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Abstract: In order to capture an eye image of high quality in a gaze-tracking camera, an auto-focusing
mechanism is used, which requires accurate focus assessment. Although there has been previous
research on focus assessment in the spatial or wavelet domains, there are few previous studies that
combine all of the methods of spatial and wavelet domains. Since all of the previous focus assessments
in the spatial or wavelet domain methods have disadvantages, such as being affected by illumination
variation, etc., we propose a new focus assessment method by combining the spatial and wavelet
domain methods for the gaze-tracking camera. This research is novel in the following three ways,
in comparison with the previous methods. First, the proposed focus assessment method combines
the advantages of spatial and wavelet domain methods by using ε-support vector regression (SVR)
with a symmetrical Gaussian radial basis function (RBF) kernel. In order to prevent the focus score
from being affected by a change in image brightness, both linear and nonlinear normalizations are
adopted in the focus score calculation. Second, based on the camera optics, we mathematically prove
the reason for the increase in the focus score in the case of daytime images or a brighter illuminator
compared to nighttime images or a darker illuminator. Third, we propose a new criterion to compare
the accuracies of the focus measurement methods. This criterion is based on the ratio of relative
overlapping amount (standard deviation of focus score) between two adjacent positions along the
Z-axis to the entire range of focus score variety between these two points. Experimental results
showed that the proposed method outperforms other methods.

Keywords: gaze-tracking camera; auto-focusing; focus assessment; ε-support vector regression with
a symmetrical Gaussian radial basis function kernel; camera optics

1. Introduction

1.1. Motivation

Gaze tracking is the technology to calculate the position that a user is looking at based on captured
eye images [1–7], and it can be used in various fields of human computer interface, interface for the
disabled and monitoring of driver’s status. The eye image of high quality is required to achieve a high
accuracy of gaze detection, and an accurate auto-focusing method is required for this purpose. Without
the auto-focusing method, the camera with a single focal length (not a variable focal length) having a
large depth of field (DOF) can be considered as an alternative. DOF is the Z distance range from the
camera lens to the object, and a focused image can be usually captured within the DOF. Using a lens
with a small DOF, the input eye image is easily (optically) blurred, and the consequent detection error
of pupil and corneal specular reflection (SR) is increased, which increases the final gaze detection error.
In order to increase the DOF of the lens, the f -number of the lens should be increased. Further, the
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f -number is inversely proportional to the diameter of the lens (lens aperture) [8]. Therefore, in order to
obtain a large f -number, a lens with a small diameter should be used, which causes the input image to
be too dark for the regions of pupil and corneal SR to be detected correctly. To overcome the problem
of the limitation of DOF, an accurate auto-focusing system is considered for the gaze-tracking camera.
Auto-focusing enables the camera lens to focus on an object based on the score measured by the focus
assessment method. Therefore, accurate focus assessment is a prerequisite for auto-focusing.

In this paper, we suggest a new method of focus assessment using ε-support vector regression
(ε-SVR). In our method, four focus scores calculated by four focus measurements—Daugman’s
convolution kernel [9], Kang’s convolution kernel [10], Daubechies wavelet transform [11] and Haar
wavelet transform—are used as the inputs of ε-SVR. Using the four focus measures of the same image,
the trained ε-SVR can produce a more accurate focus score as the output.

1.2. Related Works

Previous research about focus measurement can be classified into two categories: spatial
domain-based methods [9,10,12–15] and wavelet domain-based methods [11,16,17]. In the spatial
domain, Daugman proposed an 8 × 8 convolution kernel for measuring the focus value [9]. Since
Daugman’s kernel passes the low frequency components, the focus measurement is affected by a
change in image brightness. Kang et al. [10] proposed a 5 × 5 convolution kernel. Compared to
Daugman’s kernel, Kang’s convolution kernel showed a more distinctive change in the focus score
according to the image blurring. However, by using the smaller mask of 5× 5 compared to Daugman’s
8 × 8 mask, its performance can be affected by the local high frequency components of iris patterns.
Wan et al. [12] proposed another spatial domain method based on the Laplacian of Gaussian (LoG)
operator. The processed image by the Laplacian operator based on a second derivative is usually
sensitive to noise. To overcome this problem, a Gaussian smoothing filter is used before applying
the Laplacian. Wan et al. suggested a method using two commonly-used 3 × 3 kernels to simplify
the computation. Similar to previous research [9,10], they used an image that includes only the eye
area without the eyebrow regions, since they assumed that the input image in a conventional iris
recognition camera includes only the eye area without eyebrows. However, a gaze-tracking camera
can include a wider area including the eyes and the eyebrows, as shown in Figure 1, and the eyebrow
region can cause an incorrect increment of the focus score. In other words, even if the eye region is not
focused, the focus score of the input image can be high, owing to thick eyebrows.

