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1. Introduction

The notion of a Hom-Lie algebra was introduced by Hartwig, Larsson, and Silvestrov in [1] as
part of a study of deformations of the Witt and the Virasoro algebras. In a Hom-Lie algebra, the Jacobi
identity is twisted by a linear map, called the Hom-Jacobi identity. The set of (σ, σ)-derivations of an
associative algebra and some q-deformations of the Witt and the Virasoro algebras have the structure
of a Hom-Lie algebra [1–3]. Because of the close relation to discrete and deformed vector fields and
differential calculus [1,4,5], more people have started paying attention to this algebraic structure.
In particular, representations and deformations of Hom-Lie algebras are studied in [6–8]; extensions of
Hom-Lie algebras are studied in [4,9,10]. Some split regular Hom-structures are studied in [11,12].

The notion of a Hom-Lie 2-algebra, which is the categorification of a Hom-Lie algebra, is given
in [13]. The category of Hom-Lie 2-algebras and the category of 2-term HL∞-algebras are equivalent.
Skeletal Hom-Lie 2-algebras can be classified by the third cohomology group of a Hom-Lie algebra.
Many known Hom-structures, such as Hom-pre-Lie algebras and symplectic Hom-Lie algebras, lead
to skeletal or strict Hom-Lie 2-algebras. In [14], we give the notion of a derivation of a regular Hom-Lie
algebra (g, [·, ·]g, φg). The set of derivations Der(g) is a Hom-Lie subalgebra of the regular Hom-Lie
algebra (gl(g), [·, ·]φg ,Adφg), which is given in [15]. We constructed the derivation Hom-Lie 2-algebra
DER(g), by which we characterize non-abelian extensions of regular Hom-Lie algebras as Hom-Lie
2-algebra morphisms. More precisely, we characterize a diagonal non-abelian extension of a regular
Hom-Lie algebra g by a regular Hom-Lie algebra h using a Hom-Lie 2-algebra morphism from g to the
derivation Hom-Lie 2-algebra DER(h). Associated to a non-abelian extension of a regular Hom-Lie
algebra g by a regular Hom-Lie algebra h, there is a Hom-Lie algebra morphism from g to Out(h)

naturally. However, given an arbitrary Hom-Lie algebra morphism from g to Out(h), whether there
is a non-abelian extension of g by h that induces the given Hom-Lie algebra morphism and what the
obstruction is are not known yet.
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The aim of this paper is to solve the above problem. It turns out that the result is not totally
parallel to the case of Lie algebras [16–21]. We need to add some conditions on the short exact sequence
related to derivations of Hom-Lie algebras. Under these conditions, first we show that under the
assumption of the center of h being zero, there is a one-to-one correspondence between diagonal
non-abelian extensions of g by h and Hom-Lie algebra morphisms from g to Out(h). Then for the
general case, we show that the obstruction of the existence of a non-abelian extension is given by an
element in the third cohomology group.

The paper is organized as follows. In Section 2, we recall some basic notions of Hom-Lie
algebras, representations of Hom-Lie algebras, their cohomologies and derivations of Hom-Lie algebras.
In Section 3, we study non-abelian extensions of g by h in the case that the center of h is zero. We show
that if the center of h is zero and the short exact sequence related to derivations of Hom-Lie algebras is
also diagonal, then diagonal non-abelian extensions of g by h correspond bijectively to Hom-Lie algebra
morphisms from g to Out(h) (Theorem 2). In Section 4, we give a cohomology characterization of the
existence of general non-abelian extensions of g by h. We show that the obstruction of the existence
of a diagonal non-abelian extension of g by h that induces a given Hom-Lie algebra morphism from
g to Out(h) is given by a cohomology class in H3(g;Cen(h)) (Theorem 3). Moreover, isomorphism
classes of diagonal non-abelian extensions of g by h are parameterized byH2(g;Cen(h)) (Theorem 4).
In Section 5, we give a conclusion of the paper.

2. Preliminaries

In this paper, we work over an algebraically closed field K of characteristic 0, and all the vector
spaces are over K. We only work on finite-dimensional vector spaces.

2.1. Representations, Cohomologies and Derivations of Hom-Lie Algebras

Definition 1.

(i) A (multiplicative) Hom-Lie algebra is a triple (g, [·, ·]g, φg) consisting of a vector space g, a skew-symmetric
bilinear map (bracket) [·, ·]g : ∧2g −→ g and a linear map φg : g → g preserving the bracket, such that
the following Hom-Jacobi identity with respect to φg is satisfied:

[φg(x), [y, z]g]g + [φg(y), [z, x]g]g + [φg(z), [x, y]g]g = 0 (1)

(ii) A Hom-Lie algebra is called a regular Hom-Lie algebra if φg is an algebra automorphism.
(iii) The center Cen(g) of a regular Hom-Lie algebra (g, [·, ·]g, φg) is defined by

Cen(g) = {x ∈ g|[x, y]g = 0, ∀y ∈ g} (2)

