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Abstract: This article presents a new method of risk propagation among associated elements. On the
basis of coloured Petri nets, a new class called propagation nets is defined. This class provides
a formal model of a risk propagation. The proposed method allows for model relations between
nodes forming the network structure. Additionally, it takes into account the bidirectional relations
between components as well as relations between isomorphic, symmetrical components in various
branches of the network. This method is agnostic in terms of use in various systems and it can
be adapted to the propagation model of any systems’ characteristics; however, it is intentionally
proposed to assess the risk of critical infrastructures. In this paper, as a proof of concept example, we
show the formal model of risk propagation proposed within the project Cyberspace Security Threats
Evaluation System of the Republic of Poland. In the article, the idea of the method is presented as
well as its use case for evaluation of risk for cyber threats. With the adaptation of Petri nets, it is
possible to evaluate the risk for the particular node and assess the impact of this risk for all related
nodes including hierarchic relations of components as well as isomorphism of elements.
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1. Introduction

Security of critical infrastructure (CI) systems is crucial for all countries and governments. This is
due to a number of recent successful security breaches widely published and revealed to the public
opinion. These breaches led not only to disclosure of sensitive data of companies or national agencies
but also affected the economy of countries. The most well-known cyber attacks publicized by media
include attacks against banks and governmental agencies, malfunctions of power plants, destabilization
of transport system, etc. Currently, assessment of the risk of various systems in the area of cyber space
is a key factor for evaluating present as well as near future situation. The aim of Cyberspace Security
Threats Evaluation System of the Republic of Poland is to improve the cyber situational awareness
in terms of CI vulnerabilities, threats that may affect assets of CI, incidents and attacks against CI.
The system was developed to support administrative units responsible for national security monitoring.
This system supports decision makers in terms of emergency state attribution in case of cyber attacks
or high risk of cyber threats’ materialization [1]. One of the requirements and challenges for this
system was to propose a formal method of risk assessment coherent with existing methodologies
and an algorithm that will assess the impact of the risk that one node has on other related nodes.
These relations should include hierarchy in the network as well as similarity of the nodes vulnerable
for the same threats. In our studies, we have analysed multiple guides and tools in order to fulfil
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client’s demands, and, finally, we proposed a novel method for risk assessment and modelling of its
propagation. The novelty of the method includes an inter alia definition of a new class of propagation
nets, modelling of mutual impact of the cooperated or symmetric components, propagation of the risk
among the system, formal verification of the method as well as its implementation in the real system.

The structure of this article is as follows: first, we present methodologies for risk assessment
followed by the structure, formal description and algorithm of propagation net generation.

2. Review of Existing Methodologies and Algorithms

In this section, we present various attitudes on risk assessment and risk management. There are
many international standards, methods as well as exemplary deployments. In analysed cases, it was
suggested that risk and its factors should be treated in such a way that eventual materialization brings
minimal loses. It was also indicated the need of continuous monitoring of risk in order to prepare
organization for action in uncertain environment.

International standard ISO/IEC 27005:2008 [2] defines the risk of information assets/information
systems as a possibility that the existing threat explores the vulnerability of assets/systems leading
to organization damages. This document indicates that the process of risk assessment should be
systematic. This way, information security and continuity of business functions can be maintained. The
standard defines steps in risk management: (i) identification of risk factors; (ii) risk assessment in terms
of its probability and consequences for organization; (iii) information distribution to stakeholders; (iv)
priorities of actions; (v) risk monitoring and actualization of risk management process.

Methodology and process of risk assessment in the United States Department of Agriculture is an
exemplary and successful use case of adaptation of National Institute of Standards and Technology
recommendations SP 800-30 [3]. Risk assessment is used for evaluating IT systems, all supporting
systems and applications’ processing information. NIST recommendations were delivered in order to
realize such security functions as availability, integrity and confidentiality appropriately. According
to this recommendations, the process of risk assessment should contain: (i) description of the
system; (ii) vulnerability assessment; (iii) threats analysis; (iv) influence of risk on business functions;
(v) evaluating level of risk; (vi) reduction of risk; and (vii) residual risk estimation.

