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Abstract: Charge density studies utilise a multipolar expansion of the atomic density (and the
associated atomic scattering factor) in order to model asphericity. Contributions of the individual
multipoles to the atomic density are then refined as multipole population coefficients. Refinement of
these coefficients pertaining to odd-order multipoles that are invariant under the crystal point-group
symmetry is often problematic, with ill-defined values and correlations plaguing the convergence
to a good model. These difficulties have been discussed in generic terms in the literature, but never
explicitly analysed in detail. In this communication, we show that the charge density multipolar
atomic scattering factor can be partitioned in three contributions that differ in their behaviour under
the point group symmetry of the crystal. This partitioning rationalises and predicts the conditions
that give rise to ill-conditioning of the charge density refinement of these multipoles.

Keywords: charge-density; multipolar expansion; odd-order multipole; invariance under point
symmetry

1. Introduction

Charge density studies based on ultra high-resolution X-ray diffraction data from crystals of
biological macromolecules yield experimentally determined physico-chemical properties of proteins
and nucleic acids [1], molecular systems often too large for simulations and quantum-mechanical
calculations to be feasible or accurate [2–5]. X-ray scattering at ultra high-resolution carries information
about bonding and non-bonding atomic valence electron density that departs from spherical symmetry
around the nucleus, and therefore these charge density studies are based on multipolar expansions of
atomic densities [6,7]. Crystals of biological macromolecules can only belong to non-centrosymmetric
space groups because of the chirality of naturally occurring α-amino acids and nucleic acids [8].
Thus, ultra-high resolution charge density studies for crystals of biological macromolecules could
be exposed to a long-known problem arising during multipolar refinement in non-centrosymmetric
space groups: odd-order poles that are invariant under the crystal point-group symmetry can be
ill-determined and/or plagued by correlations. The subject has always been discussed in generic terms
in the literature [9–12], or in terms of individual atomic scattering factors [11], but never explicitly
analysed in terms of the structure factor. In this communication, we derive formulae that make it
easier to understand and predict the conditions giving rise to ill-conditioning of the refinement of
these multipoles. We then proceed to discuss the topic in the context of charge density studies based
on ultra high-resolution X-ray diffraction data from crystals of biological macromolecules.
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2. Results

The formalism adopted here to discuss the interaction between atomic generalised scattering
factors and crystal symmetry is the one introduced by Gérard Bricogne in Section §1.3.4. of the
International Tables for Crystallography Volume B [13]. Moreover, the atomic densities are expanded
in multipoles all oriented along the same axes, such as the crystal axes, irrespective of the atom [14].
Should local axes be chosen instead [15], the analysis presented here would still be valid, except that
certain linear combinations of odd-order multipoles populations would be invariant—rather than their
individual values—and it would be their refinement that would suffer from ill-determination. Different
choices of axes will of course change the algebraic expression for the angular part of the multipoles and
therefore the list of the odd-order invariant poles. For this reason, the list of the potentially troublesome
multipoles should be carefully arrived at on the basis of the symmetry invariance, and not decided a
posteriori on the basis of, say, high values of the correlation coefficients in the least-squares refinement.

2.1. The Structure Factor

We are interested in discussing the interplay between the symmetry-invariance and the resulting
phases of certain atomic contributions to the structure factor. We begin by recalling that structure factor
Fh can be written as the Fourier transform of the electron density in the unit cell, ρ0(x):

Fh = F̄
[
ρ0(x)

]
(h) =

∫
R3/Z3

ρ0(x) exp (2πih · x) d3x (1)

The electron density in the unit cell, ρ0(x), can be written as a sum over the atoms in the unit cell:

ρ0(x) = ∑
k∈K

ρk (x− xk) = ∑
k∈K

τxk ρk(x) (2)

where K is the set of atoms in the unit cells, ρk(x) is the atomic density of atom k as a function centred
around the origin, and τxk is the translational operator used to write the atomic density around the
nucleus located at xk: ρk (x− xk) = τxk ρk(x).

Let us now indicate the crystal space group as G. It is advantageous to write the sum over all
atoms in the unit cell as a sum over the orbits of the symmetry-unique atoms, i.e., the atoms in the
crystal asymmetric unit J.