Remark 1. The center of a Hom-Lie algebra (g, [·, ·]g, φg) (not necessarily regular) is usually defined by
Equation (2); see [9] (Definition 2.13). However, for x ∈ Cen(g), φg(x) may not be in Cen(g). This is a conflict
with the definition of a subalgebra of a Hom-Lie algebra, for which one requires that the subspace is closed with
respect to both [·, ·]g and φg. We note that for a regular Hom-Lie algebra, if x ∈ g is such that [x, y] = 0 for all
y ∈ g, then φg(x) also satisfies this property. This follows from

[φg(x), y]g = [φg(x), φg ◦ φ−1
g (y)]g = φg[x, φ−1

g (y)]g = 0, ∀y ∈ g

Thus, we suggest that for a general Hom-Lie algebra, one should define its center by

Cen(g) = {x ∈ g|[φk
g(x), y]g = 0, ∀y ∈ g, k ∈ N}

In the sequel, we always assume that φg is an algebra automorphism. That is, in this paper, all the
Hom-Lie algebras are assumed to be regular Hom-Lie algebras despite that some results also hold for
general Hom-Lie algebras.
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Example 1. Let V be a vector space and β ∈ GL(V). Define a skew-symmetric bilinear bracket operation
[·, ·]β : ∧2gl(V) −→ gl(V) by

[A, B]β = β ◦ A ◦ β−1 ◦ B ◦ β−1 − β ◦ B ◦ β−1 ◦ A ◦ β−1, ∀A, B ∈ gl(V) (3)

Denote by Adβ : gl(V) → gl(V) the adjoint action on gl(V), that is,

Adβ(A) = β ◦ A ◦ β−1 (4)

Then (gl(V), [·, ·]β,Adβ) is a regular Hom-Lie algebra. See [15] for more details.

Definition 2. A morphism of Hom-Lie algebras f : (g, [·, ·]g, φg) → (h, [·, ·]h, φh) is a linear map f : g → h

such that

f [x, y]g = [ f (x), f (y)]h, ∀x, y ∈ g (5)

f ◦ φg = φh ◦ f (6)

Definition 3. A representation of a Hom-Lie algebra (g, [·, ·]g, φg) on a vector space V with respect to
β ∈ gl(V) is a linear map ρ : g → gl(V) such that for all x, y ∈ g, the following equalities are satisfied:

ρ(φg(x)) ◦ β = β ◦ ρ(x) (7)

ρ([x, y]g) ◦ β = ρ(φg(x)) ◦ ρ(y)− ρ(φg(y)) ◦ ρ(x) (8)

We denote a representation by (ρ, V, β).

Theorem 1 ([15], (Theorem 4.2)). Let (g, [·, ·]g, φg) be a Hom-Lie algebra, V be a vector space, and
β ∈ GL(V). Then ρ : g → gl(V) is a representation of (g, [·, ·]g, φg) on V with respect to β if and only if
ρ : (g, [·, ·]g, φg) → (gl(V), [·, ·]β,Adβ) is a morphism of Hom-Lie algebras.

For all x ∈ g, we define adx : g → g by

adx(y) = [x, y]g, ∀y ∈ g (9)

Then ad : g −→ gl(g) is a representation of the Hom-Lie algebra (g, [·, ·]g, φg) on g with respect to
φg, which is called the adjoint representation.

Let (ρ, V, β) be a representation. We define the set of k-Hom-cochains by

Ck
φg,β(g; V)

4
= { f ∈ Ck(g; V) | β ◦ φg = φg ◦ β⊗k}

For k ≥ 1, we define the coboundary operator dρ : Ck
φg,β(g; V) → Ck+1

φg,β(g; V) by

(dρ f )(x1, · · · , xk+1) =
k+1

∑
i=1

(−1)i+1ρ(φk−1
g (xi))( f (x1, · · · , x̂i, · · · , xk+1))

+∑
i<j

(−1)i+j f ([xi, xj]g, φg(x1), · · · , φ̂g(xi), · · · , φ̂g(xj), · · · , φg(xk+1))

where dρ ◦ dρ = 0 is proved in [8]. Denote by Z k(g; ρ) and Bk(g; ρ) the sets of k-cocycles and
k-coboundaries, respectively. We define the kth cohomology group Hk(g; ρ) to be Z k(g; ρ)/Bk(g; ρ).
See also [6] for more details about such cochain and coboundary setups.
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Definition 4 ([14], (Definition 3.1)). A linear map D : g → g is called a derivation of a Hom-Lie algebra
(g, [·, ·]g, φg) if

D[x, y]g = [φg(x), (Ad
φ−1
g

D)(y)]g + [(Ad
φ−1
g

D)(x), φg(y)]g, ∀x, y ∈ g (10)

Denote by Der(g) the set of derivations of the Hom-Lie algebra (g, [·, ·]g, φg). Then we obtain
that (Der(g), [·, ·]φg ,Adφg) is a Hom-Lie algebra, which is a subalgebra of the Hom-Lie algebra
(gl(g), [·, ·]φg ,Adφg).

Remark 2. The above definition of a derivation of a Hom-Lie algebra is more general than that given in [8].
Under the condition D ◦ φg = φg ◦ D, the above definition is the same as the α-derivation given in [8].
See Remark 3.2 in [14] for more details.