Management of risk is also well documented in project management methodologies such as
Prince2 or the Project Management Institute PMBoK. In the first one, the risk is defined as potential
threats, problems, and vulnerabilities that might lead to negative effects on organization. The later one
defines risk as uncertainty of outcome, whether a positive opportunity or a negative threat.

There are multiple articles on methods of risk assessment, and they are widely described e.g.,
by Sun et al. [4], Ting et al. [5], and Vrabel et al. [6]. The methods are focused mostly on risk estimation
for particular problems (e.g., disease [7,8], cancer [9], earthquakes [10], floods [11]) or calculation
of risk with the use of various techniques, e.g., Bayesian networks [12,13], attack trees [14], or the
Dempster–Shafer theory of belief functions [4]. These methods are appropriate and successful for
evaluating the risk of some issues; however, they suffer from a lack of a formal mathematical method
representing risk propagation among cooperative nodes in the system. Obviously, there are first works
on modelling influences between assets and allowing their dependencies to be tracked during a risk
aggregation, e.g., fuzzy cognitive maps were proposed by Szwed et al. [15] in order to construct a
hierarchical structure, in which components of a lower level deliver value to parent elements. Petri
nets were successfully used by Henry et al. [16] to assess the risk of SCADA system failure modes
in terms of component or service malfunction. This method is mostly focused on measuring the risk
by quantifying the operational consequences of each process failure mode in terms of meaning of
this risk to the process owner. This method does not allow for assessing how other elements of the
infrastructure are affected by this risk.

Our method—presented in the following sections of the article—allows not only to model the risk
propagation in the hierarchical structure, but, additionally, it takes into account the bidirectional
hierarchical relations between components as well as relations between components in various
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branches of the tree. This functionality is especially important in modelling the risk propagation
between isomorphic components. This situation can be illustrated by an example when one asset in
some branch is affected by a threat and we want to indicate that this threat may influence symmetrical
or identical assets in different branches vulnerable to the same threat.

3. Structure of Propagation Nets

Suppose a system with a static structure composed of n components (nodes, elements, subsystems)
e1, . . . , en is given. We use E to denote the set of components E = {e1, . . . , en}. We focus on a selected
characteristic (feature) f of the system e.g., vulnerability to specific intrusion, the size of financial
losses in case of an intrusion, isomorphism between network elements, etc. The function f : E→ V is
a mapping from the set E into a set V that depends on the chosen characteristic. If f is a probability
function, then V = [0, 1]. It should be stressed that the approach is not limited to the case when
f (ei) denotes a probability of an event. The set (type) V may be any numerical set or enumerated
set, e.g., V = {high, medium, low}. The goal of function f is to denote the impact of one element to
other elements.

The value f (ei) is not the constant characteristic in the system model but depends on the current
model state. For any component ei, the value f (ei) may only depend on some changes in the considered
system environment or it may also depend on values of the characteristic f (ej) for other components
ej, i 6= j.

Suppose the value f (ei) depends on values of the function f for some components e′1, . . . , e′k.
Thus, if the value f (e′j) for a component e′j, j ∈ {1, . . . , k} changes, the change must be propagated
to f (ei). In the presented approach, such an internal dependency is represented by a function fi, i.e.,
f (ei) = fi( f (e′1), . . . , f (e′k)). The set of internal dependencies takes the form of the set F of functions fi
that represents dependencies between values of the function f on the system components, including
hierarchic and isomorphic relation among those elements. The set F is treated as the input data for the
algorithm of construction of a propagation net.

Propagation nets considered in the paper are Petri nets based on coloured Petri nets [17,18].
Due to the specific application, we decided to provide a modified version of coloured Petri nets called
propagation nets here.

Suppose we want to construct a model of a propagation of values of a function f for an information
system that satisfies the following requirements:

• E = {e1, . . . , e5}—set of system components;
• EB = {e1, e3}—set of border components—components for which the value of the characteristic f

may be modified due to some changes in the system environment;
• F = { f1, f2, f4, f5}, where arguments for the internal dependencies are given in Table 1.

