in real time, managing the energy distribution around systems, permitting flexible and optimized
manufacturing, or in financial and business flux analysis.

Flow graph algebra represents a set of linear equations in terms of a complex graph. Through
the basic rules, this graph can be reduced to a simpler equivalent form called the “residual graph”.
For higher order graphs, there are several paths connecting the input nodes with the output ones,
where it results to be difficult to follow a particular trajectory. For this reason, except for in the simplest
cases, it is more practical to use numerical methods. Nevertheless, other features of flow graphs are
still useful.

Here, we propose a new didactic and intuitive tool to solve graphs in any dimension without
reducing them by the conventional rules. The new approach is called Path Ordinal Method (POM).
The result is equivalent to a matrix product or graph reduction. However, the utility of the presented
method arises in the simplicity of predicting such product graphically by means of a simple calculus
table, as well as finding the impact of a certain parameter upon others without solving the entire graph.
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The plan of this work is as follows. Section 2.1 is devoted to give a brief overview of the flow
graph algebra and the basic reduction rules. In Section 2.2 higher-order graph composition is treated.
Each possible path in the graph is defined by an ordinal and its trajectory is characterized by a
“path-set”. A new method to solve graphs of any order is introduced showing the way to extract
partial information from the composition. Finally, in Section 2.3 we present an application to 3 × 3
matrix composition to demonstrate the validity of the developed method.

2. Materials and Methods

2.1. Flow Graphs

Graphs are geometrical structures that can represent linear equations. They relate magnitudes
(variables) by graphic interconnections, following a few rules. A variable is represented by a small
circle, called a “node”. White and black colors are used to indicate the orientation of the nodes,
which is analogous to the sides of the equation, in standard algebra: black nodes are “sources”, that
is, the input variables one has to handle to obtain the output variables called “sinks”, which are
indicated by white nodes. The line connecting two nodes is called “branch” and the corresponding
label is termed “transmittance”, which indicates that the relation between the interconnected variables.
Furthermore, if this transmittance is not specified for a branch, it will be understood that it has the value
1. Branches with transmittance zero are not drawn. Figure 1 shows some flow graph representation of
linear equations.
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The order of a graph is the smallest number of sources or sinks in the graph. Besides, a cascade
graph is the results of the composition of several graphs of the same order. Moreover, there is a mutual
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can be represented by the second-order graph as in Figure 2.
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Figure 2. A second order graph representing Equation (1). The homologous of the vector parameters 
are the nodes while the homologous of the matrix elements are the branches transmittance. 
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For a cascade flow graph there are two ways to proceed. First, by using the five basic algebraic 
rules namely: addition, product, transmission, suck up node, and self-loop elimination, where an 
equivalent simpler graph is obtained. The second one is the Mason’s rule, recommended when we 
are only interested in one of the output variables as a function of one of the input variables. 

2.2. Graph Composition and Path Characterization 

The analysis of bulky systems made of several elements implies the composition of higher-order 
graphs, which turns to be complicated. In this section, we propose a general method to obtain the 
equivalent matrix, as well as the residual graph directly from the individual elements. Also, the 
influence of a certain input parameters upon an output one could be obtained without solving the 
whole graph. 

We define two graphs: the cascade graph representing the whole system and the individual 
graph corresponding to any arbitrary element of the system. Consider, for example, the cascade 
graph of Figure 4. 

The input variables are the vector: 

0 01 02 03 0 0( , , ,..., ,..., )k mx x x x x x= ,  

and the output variables are represented by the vector: 

1 2 3( , , ,..., ,..., )n n n n nk nmx x x x x x= ,  

Figure 2. A second order graph representing Equation (1). The homologous of the vector parameters
are the nodes while the homologous of the matrix elements are the branches transmittance.

Matrix multiplication can be solved through its alternative graphical representation. Figure 3
shows a composition of n graphs of order two: the result is a 2× n cascade graph.
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For a cascade flow graph there are two ways to proceed. First, by using the five basic algebraic
rules namely: addition, product, transmission, suck up node, and self-loop elimination, where an
equivalent simpler graph is obtained. The second one is the Mason’s rule, recommended when we are
only interested in one of the output variables as a function of one of the input variables.