For all x ∈ g, adx is a derivation of the Hom-Lie algebra (g, [·, ·]g, φg), which we call an inner
derivation. See [14] for more details. Denote by Inn(g) the set of inner derivations of the Hom-Lie
algebra (g, [·, ·]g, φg), that is,

Inn(g) = {adx | x ∈ g} (11)

Lemma 1 ([14], (Lemma 3.6)). Let (g, [·, ·]g, φg) be a Hom-Lie algebra. For all x ∈ g and D ∈ Der(g),
we have

Adφgadx = adφg(x), [D, adx]φg = adD(x)

Therefore, Inn(g) is an ideal of the Hom-Lie algebra (Der(g), [·, ·]φg ,Adφg).

Denote by Out(g) the set of out derivations of the Hom-Lie algebra (g, [·, ·]g, φg), that is,

Out(g) = Der(g)/Inn(g) (12)

We use π to denote the quotient map from Der(g) to Out(g).

2.2. Non-Abelian Extensions of Hom-Lie Algebras

Definition 5. A non-abelian extension of a Hom-Lie algebra (g, [·, ·]g, φg) by a Hom-Lie algebra (h, [·, ·]h, φh)

is a commutative diagram with rows being short exact sequences of Hom-Lie algebra morphisms:

0 −−−−→ h
ι−−−−→ ĝ

p−−−−→ g −−−−→ 0

φh

y φĝ

y φg

y
0 −−−−→ h

ι−−−−→ ĝ
p−−−−→ g −−−−→ 0

where (ĝ, [·, ·]ĝ, φĝ) is a Hom-Lie algebra.

We can regard h as a subspace of ĝ and φĝ|h = φh. Thus, h is an invariant subspace of φĝ. We say
that an extension is diagonal if ĝ has an invariant subspace X of φĝ such that h⊕ X = ĝ. In general,
ĝ does not always have an invariant subspace X of φĝ such that h⊕ X = ĝ. For example, the matrix
representation of φĝ is a Jordan block. We only study diagonal non-abelian extensions in the sequel.
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Definition 6. Two extensions of g by h, (ĝ1, [·, ·]ĝ1 , φĝ1) and (ĝ2, [·, ·]ĝ2 , φĝ2) are said to be isomorphic if there
exists a Hom-Lie algebra morphism θ : ĝ2 → ĝ1 such that we have the following commutative diagram:

0 −−−−→ h
ι2−−−−→ ĝ2

p2−−−−→ g −−−−→ 0∥∥∥ θ

y ∥∥∥
0 −−−−→ h

ι1−−−−→ ĝ1
p1−−−−→ g −−−−→ 0

Lemma 2 ([14], (Lemma 4.4)). A Hom-Lie algebra (ĝ, [·, ·]ĝ, φĝ) is a diagonal non-abelian extension of a
Hom-Lie algebra (g, [·, ·]g, φg) by a Hom-Lie algebra (h, [·, ·]h, φh) if and only if there is a section s : g → ĝ

such that p ◦ s = Id and φĝ ◦ s = s ◦ φg. This section is called diagonal.

Let (ĝ, [·, ·]ĝ, φĝ) be a diagonal extension of a Hom-Lie algebra (g, [·, ·]g, φg) by a Hom-Lie algebra
(h, [·, ·]h, φh) and s : g → ĝ be a diagonal section. Define linear maps ω : g∧ g → h and ρ : g → gl(h)

respectively by

ω(x, y) = [s(x), s(y)]ĝ − s[x, y]g, ∀x, y ∈ g (13)

ρx(u) = [s(x), u]ĝ, ∀x ∈ g, u ∈ h (14)

Clearly, ĝ is isomorphic to g⊕ h as vector spaces. Transferring the Hom-Lie algebra structure on ĝ

to that on g⊕ h, we obtain a Hom-Lie algebra (g⊕ h, [·, ·](ρ,ω), φ), where [·, ·](ρ,ω) and φ are given by

[x + u, y + v](ρ,ω) = [x, y]g + ω(x, y) + ρx(v)− ρy(u) + [u, v]h (15)

φ(x + u) = φg(x) + φh(u) (16)

The following proposition gives the conditions on ρ and ω such that (g ⊕ h, [·, ·](ρ,ω), φ) is a
Hom-Lie algebra.

Proposition 1 ([14], (Proposition 4.5)). With the above notations, (g⊕ h, [·, ·](ρ,ω), φ) is a Hom-Lie algebra
if and only if ρ and ω satisfy the following equalities:

φh ◦ ρx = ρφg(x) ◦ φh (17)

ρx([u, v]h) = [φh(u), (Adφ−1
h

ρx)(v)]h + [(Ad
φ−1
h

ρx)(u), φh(v)]h (18)
φh ◦ω = ω ◦ φ⊗2

g (19)
[ρx, ρy]φh

− ρ[x,y]g = adω(x,y), (20)

ρφg(x)(ω(y, z)) + c.p. = ω([x, y]g, φg(z)) + c.p. (21)

where c.p. is the cyclic permutation of x, y, z.