Table 1. Internal dependencies.

f (e1) f (e2) f (e3) f (e4) f (e5)

f1 × ×
f2 × ×
f4 × ×
f5 × ×

Each element ei of the considered system is represented by a place ei (so-called component place).
The type (colour) of the place is the set V. Each marking of the place contains only one token that
represents the value f (ei). Moreover, one or more so-called trigger places may be attached to each
component place—trj

i denotes the trigger place of the component place ei assigned to function f j.
Trigger places will be distinguished with dashed lines. Each marking of a trigger place contains only
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one token of type Bool (Boolean). For a trigger place trj
i , the value True denotes that the value of the

function f (ei) changed and should be propagated to other component places. Due to the fact that only
two types are used in a propagation net (V and Bool), we omit the type labels in the net figure, instead
of type labels solid and dashed lines being used. Thus, only two labels are attached to each place:
the place name and its current marking.

Each function f j is represented by a transition with the same name (see Figure 1). The set of input
places of the transition contains all component places, which contain tokens necessary to determine
the value f (ej) and trigger places trj

i . The set of output places of transition f j contains the place ej and
all its trigger places (trk

j ). It should be emphasized that if the place ei is both an input and an output
place (the new value of f (ei) depends also on the old value), then the net does not contain a trigger
place tri

i . Part of the propagation net for the considered system is given in Figure 1. It is not necessary
to attach labels to arcs because each place always contains one token, and it is obvious which values
are either removed from or added to the places.

false

tr21

f2

f(e1)

e1

f(e2)

e2

false

tr42

f(e3)

e3

false

tr23

Figure 1. Part of the propagation net for representation of function f2.

A transition is enabled if marking of at least one of its input trigger places is equal to true.
The following changes are results of a transition occurrence:

• the new marking of the output component place is equal to the result of function f j;
• the new marking of all input trigger places is equal to false;
• the new marking of all output trigger places is equal to true, if the new value of the component

place differs from its old value; otherwise, it remains unchanged;
• the markings of all input component places remain unchanged.

Markings of places e1 and e3 may change due to some changes in the system environment.
To represent such cases, auxiliary transitions envi are used. A part of the considered model,
which relates to the component place e1, is shown in Figure 2. An occurrence of a transition envi sets a
new value to the component place ei and sets the new marking of its trigger places to true, if the new
value of place ei differs from its old value.

env1

f(e1)

e1

false

tr21

Figure 2. Part of the propagation net for representation of transition env1.
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The propagation net for the considered example is shown in Figure 3.

f(e1)

e1

f(e2)

e2

f(e3)

e3

f(e4)

e4

f(e5)

e5

false

tr21

false

tr42

false

tr13

false

tr23

false

tr43

false

tr53

f1 f2 f4

f5

env1

env3

Figure 3. Propagation net.

4. Formal Description of Propagation Nets

Suppose, the Boolean type called Bool including values false and true is given.

Definition 1. A propagation net is a tuple N = (PC, PT , T, A, V, M0), where:

• PC is a finite set of component places.
• PT is a finite set of trigger places such that PC ∩ PT = ∅.
• T is a finite set of transitions such that (PC ∪ PT) ∩ T = ∅.
• A ⊆ (PC ∪ PT)× T ∪ T × (PC ∪ PT) is a set of directed arcs.
• V is the type of tokens of component places.
• M0 is the initial marking such that:

∀p∈PC M0(p) ∈ V, (1)

∀p∈PT M0(p) = false. (2)

As was already introduced in Section 3, trigger places and their surrounding arcs are drawn using
dashed lines.

To define the nets behaviour formally, the following notations are necessary. For any transition
t ∈ T:
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• InC(t) = {p ∈ PC : (p, t) ∈ A}—is the set of input component places of t.
• InT(t) = {p ∈ PT : (p, t) ∈ A}—is the set of input trigger places of t.
• OutC(t) = {p ∈ PC : (t, p) ∈ A}—is the set of output component places of t.
• OutT(t) = {p ∈ PT : (t, p) ∈ A}—is the set of output trigger places of t.