We recall here the definitions of Isotropy group and Orbit of an element x of a set X with the g ∈ G
that form a group, see section §1.3.4.2.2.2. of the International Tables for Crystallography Volume
B [13]:

The Isotropy group of x ∈ X is the subgroup Gx of G containing the elements g ∈ G which map x
onto itself:

Gx = {g ∈ G | gx = x, x ∈ X}

The Orbit of x ∈ X under G, is the subset of X consisting of all elements gx with g running through
G:

Gx =
{

x′ ∈ X | x′ = gx, x ∈ X, g ∈ G
}

Acting on the asymmetric unit atoms with the symmetry operators in G:

ρ0(x) = ∑
g∈G

∑
j∈J

S#
g

(
τxj ρj(x)

)
(3)

where S#
g

(
τxj ρj(x)

)
is the image of the j-th atomic density under the action of the g-th symmetry

operator. The symmetry operator g ∈ G, acting on coordinates x, is defined as:

g(x) = Rgx + τg (mod Λ) (4)



Symmetry 2017, 9, 63 3 of 8

where Rg is the rotation matrix and τg the translation vector of the symmetry operator. Λ is the set of
crystal lattice translations.

The j-th atomic density is invariant under all its site-symmetry operations, i.e., the symmetry
operations in the isotropy subgroup Gxj of G for position xj. Thus, the sum over symmetry operations
in (3) can be expressed without redundancies making use of the symmetry operators γ ∈ G/Gxj ,
where G/Gxj is the collection of representatives of the distinct left cosets of Gxj (the isotropy group of
position xj) so that the sum in (3) runs over all those space group symmetry operations that produce a
distinct copy of atom j, and only on those:

ρ0(x) = ∑
j∈J

∑
γj∈G/Gxj

S#
γj

(
τxj ρj(x)

)
(5)

Thanks to this notation, the j-th atomic density ρj(x) in the asymmetric unit only appears once
and only once in the sum (5), in that the orbit contains all and only the distinct copies of ρj(x) under
the symmetry in G. Recalling now Equation (1), the structure factor can be written:

Fh = F̄
[
ρ0(x)

]
(h) =

∑
j∈J

∑
γj∈G/Gxj

exp
(

2πih · tγj

)
× exp

(
2πiRT

γj
h · xj

)
(6)

×F̄
[
ρj
] (

RT
γj

h
)

2.2. The Multipolar Structure Factor

The last factor in formula (6) is the transform of the atomic density for atom j, evaluated at RT
γj

h;
if we now recall the multipolar expansion of the atomic density, this transform (called the atomic
generalised scattering factor Gsf j(h) [6,16]), is written:

Gsf j(h) = F̄
[
ρj
]
(h) =[

C core
j F̄

[
ρcore

j

]
(h) +

L

∑
l=0

l

∑
m=−l

CjlmF̄
[

RjlYm
l

]
(h)

]
× Tj(h) (7)

where the Cjlm are the multipolar coefficients, the RjlYm
l are the products of atomic radial (Rjl) and

angular (Ym
l ) valence deformation functions, and Tj(h) is the Debye–Waller factor of atom j.

With this expression for the atomic scattering factor, (6) is rewritten:

Fh = ∑
j∈J

[
C core

j f core
j (h) + Cj00F̄

[
Rj0
]
(h)
]
× Tφ

j (h)

+

 ∑
γj∈G/Gxj

Tγj(R
T
γj

h) (8)

×
L

∑
l 6=0

l

∑
m=−l

CjlmF̄
[

RjlYm
l

] (
RT

γj
h
)]

with:

Tγj(R
T
γj

h) =

exp
(

2πih · tγj

)
exp

(
2πiRT

γj
h · xj

)
× Tj(RT

γj
h) (9)
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and:
Tφ

j (h) = ∑
γj∈G/Gxj

Tγj(R
T
γj

h) (10)

Tφ
j (h) gathers phase factors and Debye–Waller factors multiplying the spherically symmetric

poles (i.e., the monopoles).