For any diagonal non-abelian extension, by choosing a diagonal section, it is isomorphic to
(g⊕ h, [·, ·](ρ,ω), φ). Therefore, we only consider diagonal non-abelian extensions of the form (g⊕
h, [·, ·](ρ,ω), φ) in the sequel.

Proposition 2 ([14], (Theorem 4.9)). Let (g ⊕ h, [·, ·](ρ,ω), φ) and (g ⊕ h, [·, ·](ρ′ ,ω′), φ) be two diagonal
non-abelian extensions of g by h. The two extensions are equivalent if and only if there is a linear map ξ : g → h

such that

φh(ξ(x)) = ξ(φg(x)) (22)

ρ′x − ρx = adξ(x) (23)

ω′(x, y)−ω(x, y) = ρx(ξ(y))− ρy(ξ(x)) + [ξ(x), ξ(y)]h − ξ([x, y]g) (24)
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3. Classification of Diagonal Non-Abelian Extensions of Hom-Lie Algebras: Special Case

In this section, we classify diagonal non-abelian extensions of Hom-Lie algebras for the case that
Cen(h) = 0.

Theorem 2. Let (g, [·, ·]g, φg) and (h, [·, ·]h, φh) be Hom-Lie algebras such that Cen(h) = 0. If the following
short exact sequence of Hom-Lie algebra morphisms:

0 → Inn(h) → Der(h)
π→ Out(h) → 0 (25)

is a diagonal non-abelian extension of Out(h) by Inn(h), then isomorphism classes of diagonal non-abelian
extensions of g by h correspond bijectively to Hom-Lie algebra homomorphisms:

ρ̄ : g → Out(h)

Proof. Let (g ⊕ h, [·, ·](ρ,ω), φ) be a diagonal non-abelian extension of g by h given by
Equations (15) and (16). By Equation (18), we have ρx ∈ Der(h). Let π : Der(h) → Out(h) be
the quotient map. We denote the induced Hom-Lie algebra structure on Out(h) by [·, ·]′φh

and Ad′φh
.

Hence we can define
ρ̄ = π ◦ ρ

By Equation (17), for all x ∈ g, we have

ρ̄φg(x) = π(ρφg(x)) = π(Adφh
(ρx)) = Ad′φh

(ρ̄x)

By Equation (20), we have

ρ̄[x,y]g = π([ρx, ρy]φh
− adω(x,y)) = π([ρx, ρy]φh

) = [ρ̄x, ρ̄y]
′
φh

Thus, ρ̄ is a Hom-Lie algebra homomorphism from g to Out(h).
Let (g⊕ h, [·, ·](ρ′ ,ω′), φ) and (g⊕ h, [·, ·](ρ,ω), φ) be isomorphic diagonal non-abelian extensions of

g by h. By Proposition 2, we have

ρ̄′x = π(ρx + adξ(x)) = ρ̄x

Thus, we obtain that isomorphic diagonal non-abelian extensions of g by h correspond to the
same Hom-Lie algebra homomorphism from g to Out(h).

Conversely, let ρ̄ be a Hom-Lie algebra homomorphism from g to Out(h). Because the short exact
sequence of Hom-Lie algebras (Equation (25)) is a diagonal non-abelian extension of Out(h) by Inn(h),
we can choose a diagonal section s of π : Der(g) → Out(h). Moreover, we define ρ : g → gl(h) by

ρx = s(ρ̄x) (26)

We have ρx ∈ Der(h). Thus we obtain Equation (18). Because s is a diagonal section, we have

ρφg(x) ◦ φh =
(
s(ρ̄φg(x))

)
◦ φh =

(
s(Ad′φh

(ρ̄x))
)
◦ φh =

(
(s ◦ Ad′φh

) ◦ ρ̄x)
)
◦ φh

=
(
(Adφh

◦ s) ◦ ρ̄x)
)
◦ φh =

(
Adφh

(s(ρ̄x))
)
◦ φh = φh ◦ s(ρ̄x) ◦ φ−1

h ◦ φh (27)

= φh ◦ ρx

Thus, we obtain Equation (17). Because π and ρ̄ are Hom-Lie algebra homomorphisms, for all
x, y ∈ g, we have

π([ρx, ρy]φh
− ρ[x,y]g) = [π(ρx), π(ρy)]

′
φh
− π(ρ[x,y]g) = [ρ̄x, ρ̄y]

′
φh
− ρ̄[x,y]g = 0
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which implies that [ρx, ρy]φh
− ρ[x,y]g ∈ Inn(h). Because we have the following short exact sequence of

Hom-Lie algebra morphisms:

0 → Cen(h) → h
ad→ Inn(h) → 0

and Cen(h) = 0, there exists a unique linear map ω : g∧ g → h such that

[ρx, ρy]φh
− ρ[x,y]g = adω(x,y) (28)

Furthermore, we claim that
φh ◦ω = ω ◦ φ⊗2

g (29)

In fact, for all u ∈ h, we have

[φh(ω(x, y))−ω(φg(x), φg(y)), φh(u)]h
= φhadω(x,y)u− adω(φg(x),φg(y))φh(u)

= φh([ρx, ρy]φh
(u)− ρ[x,y]g(u))−

(
[ρφg(x), ρφg(y)]φh

(φh(u))− ρφg[x,y]g(φh(u))
)

= 0

which implies that φh(ω(x, y)) − ω(φg(x), φg(y)) = 0 because Cen(h) = 0. Thus, we obtain
Equations (19) and (20). For all x, y, z ∈ g, u ∈ h, by ρx ∈ Der(h) and Equations (27) and (28),
we have

[
(
ρφg(x)(ω(y, z))−ω([x, y]g, φg(z))

)
+ c.p., φh(u)]h

= φh

(
[(Ad

φ−1
h

ρφg(x))(ω(φ−1
g y, φ−1

g z)), φh(φ
−1
h u)]h − [ω([φ−1

g x, φ−1
g y]g, z), u]h + c.p.