2.2. Graph Composition and Path Characterization

The analysis of bulky systems made of several elements implies the composition of higher-order
graphs, which turns to be complicated. In this section, we propose a general method to obtain the
equivalent matrix, as well as the residual graph directly from the individual elements. Also, the influence
of a certain input parameters upon an output one could be obtained without solving the whole graph.

We define two graphs: the cascade graph representing the whole system and the individual graph
corresponding to any arbitrary element of the system. Consider, for example, the cascade graph of
Figure 4.

The input variables are the vector:

→
x 0 = (x01, x02, x03, . . . , x0k, . . . , x0m),

and the output variables are represented by the vector:

→
x n = (xn1, xn2, xn3, . . . , xnk, . . . , xnm),
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This cascade graph is composed of n graphs, attached side by side, each one of order m. In consequence,
the total number of possible paths connecting the input nodes to the output ones is:

Nm,n = mn+1.

Now, let us consider the jth constituent of the cascade graph as sketched in Figure 5.
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of the branch connecting the nodes xk and xL.

The total number of possible paths is m2. This individual graph is defined by the incoming nodes
vector

→
x j−1 and the outgoing nodes vector

→
x j, where j takes the values j = 1, 2, 3, . . . , n.

2.2.1. Ordinal of a Path and Path Value

An arbitrary path with an ordinal i (1 ≤ i ≤ Nm,n), connecting any node in the input vector with
another node in the output vector, is characterized by a set of numbers {θij} that we will call “path-set”,
which defines the trajectory of the path.{

θij
}

= {θi0, θi1, θi2, θi3, . . . . . . . . . , θin}

These θij can take any of the values 1 ≤ θij ≤ m. If θij = k this means that the ith path passes
through the kth node of the jth vector, xjk. An example of a path-set is illustrated in Figure 6.
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The value of any possible path Pi can be seen as the product of the transmittances corresponding
to each branch along the path

Pi =
n

∏
j=1

Aij(θi(j−1), θij), (3)

where Aij is the transmittance of the branch in the jth graph within the path i (see Figure 5).
Separating the contribution of the first and the last graph we get:

Pi = Ai1(θi0, θi1)

[
n

∏
j=2

Aij(θi(j−1), θij)

]
Ain(θi(n−1), θin), (4)

The path value Pi that starts in an arbitrary node x0k in the input vector
→
x 0 and reaches the output

vector
→
x n in any arbitrary node xnL, is given by

Pi
kL = Ai1(k, θi1)

[
n

∏
j=2

Aij(θi(j−1), θij)

]
Ain(θi(n−1), L), (5)

So, each path is defined by two items, the path ordinal i and the path value PkL
i , where both are

associated to a “path-set”.
Defining a path sequence, the first path (i = 1) will start from the node x01 and will end at the

node xn1, the second starts from the node x02 and ends at the node xn1, the kth will start from the node
x0k till the path m is reached, which starts from the node x0m and ends at the node xn1.

When considering the output vector
→
x n as it is composed of m outgoing nodes. The total number

of paths Nm,n is divided into m groups each has mn paths. The first group ends at the node x1n where
(1≤ i≤ mn) and the second group ends at the node xn2 where (1 + mn≤ i≤ 2mn). As a consequence, all of
the paths that end at the node xnL have the path ordinals within the limit (1 + (L− 1)mn≤ i≤ Lmn). On the
other hand, all of the paths that start from the node x0k, according to the path sequence, have the ordinals i
= k, k + m, k + 2m, . . . .
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Thus, for a m × n cascade graph, there are mn−1 paths connecting an output node with an input
one. These paths that start from an input node x0k and ends at an output node xnL, have the path
ordinals i = k + (L − 1)mn, k + m+ (L − 1)mn, . . . , k – m + Lmn.