Alternatively, Grabowski et al. [13] suggested a method using entropy as the score of the focus
measurement. In their research, the focus condition of an input image was considered in terms of the
quantity of information that can be calculated by entropy. Accordingly, the more focused the input
image, the higher the entropy value. However, the existence of eyebrows in the captured image can
affect the focus scores calculated using entropy.

Furthermore, Zhang et al. [14] proposed a region-based fusion algorithm of multi-focus images
by using the quality assessment in spatial domain. In addition, the genetic algorithm based on the
feature and pixel-level fusion was used in this research. However, they have experimented with
the images of the general scene (not eye or iris images), and their algorithm is difficult to apply to
eye images owing to the different traits of eye images such as eyebrows, eyelashes and iris patterns.
Wei et al. [15] proposed a 5 × 5 mask for calculating the focus score of an iris image, but similar to
previous research [9,10], they used an image that includes only the iris area without the eyebrow
regions. The existence of eyebrows in the captured image can affect the focus scores calculated using
their method.

In the wavelet domain, Kautsky et al. [16] suggested a measure of image focus based on the
wavelet transform of an image. In this research, the measure of image focus is defined as the ratio of
high-pass band to low-pass band norms. In another research work, Jang et al. proposed a method
combining the wavelet transform method and the support vector machine (SVM) [11]. The results
showed that their method could overcome the disadvantages of Kautsky’s work. However, it is not
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easy to determine the passing band in the frequency domain by selecting the type of wavelet kernel
and the decomposition level. In addition, the focus score is more significantly affected by the change
in brightness of the input image than in the spatial domain.
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Figure 1. Proposed gaze-tracking system for intelligent television (TV) interface. (a) Gaze-tracking
system; and (b) detection results of pupil center and corneal specular reflection (SR) center in the
captured image by narrow-view camera (displayed on the left monitor),and the detected area of the
face in the captured image by wide-view camera (displayed on right monitor).

A blind assessment method of image blur based on Haar wavelet transform (HWT) was proposed
by Bachoo [17]. In this research, two first derivatives of the images by a 3 × 3 Sobel operator were
used in HWT to collect the sum of energies of the high-low (HL) and low-high (LH) sub-bands of each
scale. The blur amount was defined as the ratio of the aforementioned sum to the total energy of the
images. However, they measured the accuracies only with the images of the general scene (not eye or
iris images).

Although there has been previous research on focus assessment in the spatial or wavelet
domains, there are few previous studies that combined all of the methods of the spatial and wavelet
domains. Since all of the previous focus assessments in the spatial or wavelet domain methods
have disadvantages, such as being affected by illumination variation, etc., we propose a new focus
assessment method by combining the spatial and wavelet domain methods based on ε-SVR.

Table 1 shows the summarized comparison of the previous and proposed focus assessment methods.
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Table 1. Comparison of focus assessment methods.

Category Focus Measurements in Spatial Domain Focus Measurements in Wavelet Domain Hybrid Method (Proposed Method)

Method

- The total power spectrum of the
mid- or high frequency
components is measured by
convolution kernels [9,10,12,15]

- The focus level is determined by
the entropy of the image [13], or
the spatial domain and genetic
algorithm by the feature and
pixel-level fusion [14]

- The focus value is calculated as the
ratio of the mean of high frequency
components to that of the low
frequency components in the
wavelet domain [11,16]

- The blur amount is computed as the
sum of the energies of low-high (LH)
and high-low (HL) sub-bands [17]

The proposed method is a
combination of the spatial and
wavelet methods using ε-SVR

Advantages

- The passing band in the frequency
domain can be easily determined
by changing the kernel coefficients

- The focus score can be less affected
by the change in brightness of the
input image than in the
wavelet domain

- Various frequency bands of the
image can be examined for focus
value by a wavelet transformation

- Smaller processing time

Higher accuracy of focus assessment
compared to the spatial or wavelet
domain methods

Disadvantages

- Less accurate focus assessment by
not considering both low and high
frequency components

- Higher processing time for
convolution [9,10,15]

- It is not easier to determine the
passing band in the frequency
domain by selecting the kind of
wavelet kernel and
decomposition level

- The focus score can be affected more
by the change in brightness of the
input image than the spatial domain

- Training procedure is required

The structure of this paper is as follows. In Section 2, we present an overview of our
gaze-tracking system, the overall flowchart of the proposed focus assessment method, the details of
four individual methods of focus measurement and their combination using ε-SVR. Section 3 illustrates
our experimental results, and finally, the conclusion of our research is presented in Section 4.