)
= φh

(
ρφg(x)[ω(φ−1

g y, φ−1
g z), φ−1

h u]h − [ω(y, z), (Ad
φ−1
h

ρφg(x))(φ
−1
h u)]h

−[ρ[φ−1
g x,φ−1

g y]g
, ρz]φh

(u) + ρ[[φ−1
g x,φ−1

g y]g,z]g
(u) + c.p.

)
= φh

(
ρφg(x)

(
([ρ

φ−1
g y, ρ

φ−1
g z]φh

− ρ[φ−1
g y,φ−1

g z]g
)(φ−1

h u)
)
− ([ρy, ρz]φh

− ρ[y,z]g)((ρx ◦ φ−1
h )(u))

−[ρ[φ−1
g x,φ−1

g y]g
, ρz]φh

(u) + ρ[[φ−1
g x,φ−1

g y]g,z]g
(u) + c.p.

)
= φh

(
(φh ◦ ρx ◦ φ−1

h ◦ [ρφ−1
g y, ρ

φ−1
g z]φh

◦ φ−1
h − φh ◦ [ρφ−1

g y, ρ
φ−1
g z]φh

◦ φ−1
h ◦ ρx ◦ φ−1

h )(u)

+(φh ◦ ρ[φ−1
g y,φ−1

g z]g
◦ φ−1

h ◦ ρx ◦ φ−1
h − φh ◦ ρx ◦ φ−1

h ◦ ρ[φ−1
g y,φ−1

g z]g
◦ φ−1

h )(u)

−[ρ[φ−1
g x,φ−1

g y]g
, ρz]φh

(u) + ρ[[φ−1
g x,φ−1

g y]g,z]g
(u) + c.p.

)
= φh

(
([ρx, [ρ

φ−1
g y, ρ

φ−1
g z]φh

]φh
+ [ρ[φ−1

g y,φ−1
g z]g

, ρx]φh

−[ρ[φ−1
g x,φ−1

g y]g
, ρz]φh

+ ρ[[φ−1
g x,φ−1

g y]g,z]g
)(u) + c.p.

)
= 0

Thus, we have

ρφg(x)(ω(y, z))−ω([x, y]g, φg(z)) + c.p. ∈ Cen(h) (30)

Because Cen(h) = 0, we have Equation (21). Therefore, we deduce that Equations (17)–(21) hold.
By Proposition 1, (g⊕ h, [·, ·](ρ,ω), φ) is a diagonal non-abelian extension of g by h.

If we choose another section s′ of π : Der(g) → Out(h), we obtain another diagonal non-abelian
extension (g⊕ h, [·, ·](ρ′ ,ω′), φ). Clearly, we have

π(ρ′x − ρx) = (π ◦ s′)(ρ̄x)− (π ◦ s)(ρ̄x) = 0
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which implies that ρ′x − ρx ∈ Inn(h). Because Cen(h) = 0, there is a unique linear map ξ : g → h

such that

ρ′x − ρx = adξ(x) (31)

We claim that
φh(ξ(x)) = ξ(φg(x)) (32)

In fact, for all u ∈ h, we have

[φh(ξ(x))− ξ(φg(x)), φh(u)]h = φhadξ(x)u− adξ(φg(x))φh(u)

= φh(ρ
′
xu− ρxu)− (ρ′φg(x)φh(u)− ρφg(x)φh(u))

= 0

which implies that φh(ξ(x)) = ξ(φg(x)) because Cen(h) = 0. Thus, we obtain Equations (22) and (23).
By Lemma 1 and Equation (28), for all x, y ∈ g we have

adω′(x,y)−ω(x,y) = [ρ′x, ρ′y]φh
− ρ′[x,y]g − [ρx, ρy]φh

+ ρ[x,y]g

= [ρx + adξ(x), ρy + adξ(y)]φh
− ρ[x,y]g − adξ([x,y]g) − [ρx, ρy]φh

+ ρ[x,y]g

= [ρx, adξ(y)]φh
+ [adξ(x), ρy]φh

+ [adξ(x), adξ(y)]φh
− adξ([x,y]g)

= adρx(ξ(y)) − adρy(ξ(x)) + ad[ξ(x),ξ(y)]h − adξ([x,y]g)

= adρx(ξ(y))−ρy(ξ(x))+[ξ(x),ξ(y)]h−ξ([x,y]g)