The contribution of the source x0k to the sink xnL, can be expressed as the summation of all the
paths that start from x0k and end at xnL as follows,

x(xok)
nL = x0k

mn−1

∑
r=1

PkL
k−m+(L−1)mn+rm. (6)

Similarly, the total contribution of the input vector nodes
→
x 0 to the sink xnL is given by,

xnL =
m

∑
k=1

x0k

mn−1

∑
r=1

PkL
k−m+(L−1)mn+rm. (7)

Calling TkL to the summation of all the path values that start from x0k and end at xnL

TkL =
mn−1

∑
r=1

PkL
k−m+(L−1)mn+rm, (8)

So, the sink xnL can be expressd as,

xnL =
m

∑
k=1

TkLx0k. (9)

Hence, for a m × n graph, the contribution of all the sources to all of the sinks, can be represented
by the equation:



xn1

xn2
...

xnL
...

xn(m−1)
xnm


=



T11 T21 · · · Tk1 · · · Tm1

T12 T22 · · · Tk2 · · · Tm2

...
...

. . . ...
...

T1L

...
T2(m−1)

T1m

T2L

...
T2(m−1)

T2m

· · ·

· · ·
· · ·

TkL

...
Tk(m−1)

Tkm

· · ·
. . .
· · ·
· · ·

TmL

...
Tm(m−1)

Tmm





x01

x02
...

x0L
...

x0(m−1)
x0m


. (10)

According to Equation (3) for all of the path-sets representing such trajectories, only θi0 and θin are
defined, with the values k and L, respectively. Now, the goal is to define the trajectory of an arbitrary
path, i.e., to evaluate the set of numbers {θij}.

2.2.2. Determination of the Characteristic Path Set

As it is mentioned before, for a m× n cascade graph, there are m groups of paths, of which, each is
composed mn paths. Each group reaches an output node. Accordingly, the group of paths that reaches
an arbitrary node xnL in the output vector

→
x n has the path ordinals within the range (1 + (L − 1)mn ≤ i

≤ Lmn).
Proceeding to calculate the path set. For any path of ordinal i, if the path ordinal i is subtracted by

one and then divided by the number of paths that reach an output node (mn), we get:

i− 1 = Cnmn + Rn,
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where mn is de divisor, Cn is the quotient (0 ≤ Cn < m), and Rn is the reminder (0 ≤ Rn < mn). So, the
last element of the path-set θin can be expressed as:

θin = Cn + 1.

Similarly the penultimate element of the path set is calculated by considering a cascade graph of
n − 1 graphs each of order m. The total number of paths corresponding to such graph is mn−1 paths.
Now, the path ordinal becomes:

i = Rn + 1.

To determine the node x(n−1)L that the path ends at, following the previous procedure, the path
ordinal is subtracted by one and then divided by mn−1, so we have:

Rn = Cn−1mn−1 + Rn−1 ⇒ θi(n−1) = Cn−1 + 1,

where 0 ≤ Cn−1 < m and 0 ≤ Rn−1 < mn−1. Iterating the same procedure, we finally get:

i− 1 = Cnmn + Cn−1mn−1 + · · ·+ C1m + R1. (11)

On account of this:{
θij
}

= {R1 + 1, C1 + 1, C2 + 1, . . . . . . . . . , Cn + 1}.

Thus, we conclude that, for a given path-ordinal i the corresponding path-set {θij} can be
determined as follows:

I The path ordinal is subtracted by one.
II Then, it is divided by m for n-times.
III Finally, one is added to the remainders of the division, R1, C1, C2, . . . , Cn.

A scheme illustrating the calculation of the path-set is shown in the next diagram Figure 7.
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{

θij

}
= {θi0, θi1, θi2, θi3, . . . . . . . . . , θin} is calculated as follows: firstly, the path ordinal is

subtracted by one, then it is divided by m n-times, finally one is added to the remainders of the division.
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The utility of the Path Set Diagram (PSD) is crucial in the application of Equations (7)–(9). In the
next section, we discuss a simple and explicit example to illustrate how the Path Ordinal Method
(POM) works.