2.3. Multipoles Invariant under Point-Group Symmetry

Let us now consider a multipole Rjl̄Y
m̄
l̄ (x) (with l̄ ≥ 1) that is invariant under all rotations Rg

belonging to the crystal point-group:

R#
g

(
Rjl̄Y

m̄
l̄

)
(x) = Rjl̄Y

m̄
l̄ (x) ∀g ∈ G (11)

The invariance of the multipole in real space is mirrored in reciprocal space by the invariance of
its transform:

F̄
[

Rjl̄Y
m̄
l̄

] (
RT

g h
)
= F̄

[
Rjl̄Y

m̄
l̄

]
(h) (12)

Thanks to this invariance, it is possible to factorise the invariant poles out of the the sum
over symmetry operations in formula (8), as it was done with the spherically symmetrical poles.
The structure factor is then a sum of three terms:

Fh = FMono
h + FInv

h + FNon Inv
h (13)

with:
1. Monopoles (l = 0): the

FMono
h = ∑

j∈J
Tφ

j (h)×
[
C core

j f core
j (h) + Cj00 f j0(h)

]
(14)

This is usually the largest contribution to the structure factor, especially at high resolution where
diffraction is dominated by core electrons.

2. Invariant poles(l̄ > 0):

FInv
h = ∑

j∈J
Tφ

j (h)×

 l̄ 6=0

∑
(l,m)=(l̄,m̄)

4πCjl̄m̄il̄ f jl̄(h)Y
m̄
l̄

(
h
h

) (15)

As Tφ
j (h) is the same factor appearing in the monopoles term, and because of the il̄ phase

factor, the invariant poles add contributions whose phase either is collinear with the phase line of the
monopoles term (even-order invariant poles), or at ±π

2 from it (odd-order invariant poles). Notice that
in centrosymmetric crystals no odd-order poles contribute to this term (because no odd-order pole
is invariant under the center of inversion); only non-centrosymmetric crystals can have odd-order
invariant poles, e.g., Y−32 = qxqyqz octupoles (l = 3) in orthorhombic space groups of 222 point group
symmetry; or Y10 = qz dipoles (l = 1) in monoaxial tetragonal, trigonal and hexagonal space groups
(point group symmetries 4, 3 and 6). The comprehensive list of such poles in each possible point group
can be derived from the character tables and irreducible representations for the 32 crystallographic
point groups in three dimensions, and the transformation properties of tensors, see [17,18].
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3. Non invariant poles (l 6= l̄, l > 0):

FNon Inv
h = ∑

j∈J

 ∑
γj∈G/Gxj

Tγj(R
T
γj

h) (16)

× ∑
(l,m) 6=(l̄,m̄)

4πCjlmil f jl(h)Ym
l

(
RT

γj
h

h

)
The contributions to this third term have phases that bear no special relationship to the phase of
the monopoles term, and depend in a combined way on the parity of the pole and the action of the
symmetry operators.

When, for a significant number of structure factors, the odd-order non-invariant poles contribution
in (16) is by chance aligned to the monopolar contribution in (14), a situation arises in which odd-order
invariant poles add a contribution to those structure factors which is at ±π

2 from the contributions to
structure factor computed from all the other poles. If in addition, the contribution from the odd-order
invariant poles to the first order is small, then the population coefficients for these odd-order invariant
multipoles only alter the phase and not the amplitude of the structure factor, and least-squares
refinement of these population coefficients against amplitude data is ill-determined.

It is noted that—should one analyse the contributions to the structure factor from atom-centered
nuclear probability functions (for example, the well known Gram–Charlier expansion, see Section
§1.2.12. of the International Tables for Crystallography Volume B [19])—similar ambiguities would
arise, for example, when attempting refinement of the third order cumulants invariant under
point-group symmetry in non-centrosymmetric crystals.

For crystals whose asymmetric unit only contains a few atoms, most of which sit on a special
position, so that only a few multipoles contribute to the expansion of the atomic density, for example,
cubic hexamethylenetetramine [9,20–22], it is often the case that odd-order invariant poles add a
contribution to those structure factors which is at ±π

2 from the contributions to structure factor
computed from all the other poles, and refinement of the odd-order invariant multipolar populations
is plagued by correlations. The same problems can still arise in multipolar refinements for crystals with
several atoms in the asymmetric unit, none of which sits on a special position, when the conditions
discussed above are met by a significant fraction of structure factors. To give a sense of the relative
size and phase of the contributions from the odd-order invariant poles in (15) to all the other ones in a
standard charge density study, we analysed the calculated structure factors from the multipolar study
of DL-alanine (DL-Ala) [23–25] that appeared in [26].