By Cen(h) = 0, we obtain Equation (24). Thus, we have Equations (22)–(24). Therefore, we deduce
that (g⊕ h, [·, ·](ρ,ω), φ) and (g⊕ h, [·, ·](ρ′ ,ω′), φ) are isomorphic diagonal non-abelian extensions of g
by h. The proof is finished. 2

4. Obstruction of Existence of Diagonal Non-Abelian Extensions of Hom-Lie Algebras

In this section, we always assume that the following short exact sequences of Hom-Lie
algebra morphisms:

0 → Inn(h) → Der(h)
π→ Out(h) → 0

0 → Cen(h) → h
ad→ Inn(h) → 0

are diagonal non-abelian extensions. Given a Hom-Lie algebra morphism ρ̄ : g → Out(h),
where Cen(h) 6= 0, we consider the obstruction of existence of non-abelian extensions. By choosing a
diagonal section s of π : Der(h) → Out(h), we can still define ρ by Equation (26) such that Equation (27)
holds. Moreover, we can choose a linear map ω : g ∧ g → h such that Equations (28) and (29) hold.
Thus, (g⊕ h, [·, ·](ρ,ω), φ) is a diagonal non-abelian extension of g by h if and only if

ρφg(x)(ω(y, z))−ω([x, y]g, φg(z)) + c.p.(x, y, z) = 0 (33)

Let dρ be the formal coboundary operator associated to ρ. Then we have

(dρω)(x, y, z) = ρφg(x)(ω(y, z))−ω([x, y]g, φg(z)) + c.p.(x, y, z)

Therefore, (g⊕ h, [·, ·](ρ,ω), φ) is a diagonal non-abelian extension of g by h if and only if dρω = 0.

Definition 7. Let ρ̄ : g → Out(h) be a Hom-Lie algebra morphism. We call ρ̄ an extensible
homomorphism if there exists a diagonal section s of π : Der(h) → Out(h) and linear map ω : g∧ g → h

such that Equations (27), (28) and (33) hold.
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For all u ∈ Cen(h), it is clear that φh(u) ∈ Cen(h). For v ∈ h, we have

[ρx(u), v]h = [(Ad
φ−1
h

ρφg(x))(u), φh(φ
−1
h (v))]h

= ρφg(x)([u, φ−1
h (v)]h)− [φh(u), (Adφ−1

h
ρφg(x))(φ

−1
h (v))]h

= 0

Thus, we have ρx(u) ∈ Cen(h). Therefore, we can define ρ̂ : g → gl(Cen(h)) by

ρ̂x , ρx|Cen(h)

By Equations (27) and (28), we obtain that ρ̂ is a Hom-Lie morphism from g to gl(Cen(h)).
By Theorem 1, ρ̂ is a representation of (g, [·, ·]g, φg) on Cen(h) with respect to φh|Cen(h).
By Equation (31), we deduce that different diagonal sections of π give the same representation of
g on Cen(h) with respect to φh|Cen(h). In the sequel, we always assume that ρ̂ is a representation
of g on Cen(h) with respect to φh|Cen(h), which is induced by ρ̄. By Equation (30), we have
(dρω)(x, y, x) ∈ Cen(h). Thus, we have dρω ∈ C3

φg,φh|Cen(h)
(g;Cen(h)). Moreover, we have the

following lemma.

Lemma 3. dρω is a 3-cocycle on g with the coefficient in Cen(h), and the cohomology class [dρω] does not
depend on the choices of the diagonal section s of π : Der(h) → Out(h) and ω that we make.

Proof. For all x, y, z, t ∈ g, by straightforward computations, we have

dρ̂(dρω)(x, y, z, t) = ρφ2
g(x)(dρω(y, z, t))− ρφ2

g(y)
(dρω(x, z, t)) + ρφ2

g(z)
(dρω(x, y, t))− ρφ2

g(t)
(dρω(x, y, z))

−(dρω)([x, y]g, φg(z), φg(t)) + (dρω)([x, z]g, φg(y), φg(t))− (dρω)([x, t]g, φg(y), φg(z))
−(dρω)([y, z]g, φg(x), φg(t)) + (dρω)([y, t]g, φg(x), φg(z))− (dρω)([z, t]g, φg(x), φg(y))

By the definition of dρω, we have 60 terms in the right-hand side of the above formula. Fortunately,
we can cancel the following terms:

−ρφ2
g(x)
(
ω([y, z]g, φg(t))

)
− ρφ2

g(x)
(
ω(φg(t), [y, z]g)

)
= 0

ω([φg(z), φg(t)]g, φg([x, y]g)) + ω([φg(x), φg(y)]g, φg([z, t]g)) = 0

ω([φg(t), [x, y]g]g, φ2
g(z)) + ω([[x, t]g, φg(y)]g, φ2

g(z))−ω([[y, t]g, φg(x)]g, φ2
g(z)) = 0

By Equations (27)–(29), the above formula reduces to the following:

([ρφg(x), ρφg(y)]φh
− ρφg([x,y]g))

(
ω(φg(z), φg(t))

)
+ ([ρφg(x), ρφg(z)]φh

− ρφg([x,z]g))
(
ω(φg(t), φg(y))

)
+([ρφg(x), ρφg(t)]φh − ρφg([x,t]g))