2.3. Examples and Concluding Remarks

Consider an arbitrary system that is composed of two elements, each one is represented by a 3× 3
matrix. Starting from the physical scheme of the system, the flow graph is formed by attaching side by
side the graph corresponding to each element. The result is a 3 × 2 cascade graph. The cascade graph of
the problem is shown the Figure 8.
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The problem can be solved either by matrix multiplication as in Equation (12) or through
conventional graph reduction rules.

 x21

x22

x23

 =

 A2(1, 1) A2(1, 1) A2(1, 1)
A2(1, 1) A2(1, 1) A2(1, 1)
A2(1, 1) A2(1, 1) A2(1, 1)


 A2(1, 1) A2(1, 1) A2(1, 1)

A2(1, 1) A2(1, 1) A2(1, 1)
A2(1, 1) A2(1, 1) A2(1, 1)


 x01

x02

x03

 (12)

 x21

x22

x23

 =

 T11 T21 T31

T12 T22 T32

T13 T23 T33


 x01

x02

x03


However, we will proceed to get the residual graph as well as the equivalent matrix by applying

the POM. We denote the equivalent matrix as: T11 T21 T31

T12 T22 T32

T13 T23 T33

.

Using the path ordinal formalism we will find the partial contribution of an input parameter,
as well as the total solution.

2.3.1. The Contribution of and Input Parameter to an Output Parameter

If one is interested to know the effect of an input parameter on an output one, it is not necessary
to build the whole matrix or to reduce the whole graph. When considering the path sequence,
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the contribution of e.g., the input parameter x03 to the output parameter x22 is given by the matrix
element T32. When applying Equation (8), we get:

T32 =
3

∑
r=1

P32
3−3+(3−1)32+3r =

3

∑
r=1

P32
9+3r = P32

12 + P32
15 + P32

18 .

Accordingly, there are three paths that connect both nodes. These paths have the ordinals 12,
15, and 18. The path-values of the above equation are calculated by specifying, firstly, the path-set
corresponding to each trajectory.

For the paths of ordinals 12, 15, and 18, the corresponding path sets are obtained by means of the
PSD as follows:

12 − 1 = 11 3 15 − 1 = 14 3 18 − 1 = 17 3
: 3 3 : 4 3 : 5 3
: : 1 : : 1 : : 1
: : : : : : : : :
2 0 1 2 1 1 2 2 1

+1 3 1 2 +1 3 2 2 +1 3 3 2

{
θ12,j

}
= {3, 1, 2}

{
θ15,j

}
= {3, 1, 2}

{
θ12,j

}
= {3, 1, 2}

For completeness, the corresponding graph-trajectories according to the above calculations appear
in Figure 9.
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Hence, we get,

T32 = P12 + P15 + P18 = A1(3, 1)A2(1, 2) + A1(3, 2)A2(2, 2) + A1(3, 3)A2(3, 2). (13)

We emphasize that, by means of the POM and as an alternative to the classical approach, we have
simply obtained a matrix element without solving the whole matrix product or reducing the whole
graph. This is precisely one of the applications of the formalism.

2.3.2. The Total Solution

The cascade graph is solved by specifying the equivalent matrix of the system. In consequence,
the residual graph can be drawn easily. According to Equation (10) and recalling Equation (12),
the algebraic expression representing the system is x21

x22

x23

 =

 T11 T21 T31

T12 T22 T32

T13 T23 T33


 x01

x02

x03

. (14)

The equivalent matrix elements are calculated through three steps, each is represented within
a table. The path-sets corresponding to each possible path is illustrated in Table 1, while Table 2 gives
the path values corresponding to the path sets of Table 1.

Table 1. The path-sets corresponding to the 3 × 2 cascade graph. The table is divided vertically into
three parts, each part represents the paths that reach the output nodes x21, x22 and x23, respectively.

i θi0 θi1 θi2 i θi0 θi1 θi2 i θi0 θi1 θi2
1 1 1 1 10 1 1 2 19 1 1 3
2 2 1 1 11 2 1 2 20 2 1 3
3 3 1 1 12 3 1 2 21 3 1 3
4 1 2 1 13 1 2 2 22 1 2 3
5 2 2 1 14 2 2 2 23 2 2 3
6 3 2 1 15 3 2 2 24 3 2 3
7 1 3 1 16 1 3 2 25 1 3 3
8 2 3 1 17 2 3 2 26 2 3 3
9 3 3 1 18 3 3 2 27 3 3 3

Table 2. The path values corresponding to the path-sets of Table 1.