In that study, a group of 2748 reflexions up to a resolution of 0.43 Å ((sinθ/λ)max = 1.15 Å−1) were
measured from a Pna21 crystal which has one molecule in the asymmetric unit (chemical composition
C3NO2H7), and the electron density modelled with a multipolar model up to l = 4 (hexadecapoles).
Under the mm2 point group, and with a standard choice of axes along the orthorhombic cell edges,
the odd-order invariant multipoles are the Y10 dipoles (Y10 = qz), and the Y+

32 and Y30 octupoles
(Y+

32 = (q2
x − q2

y)qz, Y30 = (5q2
z − 3)qz). Figure 1 illustrates the scatter plot of the log of the ratio

of amplitudes FInvOdd
h /FMono+InvEven+NonInv

h vs. the value of the angle between FInvOdd
h and FMono+InvEven+NonInv

h .
All contributions of FInvOdd

h to the structure factor are rather small; for a group of 493 structure factors,
the absolute value of the angle between the lines of FMono+InvEven+NonInv

h and FInvOdd
h is between 80 and

90 degrees, i.e., the odd-order invariant multipoles give a contribution roughly orthogonal to all other
contributions to the structure factor.



Symmetry 2017, 9, 63 6 of 8

Figure 1. Scatter plot of the log of the ratio of amplitudes FInvOdd
h /FMono+InvEven+NonInv

h vs. the value of the
angle between the lines of FInvOdd

h and FMono+InvEven+NonInv
h , for 2748 reflexions up to 0.43 Å measured from a

Pna21 crystal of DL-alanine (DL-Ala) [26].

3. Discussion

The problems associated with the refinement of populations for odd-order multipoles invariant
under the point group of the crystal have been discussed in the literature [9–12], and especially the
authors of [11] have gone to some lengths in order to formally analyse the reasons for the high
correlations encountered when refining those populations, although their analysis is restricted to the
individual atomic scattering factors. In some cases, the problem has been tackled simply by omitting
refinement of the ill-determined poles [12]; in other cases, extra-constraints on these population
coefficients were chosen so as to stabilise the refinement. In the majority of cases though, no particular
problems in the refinement of the odd-order invariant poles were reported—without an explanation
being offered.

Here, we have used group theory and analysed multipolar contributions to the structure factor
(and not the atomic scattering factor), distinguishing between invariant and non-invariant ones,
in an attempt to make the present exposition of the problem clearer and more stringent. Based on
the formulae derived in this manuscript, we can predict that the refinement of these poles will be
troublesome when the phase of FNonInv

h is similar to the phase of FMono+InvEven
h for a large number of structure

factors, so that FInvOdd
h is orthogonal to all other contributions to the structure factor.

One of the most important consequences of such troublesome multipolar refinements would be
artificially featureless residual densities: since the ill-refined multipoles do not alter the calculated
amplitude to first-order, and the phase of the experimental structure factor is not measured, but is
taken to be equal to the one of the calculated F, the amplitudes of many of the Fourier coefficients of
the residual density are artificially close to 0, notwithstanding the fact that the model obtained from
the ill-determined refinement may contain physically meaningless contributions from the odd-order
invariant multipoles.

If orbital-based density functions, or the libraries of Extremely Localized Molecular Orbitals,
recently described as a possible way of modelling asphericity in atoms in macromolecules [27,28],
were to be used instead of multipoles with refined populations, the results presented in this paper
would still be relevant to the contributions to the structure factors from the odd-order invariant
molecular orbitals. Since the coefficients associated with those orbitals are not refined though,
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the problems would be limited (no correlation would occur among orbital populations or between
orbital populations and, say, coordinates).

The larger the number of atoms in the asymmetric unit, the less likely the occurrence of the
troublesome conditions. Even if a certain subset of atoms (such as heavy atoms in metallo-enzymes [5])
were the main contributors to certain structure factors, and the values of the odd-order invariant poles
were to be poorly determined by refinement against those structure factors, the larger the numbers of
experimentally derived amplitudes, the higher the chance that the values of the odd-order invariant
pole populations can be determined by other structure factors for which the problem does not arise.
We conclude that ultra high-resolution X-ray diffraction data from crystals of biological macromolecules
are unlikely to be plagued by ill-determined refinement of odd-order invariant multipoles. There is
sometimes safety in numbers.
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