(
ω(φg(y), φg(z))

)
+ ([ρφg(y), ρφg(z)]φh − ρφg([y,z]g))

(
ω(φg(x), φg(t))

)
−([ρφg(y), ρφg(t)]φh

+ ρφg([y,t]g))
(
ω(φg(x), φg(z))

)
+ ([ρφg(z), ρφg(t)]φh − ρφg([z,t]g))

(
ω(φg(x), φg(y))

)
Because [ρx, ρy]φh − ρ[x,y]g = adω(x,y) and φg is an algebra morphism, this is rewritten as follows:

[ω(φg(x), φg(y)), ω(φg(z), φg(t))]h + [ω(φg(x), φg(z)), ω(φg(t), φg(y))]h
+[ω(φg(x), φg(t)), ω(φg(y), φg(z))]h + [ω(φg(y), φg(z)), ω(φg(x), φg(t))]h
−[ω(φg(y), φg(t)), ω(φg(x), φg(z))]h + [ω(φg(z), φg(t)), ω(φg(x), φg(y))]h
= 0

Thus, we obtain dρω ∈ Z3(g; ρ̂).
Now we check that the cohomology class [dρω] does not depend on the choices of the diagonal section s

of π : Der(h) → Out(h) and ω that we make. Let s′ be another diagonal section of π; we have ρ′x ∈ Der(h) and
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choose ω′ such that Equations (27) and (28) hold. We prove that [dρω] = [dρ′ω
′]. Because s and s′ are diagonal

sections of π, we have a linear map b : g → h such that

b ◦ φg = φh ◦ b, ρ′x = ρx + adb(x)

We define ω∗ by

ω∗(x, y) = ω(x, y) + ρx(b(y))− ρy(b(x)) + [b(x), b(y)]h − b[x, y]g

By straightforward computations, we obtain that Equations (28) and (29) hold for ρ′, ω∗. For all x, y, z ∈ g,
we have

(dρ′ω
∗ − dρω)(x, y, z)

= (ρ′φg(x) ◦ω∗(y, z)−ω∗([x, y]g, φg(z))− (ρφg(x) ◦ω(y, z)−ω([x, y]g, φg(z))) + c.p.

= A(x, y, z) + A(y, z, x) + A(z, x, y) + B(x, y, z) + B(y, z, x) + B(z, x, y) + C(x, y, z)

where

A(x, y, z) = ρφg(x) ◦ ρy(b(z))− ρφg(y) ◦ ρx(b(z))− ρ[x,y]g (b(φg(z))) + [b(φg(z)), ω(x, y)]h,

B(x, y, z) = ρφg(x)([b(y), b(z)]h)− [ρx(b(y)), b(φg(z))]h − [b(φg(y)), ρx(b(z))]h,

C(x, y, z) = [b(φg(x)), [b(y), b(z)]h]h + [b(φg(y)), [b(z), b(x)]h]h + [b(φg(z)), [b(x), b(y)]h]h
+b([[x, y]g, φg(z)]g) + b([[y, z]g, φg(x)]g) + b([[z, x]g, φg(y)]g)

By Equations (27) and (28), we have A(x, y, z) = 0. Because ρφg(x) is a derivation, we obtain B(x, y, z) = 0.
Because b ◦ φg = φh ◦ b and g, h are Hom-Lie algebras, we obtain C(x, y, z) = 0. Thus, we have dρω = dρ′ω

∗.
Because Equations (28) and (29) hold for ρ′, ω∗ and ρ′, ω′, respectively, we have

[ρ′x, ρ′y]φh − ρ′[x,y]g = adω′(x,y) = adω∗(x,y)

Thus, we have ad(ω′−ω∗)(x,y) = 0. Moreover, we have (ω′ −ω∗)(x, y) ∈ Cen(h). By Equation (29), we can
define τ ∈ C2

φg,φh|Cen(h)
(g;Cen(h)) by

τ(x, y) = ω′(x, y)−ω∗(x, y)

Thus, we have
dρ′ω

′ − dρω = dρ′ω
′ − dρ′ω

∗ = dρ′ (ω
′ −ω∗) = dρ′τ = dρ̂τ

Therefore, we obtain [dρω] = [dρ′ω
′]. The proof is finished. 2

Now we are ready to give the main result in this paper, namely, that the obstruction of a Hom-Lie algebra
homomorphism ρ̄ : g → Out(h) being extensible is given by the cohomology class [dρω] ∈ H3(g; ρ̂).