Pi Path Value Pi Path Value Pi Path Value
P1 A1(1,1)*A2(1,1) P10 A1(1,1)*A2(1,2) P19 A1(1,1)*A2(1,3)
P2 A1(2,1)*A2(1,1) P11 A1(2,1)*A2(1,2) P20 A1(2,1)*A2(1,3)
P3 A1(3,1)*A2(1,1) P12 A1(3,1)*A2(1,2) P21 A1(3,1)*A2(1,3)
P4 A1(1,2)*A2(2,1) P13 A1(1,2)*A2(2,2) P22 A1(1,2)*A2(2,3)
P5 A1(2,2)*A2(2,1) P14 A1(2,2)*A2(2,2) P23 A1(2,2)*A2(2,3)
P6 A1(3,2)*A2(2,1) P15 A1(3,2)*A2(2,2) P24 A1(3,2)*A2(2,3)
P7 A1(1,3)*A2(3,1) P16 A1(1,3)*A2(3,2) P25 A1(1,3)*A2(3,3)
P8 A1(2,3)*A2(3,1) P17 A1(2,3)*A2(3,2) P26 A1(2,3)*A2(3,3)
P9 A1(3,3)*A2(3,1) P18 A1(3,3)*A2(3,2) P27 A1(3,3)*A2(3,3)

The matrix elements are calculated according to Equation (8) and represented in Table 3.

Table 3. The matrix elements corresponding to the example, according to 3 × 2 graph analysis.
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Obtaining the matrix elements, which are homologues to the graph transmittances, the residual
graph could be drawn easily.

In summary, what we expect to have accomplished is to work out a new didactic and useful tool
to solve graphs of different dimensions as an alternative to reducing them by the conventional rules.

3. Results and Discussion

A new didactic, simple, and intuitive tool is developed. The POM is applicable to any type of
problems that could be raised with the usual matrix algebra or graphs of any order, contributing an
alternative and powerful treatment that allows for treating multitude of problems in physics that
nowadays are approached by means of standard matrix treatment or flow graph algebra.

The aptitude of the method to treat as an independent form, each of the contributions of the
different components of the input and output vectors, is especially useful in problems of Physics in
which one is interested in knowing the impact of certain input parameter of the problem on others.
Also, the utility of the method could be observed in problems with higher order matrix compositions
or higher order graphs.

The POM states that; for any arbitrary m × n cascade graph represented by the input
variables vector

→
x 0 = (x01, x02, x03, . . . , x0k, . . . , x0m), (15)

and the output variables vector

→
x n = (xn1, xn2, xn3, . . . , xnk, . . . , xnm), (16)

there exist Nm,n = mn+1 possible paths connecting the input nodes with the output ones (Figure 4).
These paths are defined by an ordinal (1 ≤ i ≤ Nm,n), which, as a consequence, is attached to a
characteristic Path-Set that determines the path along the graph and a Path-Value that is considered as
the product of the transmittances corresponding to each branch along the path. Once the path values
are calculated, the transmittances of the branches of the residual graph are calculated through Equation
(8), which are homologues to the matrix elements representing the system. For better organization,
simplicity, and in order to avoid calculation mistakes, we suggest that all of the calculations to be put
in tables. Tables 4 and 5, and Figure 10 summarizes the process.

Table 4. A general form of a table used to calculate all the possible paths of a m× n cascade graph.
Aj(k,L) represents the transmittance of the branch connecting the node X(j− 1)k and Xjk in the jth graph.