2. Proposed Method

2.1. Overview of the Proposed Method

Figure 1 shows the proposed gaze-tracking system for an intelligent TV interface. The capturing
device, as shown in Figure 1, includes two panning and tilting and focusing functional cameras:
a wide-view camera for face and eye detection and a narrow-view camera for gaze tracking. Therefore,
the captured eye images can be used for the gaze position calculation using the detected pupil center
and the four detected SRs, each caused by a near-infrared (NIR) illuminator at one of the four corners
of the TV monitor. The gaze-tracking camera includes a long focal length lens, whose DOF is small,
which causes the input eye image to be blurred easily. An accurate focus measurement method is
required to overcome the limited DOF of the lens. Hence, the proposed method that combines four
focus assessments is applied. The proposed method is shown in a flowchart in Figure 2.

Since both the spatial and wavelet domain methods are sensitive to brightness change, we perform
linear normalization in order to normalize the brightness of the input images. Subsequently, the four
individual focus measurements—Daugman’s convolution kernel [9], Kang’s convolution kernel [10],
Daubechies wavelet transform [11] and Haar wavelet transform [18]—are used to obtain four separate
focus levels, which are nonlinear normalized to obtain a range from 0 to 1.

In terms of computing running averages and differences by using scalar products with wavelets
and scaling signals, the Haar wavelet transform is defined in the same way as the Daubechies wavelet
transform. The only difference of these two transforms is how the wavelets and the scaling signals
are defined. In detail, in the case of the Daubechies wavelet transform, the wavelets and scaling
signals have slightly longer supports, i.e., they generate the values of averages and differences with
more values from the signal than the Haar wavelet transform. However, this difference can cause
improvement in the capabilities of wavelet transform. The examples of the shape of wavelet and
scaling functions of the Daubechies wavelet transform can be referred to [19], whereas those of the
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Haar wavelet transform can be referred to [19]. Subsequently, ε-SVR is applied to combine the four
measurements in order to obtain a unique focus score, which is more accurate than the four focus scores.
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2.2. Linear Normalization of Image Brightness Based on Mathematical Analyses

In spatial domain methods, the masks work as filters to collect the high frequency energy
components of the images. The convolution value increases with an increase in the image brightness.
Consequently, the calculated focus score can be high when the brightness is high, even if the actual
focus level is very low. Thus, the focus score graph of dark images is usually lower than that of bright
images. In wavelet domain methods, the phase and amplitude of the wavelet cannot be separated
in the transform process [20]. The amplitude is related to the image brightness. For example, if the
image becomes too dark, the high frequency components of the image decrease, whereas the low
frequency components increase, resulting in a low response of the focus measure. These phenomena,
caused by image brightness variation in the spatial and wavelet domains, are shown in Figures 3
and 4, respectively.

Figure 3 shows the focus score graphs of the same object of the eye region according to the
Z distance, and it represents the performances of spatial domain methods before using linear
normalization. In Figure 3 the most focused image can be obtained at a position of 140. The “Daugman
D-1-B” graph is the result achieved by Daugman’s mask [9] using the daytime images in Database 1,
whereas the “Daugman N-1-B” graph is the result achieved by Daugman’s mask using the nighttime
images in Database 1. The “Kang D-1-B” graph is the result achieved by Kang’s mask [10] using the
daytime images in Database 1, whereas the “Kang N-1-B” graph is the result achieved by Kang’s mask
using the nighttime images in Database 1. Following the same notation, “Daugman D-2-B”, “Daugman
N-2-B”, “Kang D-2-B” and “Kang N-2-B” represent the results obtained using Database 2. “D” denotes
a daytime image and “N” denotes a nighttime image. “B” indicates that the results are obtained before
using linear normalization. The numbers “1” or “2” represent the results obtained using Database 1
and Database 2, respectively.

Databases 1 and 2 were captured using the gaze-tracking system shown in Figure 1. All of the
images were captured in both daytime and nighttime, and our databases involve a variety in brightness.
Database 1 contains 84 gray images from 12 people, which were captured by the gaze-tracking camera
with the f -number of 4. In addition, Database 2 contains 140 images from 20 people captured using a
camera with the f -number of 10 in order to increase the DOF. However, when we captured Database 2,
we increased the power of the NIR illuminators twice by increasing the number of NIR LEDs, which
causes the images in Database 2 to be brighter than those in Database 1, although the f -number in
Database 2 is larger. The captured image is 1600 × 1200 pixels with a gray image of 8 bits. Detailed
explanations of Databases 1 and 2 are included in Section 3.1.
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Figure 3. The effect of brightness variation on the spatial domain methods with (a) Database 1 and
(b) Database 2. “Daugman D-1-B” and “Daugman N-1-B” are the graphs by Daugman’s mask using
the daytime and nighttime images in Database 1, respectively. “Kang D-1-B” and “Kang N-1-B” are the
graphs by Kang’s mask using the daytime and nighttime images in Database 1, respectively. Following
the same notation, “Daugman D-2-B”, “Daugman N-2-B”, “Kang D-2-B” and “Kang N-2-B” represent
the results obtained using Database 2.