Theorem 3. Let ρ̄ : g → Out(h) be a Hom-Lie algebra morphism. Then ρ̄ is an extensible homomorphism if and only if

[dρω] = [0]

Proof. Let ρ̄ : g → Out(h) be an extensible Hom-Lie algebra morphism. Then we can choose a diagonal section
s of π : Der(h) → Out(h) and define ρ by Equation (26). Moreover, we can choose a linear map ω : g ∧ g → h

such that Equations (27) and (28) hold. Because ρ̄ is extensible, we have dρω = 0, which implies that [dρω] = [0].
Conversely, if [dρω] = [0], then there exists σ ∈ C2

φg,φh|Cen(h)
(g;Cen(h)) such that dρω = dρ̂σ. Thus, we have

dρ(ω− σ) = dρω− dρσ = dρω− dρ̂σ = 0

Because σ ∈ C2
φg,φh|Cen(h)

(g;Cen(h)), we also have

φh ◦ (ω− σ) = (ω− σ) ◦ φ⊗2
g

[ρx, ρy]φh − ρ[x,y]g = ad(ω−σ)(x,y)
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By Proposition 1, we can construct a Hom-Lie algebra (g⊕ h, [·, ·](ρ,ω−σ), φ). Therefore, ρ̄ is an extensible
morphism. The proof is finished. 2

The following theorem classifies diagonal non-abelian extensions of g by h once they exist.

Theorem 4. Let ρ̄ : g → Out(h) be an extensible morphism. Then isomorphism classes of diagonal non-abelian extensions
of g by h induced by ρ̄ are parameterized byH2(g; ρ̂).

Proof. Because ρ̄ is an extensible morphism, we can choose a diagonal section s of π and define ρ by Equation (26).
We choose a linear map ω such that Equations (27) and (28) hold and dρω = 0. Thus, the Hom-Lie algebra
(g⊕ h, [·, ·](ρ,ω), φ) defined by Equations (15) and (16) is a diagonal non-abelian extension of g by h, which is
induced by ρ̄. Let s′ be another diagonal section of π and define ρ′ by Equation (26). We also choose a linear map
ω′ such that Equations (27) and (28) hold and dρ′ω

′ = 0. Because s and s′ are diagonal sections of π, there exists a
linear map b : g → h such that

φh ◦ b = b ◦ φg, ρx = ρ′x + adb(x)

We define ω∗ by

ω∗(x, y) = ω′(x, y) + ρ′x(b(y))− ρ′y(b(x)) + [b(x), b(y)]h − b[x, y]g

By the computation in Lemma 3, we have dρω∗ = dρ′ω
′ = 0. Thus, the Hom-Lie algebra (g⊕ h, [·, ·](ρ,ω∗), φ)

constructed from ρ, ω∗ is isomorphic to the Hom-Lie algebra (g⊕ h, [·, ·](ρ′ ,ω,), φ) constructed from ρ′, ω′. Thus,
we only need to study the Hom-Lie algebras constructed from a fixed diagonal section s. For all ω̃, which satisfy
Equations (28) and (29) and dρω̃ = 0, we define

λ = ω− ω̃ ∈ C2
φg,φh|Cen(h)

(g;Cen(h))

Moreover, we have
dρ̂λ = dρ(ω− ω̃) = 0− 0 = 0

which implies that ω− ω̃ ∈ Z2(g; ρ̂).
Moreover, let us assume that the Hom-Lie algebra (g⊕ h, [·, ·](ρ,ω), φ) constructed from ρ, ω is isomorphic to

the Hom-Lie algebra (g⊕ h, [·, ·](ρ,ω̃), φ) constructed from ρ, ω̃. Then there exists a linear map b : g → h that does
not change ρ, that is, b : g → Cen(h), such that

φh ◦ b = b ◦ φg

ω− ω̃ = dρb

This is equivalent to ω− ω̃ ∈ B2(g; ρ̂). Thus, isomorphism classes of diagonal non-abelian extensions of g
by h induced by ρ̄ are parameterized byH2(g; ρ̂). 2

Corollary 1. The isomorphism classes of diagonal non-abelian extensions of a Hom-Lie algebra g by a Hom-Lie algebra h

correspond bijectively to the set of pairs (ρ̄, [κ]), where ρ̄ is an extensible morphism from g to Out(h) and [κ] ∈ H2(g; ρ̂).

5. Conclusions

In this paper, we use a cohomological approach to study diagonal non-abelian extensions of regular Hom-Lie
algebras. First, for the case that Cen(h) = 0, we classify diagonal non-abelian extensions of a regular Hom-Lie
algebra g by a regular Hom-Lie algebra h by Hom-Lie algebra morphisms from g to the outer derivation of the
Hom-Lie algebra Out(h). More precisely, we show that under the condition Cen(h) = 0, isomorphism classes
of diagonal non-abelian extensions of a regular Hom-Lie algebra g by a regular Hom-Lie algebra h one-to-one
correspond to Hom-Lie algebra morphisms from g to Out(h). Then for the general case, isomorphic diagonal
non-abelian extensions of a regular Hom-Lie algebra g by h give rise to the same morphism from g to Out(h).
However, given a morphism from g to Out(h), there is an obstruction for the existence of a diagonal non-abelian
extension of regular Hom-Lie algebras that induces the given morphism. We show that the obstruction is given
by a cohomological class in the third cohomology group. More precisely, if the cohomological class is trivial,
then there is a diagonal non-abelian extension of regular Hom-Lie algebras inducing the given morphism. In this
case, we say that the given morphism is extensible. In particular, if the third cohomology group is trivial, then
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every Hom-Lie algebra morphism from g to Out(h) is extensible. Moreover, we show that isomorphism classes
of diagonal non-abelian extensions of g by h inducing the given morphism are parameterized by the second
cohomology group.
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