Definition 2. A marking of a propagation net N is any function M : PC ∪ PT → V ∪ Bool, such that:

∀p∈PC M(p) ∈ V, (3)

∀p∈PT M(p) ∈ Bool. (4)

A stable marking of a propagation net N is any marking M, such that:

∀p∈PT M(p) = false. (5)

As was already introduced in Section 3, we can distinguish two subsets of transitions in
a propagation net. The fi transitions represent internal dependencies, while envi transitions represent
changes of the f values caused by the system environment.

Definition 3. A transition fi ∈ T is enabled in a marking M, if a trigger place tri
j ∈ InT( fi) exists, such that

M(tri
j) = true. If a transition fi ∈ T is enabled in a marking M, it may fire, changing the marking M to

another marking M′, such that:

M′(p) =


f (ei), if p = ei,
false, if p ∈ InT( fi),
true, if p ∈ OutT( fi) and f (ei) 6= M(ei),
M(p), otherwise.

(6)

A transition envi ∈ T is enabled in any marking M. If a transition envi ∈ T fires, it changes the marking
M to another marking M′, such that:

M′(p) =


envi(ei), if p = ei,
true, if p ∈ OutT(envi) and envi(ei) 6= M(ei),
M(p), otherwise,

(7)

where envi(ei) is the new marking of the place ei provided by the environment.

If a transition t ∈ T is enabled in a marking M and a marking M′ is derived from firing of t, then we

write M t−→ M′. A firing sequence of a propagation net N is a sequence of transitions α = t1, t2, . . . , tk.
The firing sequence is feasible from a marking M if a sequence of markings M1, M2, . . . , Mk exists,
such that:

M
t1→ M1

t2→ M2
t3→ · · · tk→ Mk. (8)

A marking M′ is reachable from a marking M if a finite firing sequence α feasible from M
and leading to M′ exists. The set of all markings that are reachable from M is denoted by R(M).
The set of all stable markings that are reachable from M is denoted by RS(M). The set of all firing
sequences feasible from a marking M is denoted by L(M). The set may contain also infinite sequences
of transitions.

Verification of model properties based on the reachability graph is the most popular approach to
formal analysis of Petri nets [17,19]. A reachability graph is a Petri net name for Labelled Transition
System (LTS), and it may be used to verify Petri net properties using model checking techniques [20].
Let us remind readers of the definition of directed graph, which is necessary to define reachability
graph.
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Definition 4. A directed graph is a triple G = (V, A, γ), where

1. V is the set of nodes.
2. A is the set of edges, such that V ∩ A = ∅.
3. γ : A→ V ×V is the node function that maps each arc to a pair of nodes.

If the sets V and A are finite, the graph G is called finite. If each arc has attached a label from a set of labels
L, then the graph G is called to be labelled over the set L.

The set of reachable states of a propagation net N can be represented using a directed graph.
Nodes of such a graph represent the reachable markings, while arcs represent changes of markings.
The arcs are labelled with transition names and there may exist more than one arc between the same
pair of nodes.

Let a propagation net N = (PC, PT , T, A, V, M0) be given.

Definition 5. A reachability graph of a propagation net N is a directed graph G = (V, A, γ) labelled over
the set T, such that:

1. V = R(M0) is the set of nodes.
2. A =

{
(M, t, M′) : M, M′ ∈ R(M0) ∧M t−→ M′

}
is the set of arcs with labels from the set T.

3. ∀a=(M,t,M′)∈A γ(a) = (M, M′).

A is used to denote both the set of arcs on a propagation net and the set of arcs of a reachability
graph, but the current meaning of A should be obvious from the context.

If the set of places PC ∪ PT is an ordered set and n = card(PC ∪ PT) (the number of places), then
any marking of a propagation net can be represented by a n-element sequence (list).

5. Propagation Nets at Work—A Case Study

Let us consider the model with components E = {e1, . . . , e5}. Suppose, V = [0; 9] i.e.,

f : E→ [0; 9]. (9)

Functions that represent internal dependencies between components depend on the modelled
system and they should be defined by experts. Suppose the functions from the considered model are
defined as follows:

f (e1) = f1(e1) =

{
max(0, f (e3)− 1) : f (e1) < 5,
f (e3) : otherwise,

(10)

f (e2) = f2(e2) = max( f (e1), f (e3)), (11)

f (e4) = f4(e4) = ( f (e2) + f (e3)) div 2, (12)

f (e5) = f5(e5) =

{
max(0, f (e3)− 1) : f (e5) < 5,
f (e3) : otherwise.