Path Ordinal Pi
Path Set{

θij

}
= {θi0, θi1, θi2, . . . . . . . . . ., θin}

Path Value Pi =
n
∏

j=1
Aij(θi(j−1), θij)

1 {1, 1 . . . . . . . . . . . . ... . . . ..., 1} P1 = A1(1,1)* . . . . . . . . . . . . . . . . . . An(1,1)
: : :

mn {m, m . . . . . . . . . . . . . . . . . . . , 1} Pmn = A1(m,m)* . . . . . . . . . . . . .An(m,1)
: : :
: : :

mn+1 {m, m . . . . . . . . . . . . . . . ..., m} Pmn+1 = A1(m,m)* . . . . . . . . . ...An(m,m)

Table 5. A table illustrating the value of each transmittance in the residual graph as a sum of its
corresponding path-values.

T11 =
mn−1

∑
r=1

P1−m+r.m . . . Tk1 =
mn−1

∑
r=1

Pk−m+r.m . . . Tm1 =
mn−1

∑
r=1

Pr.m

:
: . . . :

: . . . :
:

T1L =
mn−1

∑
r=1

P1−m+(L−1).mn+r.m . . . TkL =
mn−1

∑
r=1

Pk−m+(L−1).mn+r.m . . . TmL =
mn−1

∑
r=1

P(L−1).mn+r.m

:
: . . . :

: . . . :
:

T1m =
mn−1

∑
r=1

P1−m+(m−1).mn+r.m . . . Tkm =
mn−1

∑
r=1

Pk−m+(m−1).mn+r.m . . . Tmm =
mn−1

∑
r=1

P(m−1).mn+r.m
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In addition, a useful feature of the POM is its practicability in special problems when the impact 
of a certain parameter upon others is of our interest. Taking into account the path order, the 
contribution of a source x0k to a sink xnL is given by the transmittance TkL of the residual graph. Which 
is the summation of its corresponding path values in agreement with Equation (8). These path values 
can be calculated directly by specifying their corresponding path sets by means of the PSD illustrated 
in Figure 7, i.e., by applying the POM the contribution of a source to a sink can be calculated easily 
without solving the entire problem. 

The fields of application of this tool spread to all of those linear problems that are treated in 
physics by means of matrix algebra or flow graphs, being especially effective in the simplification of 
some specific calculations possessing composition of several high order matrices or bulky graphs. 

Clear examples of applications could be fields as: matrix optics in asymmetric systems, matrix 
treatments in quantum mechanics and quantum theory of fields, treatments of dielectric multilayers, 
analysis of tensor mechanical properties of materials, optical networks, classic mechanics 
formulations, polarization and depolarization problems in optics, fluids dynamics, acoustic, and in 
general, any problem that holds linear relations and sets the stage for a matrix treatment. The POM 
was applied to 3-layers dielectric system [9]. 

Finally, other industrial applications could be the simulation in designing System of Systems 
focused on communication networks, multimodal traffic control, energy distribution systems, multi-
site industrial manufacture or emergency management, among others. 
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In addition, a useful feature of the POM is its practicability in special problems when the impact of
a certain parameter upon others is of our interest. Taking into account the path order, the contribution
of a source x0k to a sink xnL is given by the transmittance TkL of the residual graph. Which is the
summation of its corresponding path values in agreement with Equation (8). These path values can
be calculated directly by specifying their corresponding path sets by means of the PSD illustrated
in Figure 7, i.e., by applying the POM the contribution of a source to a sink can be calculated easily
without solving the entire problem.

The fields of application of this tool spread to all of those linear problems that are treated in
physics by means of matrix algebra or flow graphs, being especially effective in the simplification of
some specific calculations possessing composition of several high order matrices or bulky graphs.

Clear examples of applications could be fields as: matrix optics in asymmetric systems, matrix
treatments in quantum mechanics and quantum theory of fields, treatments of dielectric multilayers,
analysis of tensor mechanical properties of materials, optical networks, classic mechanics formulations,
polarization and depolarization problems in optics, fluids dynamics, acoustic, and in general, any
problem that holds linear relations and sets the stage for a matrix treatment. The POM was applied to
3-layers dielectric system [9].

Finally, other industrial applications could be the simulation in designing System of Systems
focused on communication networks, multimodal traffic control, energy distribution systems,
multi-site industrial manufacture or emergency management, among others.
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