(13)

To present parts of the reachability graph that illustrate the process of reaching a stable marking,
the propagation net from Figure 3 was implemented using the Haskell functional language [21].
We use the dot format [22] for the reachability graphs representation in order to visualize the
graphs automatically.

Examples of the risk propagation process are given in Figures 4 and 5. The first part of the
reachability graph (see Figure 4) represents the propagation of risk after firing transition env1.
The starting point for that process is marking M = (3, 3, 0, 1, 0, F, F, F, F, F, F), where places are
ordered as follows e1, e2, e3, e4, e5, tr2

1, tr4
2, tr1

3, tr2
3, tr4

3, tr5
3. The transition changes the value f (e1) from
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3 to 4 and sets the marking of trigger place tr2
1 to true (T). The risk propagation contains two steps.

First of all, a new risk value for component e2 is evaluated and the marking of trigger place tr4
2 is set to

true. Then, a new risk value of component e4 is evaluated that provides the stable marking denoted by
2 in the figure.

0:
(4,3,0,1,0,T,F,F,F,F,F)

1:
(4,4,0,1,0,F,T,F,F,F,F)

 f2

2:
(4,4,0,2,0,F,F,F,F,F,F)

 f4

Figure 4. Risk propagation for component e1.

0:
(3,3,2,1,0,F,F,T,T,T,T)

1:
(1,3,2,1,0,T,F,F,T,T,T)

 f1

2:
(3,3,2,1,0,F,F,T,F,T,T)

 f2

3:
(3,3,2,2,0,F,F,T,T,F,T)

 f4

4:
(3,3,2,1,1,F,F,T,T,T,F)

 f5

5:
(1,2,2,1,0,F,T,F,F,T,T)

 f2
6:

(1,3,2,2,0,T,F,F,T,F,T)

 f4

7:
(1,3,2,1,1,T,F,F,T,T,F)

 f5

8:
(1,3,2,1,0,T,F,F,F,T,T)

 f1

9:
(3,3,2,2,0,F,F,T,F,F,T)

 f4

10:
(3,3,2,1,1,F,F,T,F,T,F)

 f5  f1 f2

11:
(3,3,2,2,1,F,F,T,T,F,F)

 f5 f1 f2  f4

12:
(1,2,2,2,0,F,F,F,F,F,T)

 f4
13:

(1,2,2,1,1,F,T,F,F,T,F)

 f5

14:
(1,2,2,2,0,F,T,F,F,F,T)

 f2
15:

(1,3,2,2,1,T,F,F,T,F,F)

 f5

 f2

 f4 f2

16:
(1,3,2,2,0,T,F,F,F,F,T)

 f4

17:
(1,3,2,1,1,T,F,F,F,T,F)

 f5  f1

18:
(3,3,2,2,1,F,F,T,F,F,F)

 f5 f1  f4  f1 f2

19:
(1,2,2,2,1,F,F,F,F,F,F)

 f5

 f4

 f4

20:
(1,2,2,2,1,F,T,F,F,F,F)

 f5

 f2

 f2

21:
(1,3,2,2,1,T,F,F,F,F,F)

 f5 f2  f4  f1

 f4

 f2

Figure 5. Risk propagation for component e3.

Suppose, the marking M = (3, 3, 0, 1, 0, F, F, F, F, F, F) is the current marking and transition env3

changes the value f (e3) from 0 to 2 and sets the marking of trigger places tr1
3, tr2

3, tr4
3, and tr5

3 to true.
We must propagate this change to all other components of the model. The part of the reachability
graph shown in Figure 5 presents all possible paths that lead to the stable marking denoted by 19
in the figure. It is easy to observe that only few paths have length 4 i.e., each transition fi is fired at
most once.

From the practical point of view, considering all possible paths of risk propagation is unnecessary.
To reduce the presented part of the reachability graph transitions, priorities are used. Suppose
the transitions f1, . . . , f4 have assigned priorities such as pr( f1) > pr( f2) > pr( f4) > pr( f5). If two
transitions are enabled in the same marking and compete for the same place (or places), then the
transition with the higher priority takes precedence over the second one. Thus, the risk propagation
for component e3 is reduced to the path shown in Figure 6.
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0:
(3,3,2,1,0,F,F,T,T,T,T)

1:
(1,3,2,1,0,T,F,F,T,T,T)

 f1

2:
(1,2,2,1,0,F,T,F,F,T,T)

 f2

3:
(1,2,2,2,0,F,F,F,F,F,T)

 f4

4:
(1,2,2,2,1,F,F,F,F,F,F)

 f5

Figure 6. Risk propagation for component e3—with priorities.

At the end of this section, let us go back to the set of internal dependencies. It is possible to
define symmetric dependencies between two functions fi, f j i.e., f (ej) is an argument of fi and vice versa.
Moreover, we say that functions fi, fi+1, . . . , fk are serially dependent if f (ei+1) is an argument of fi,
f (ei+2) is an argument of fi+1, etc. and finally fk is an argument of fi. This may lead to an infinite
propagation process i.e., an infinite sequence of transitions that does not lead to a stable marking.

6. Algorithm of Propagation Net Generation

A propagation net represents an algorithm of values propagation of the selected characteristic
among components of the system under consideration. If propagation of more than one characteristic
is necessary, an individual net should be constructed for each of them. For each characteristic,
an individual set of internal dependencies is defined so two propagation nets constructed for the same
system may differ about the set of trigger places.

Suppose the following items are given:

• the set of system components E = {e1, . . . , en};
• a characteristic f : E→ V;
• the set of system border components EB ⊆ E, for which the value of the characteristic f may be

modified directly due to some changes in the system environment;
• the set of internal dependencies F, where each function fi ∈ F is assigned to the component

ei ∈ E and the value fi(ei) may be evaluated using values of the characteristic f for the system
components only, ∀ei∈E f (ei) = fi(ei).

For a component ei ∈ E, the symbol D(ei) ⊆ E denotes the set of components that are necessary to
evaluate fi(ei) i.e., values of the characteristic f for components from the set D(ei) are necessary
to evaluate fi(ei).

The algorithm of propagation net generation is given in Algorithm 1. This is a formal description
of the method described in Section 3. In case of the set A, a pair (x, y) represents an arc going from x
to y.

Propagation nets provide a formal model of the process of a risk or other system characteristic
propagation. The model may be used to verify formally whether some required properties hold for the
system or not. For example, we can check whether the net always reaches a stable marking.
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Algorithm 1 Algorithm of propagation net generation

1: PC ← {e1, . . . , en}
2: PT ← ∅
3: T ← { f1, . . . , fn}
4: A← ∅
5: for all ei ∈ E do
6: A← A ∪ {( fi, ei)}
7: if ei ∈ D(ei) then
8: A← A ∪ {(ei, fi)}
9: end if

10: for all ej ∈ D(ei) \ {ei} do
11: T ← T ∪ {tri

j}
12: A← A ∪ {(ej, fi), (tri

j, fi)}
13: if f j ∈ T then
14: A← A ∪ {( f j, tri

j)}
15: end if
16: end for
17: end for
18: for all ei ∈ EB do
19: T ← T ∪ {envi}
20: A← A ∪ {(envi, ei)}
21: for all trj

i ∈ T do
22: A← A ∪ {(envi, trj

i)}
23: end for
24: end for

LTS graphs are universal methods for representation of a state space and are commonly used in
formal modelling languages. Various formal languages like time automata, process algebras, Petri nets,
etc. use different patterns of describing nodes and edges in LTS graphs. They also use different names
and attributes for them e.g., reachability graphs in Petri nets, but the comprehensive structure of these
graphs is still the same. In spite of the availability of dedicated tools designed for specific formalisms,
there are also universal tools for verification of LTS graphs regardless of the formalism that is the
source of such an LTS graph generation. Usually, such tools use model checking techniques for LTS
graph verification [20].

In the presented approach, two verification scenarios using mainstream model checkers are
considered—nuXmv for linear (LTL) and computation (CTL) temporal logics, and the Construction
and Analysis of Distributed Processes (CADP) Evaluator for regular alternation-free µ-calculus.

The nuXmv tool [23] (the previous version known as NuSMV) is one of the most popular model
checkers for temporal logic. Given a finite state model and a temporal logic formula, nuXmv can
be used to check automatically whether the model satisfies the formula or not. Formulas can be
perceived as requirements for the specific model and can be expressed using LTL [24] or CTL [24],
temporal logics [25]. In the nuXmv approach, the verified system is modelled as a finite state transition
system [26] usually called Kripke structure [27]. A method of translation of a Petri net reachability
graph into the NuSMV language was proposed in [28]. The approach is rather states oriented i.e.,
logic formulas describe properties of reachable markings. Satisfaction of each specified formula is
automatically verified with the nuXmv tool. If a modelled system does not satisfy a given formula,
a proper counterexample is presented. It is also worth emphasizing that nuXmv can verify systems of
high complexity, i.e., containing more than 1020 states.
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The CADP toolbox [29] provides an action-oriented approach to LTS graph verification. One
of the CADP tools called evaluator provides on-the-fly model checking of regular alternation-free
µ-calculus formulas [30,31]. The µ-calculus formulas concern action labels and describe sequences of
performed actions. The logic is built from three types of formulas: action, regular and state formulas.
Action formulas deal with single steps (single arcs in an LTS graph), regular formulas represent
regular expressions over action sequences, and, finally, state formulas represent properties of the
considered system to be checked. Among other things, µ-calculus provides minimal and maximal fixed
point operators. Intuitively, minimal (maximal) fixed point operators allow for characterizing finite
(infinite) tree-like patterns in the LTS. Thus, we can check, for example, whether there is such a loop of
transitions that a stable marking is never reached.

7. Proof of Concept Example

The presented method—as mentioned in the introduction—was proposed within realization of
the project “Cyberspace Security Threats Evaluation System of the Republic of Poland”. The main
achievements within realization of the project are [1]:

• the model of cyber threats,
• risk assessment of critical infrastructures’ assets and propagation of these risks among

related elements,
• the model of the decision support subsystem for simulations of vulnerabilities’ exploitations,
• the method of emergency state attribution,
• the concept of information exchange between the agencies responsible for the cyberspace

monitoring,
• implementation of the system for security evaluation of the Republic of Poland cyberspace.

The evaluation of risk for Polish cyber space includes (but is not limited to): energy and fuel
supply systems, communication and IT network systems, banking and financial systems, food supply
systems, water supply systems, health protection systems, transportation systems, etc.

The advantage of the proposed method is the assessment of the risk in three various cases:

• own—calculated with the use of factors typical for a particular component,
• static—assessed on the basis of relation of this node in the whole infrastructure and influence of

cooperating or isomorphic components,
• dynamic—evaluated on the basis of current static risk and incoming security incident reports.

The method allows for distribution of any system feature, e.g., the three classic security
pillars—Confidentiality, Integrity, and Availability. In such a way, we can estimate how security
of one element of the infrastructure affects cooperating nodes and the whole network. Additionally,
the method allows for verifying system security in cases of possible cyber attacks. This functionality
can be used for system behaviour modelling as well as for verification of additional security measures
adaptation for protecting the infrastructure or the particular node. On the basis of estimated levels of
risk for particular elements and the propagation method, the administrator or user of the system can
monitor the status of the risk and inform stakeholders about negative effects and possible changes
(mitigation of the risk) after adaptation of security measures. Thus, ramifications can be modelled if
some negative situations take place or additional protections are applied. Therefore, the proposed
method supports decision makers in taking appropriate actions to protect monitored infrastructure.

8. Conclusions

This article presents the method of risk propagation proposed within the project Cyberspace
Security Threats Evaluation System of the Republic of Poland. The advantage of this method is the
possibility to model mutual impact on the cooperated and isomorphic components within the system.
The method is formally described and the new class of propagation nets is defined. The proposed
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method can be used for various purposes, not only for assessing the risk in the cyber space or in critical
infrastructures. The method was verified both in terms of its substantive correctness and for modelling
and propagation of the risk.
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