By comparing the four graphs of Figure 3a, even in the case of the same Z distance, the focus
score with the daytime image is different from that with the nighttime image even by the same focus
assessment method. For example, in Figure 3a, considering the Z-distance range of 125–140 cm, the
focus score by Kang’s method with the daytime image (Kang D-1-B) is about 71 at the Z distance of
130 cm, whereas that with the nighttime image (Kang N-1-B) is about 60 at the Z distance of 130 cm.
This means that the focus score has a standard deviation at each Z distance according to daytime and
nighttime images, although all of the other conditions, such as the object (to be captured), camera, Z
distance, focus measurement method, etc., are the same.

As shown in Figure 3a, with the nighttime image (Kang N-1-B), the Z distance becomes 135 cm
(instead of 130 cm) in the case of the focus score of 71. This means that even with the same focus
score (by the same focus measurement method), the calculated Z distance can be different, from
130 cm with the daytime image to 135 cm with the nighttime image, which make it difficult to estimate
the accurate Z distance for auto-focusing based on the focus score. The same cases occur in the
methods of Figures 3b and 4a,b. Therefore, we propose a new focus measure (by combining four focus
measurement methods based on ε-SVR, as shown in Figure 2), which is less affected by the variations
of image brightness.

Figure 4 shows the focus score graphs of the same object of the eye region according to the Z
distance of the wavelet domain methods before using linear normalization. Furthermore, in Figure 4a,b,
the most focused image can be obtained at a position of 140. “DWT” and “HWT” indicate Daubechies
wavelet transform and Haar wavelet transform, respectively. “D” denotes a daytime image, and “N”
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denotes a nighttime image. “B” indicates that the results are obtained before using linear normalization.
The numbers “1” or “2” represent the results obtained using Database 1 and Database 2, respectively.
In Figures 3 and 4, we presented standard deviation values, as well. In all of the cases of Figures 3
and 4, the standard deviation values are similar, 2.74 (minimum value)–2.92 (maximum value).Symmetry 2017, 9, 86  7 of 23 
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(b) Database 2.

Due to the characteristics of Daubechies wavelet transform of using the longer supports of
wavelets and scaling signals than Haar wavelet transform [19,21], the focus score by Daubechies
wavelet transform is less affected by the illumination change in the daytime and nighttime images
than that by the Haar wavelet transform. Therefore, the difference in “DWT D-2-B” and “DWT N-2-B”
in Figure 4 is much smaller than that in “HWT D-2-B” and “HWT N-2-B”, and even the value of “DWT
D-2-B” is the same as that of “DWT N-2-B”.

Nevertheless, in Figures 3 and 4, the two main differences still observed in the focus score are
the difference between daytime images and nighttime images, as well as the difference between the
two databases. The difference between daytime and nighttime images is shown in Table 2, which
indicates that linear normalization can reduce the difference between daytime and nighttime images.
Therefore, linear normalization can decrease the effect of brightness variation on focus measurements.
These differences are explained by the camera optics theory in the following discussions.

The first explanation for the difference between daytime and nighttime images is provided by the
solar spectrum theory. The Sun emits electromagnetic radiation across most of the electromagnetic
spectrum [22–24]. In our experiment, the NIR illuminators emit light of a wavelength of 850 nm, and a
filter is used in the camera to prevent environmental light of other wavelengths from being incident
on the camera sensor. Therefore, the light energy incident on the sensor consists of the NIR light of
illuminators and a part of the NIR spectrum of solar radiation. Accordingly, we can analyze the energy
incident on the camera sensor in the case that the image is focused, as shown in Figure 5.
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In Figure 5, we describe an object point in the NIR light environment. The image is a circular
shape in the image sensor plane according to the size of the aperture of the camera. Assuming that the
photon density, I, is constant, s is the image sensor area that the point is projected on, given the aperture
of size R, and ρ is the radius of the circle in the image, we obtain the equation E (image brightness) =
s × I × h × ν = πρ2Ihν based on [25]. As evident in Figure 5, we obtain the equations, ρ/R = F/D, and
ρ = R(F/D), where R is the radius of aperture, F is the focal length of the lens and D is the distance from
the lens plane to the entrance pupil plane. Therefore, E = πR2(F2/D2)Ihν = R2I × (πF2hν/D2). In the
case that the image is focused, D is fixed, and F is a constant. If the constant M denotes π F2hν/D2,
we can obtain the following equation:

E = R2IM (1)

Based on the principle that the focus level is the energy of the high frequency component in the
image domain, we can divide the energy E into two parts, E = A + a, where A is the energy of the
high frequency component, which defines the focus level, and a is the energy of the low frequency
component, which is the so-called “blur amount”. In the case that the image is focused, the ideal image
of the object point can be shown as a point. However, since the aperture is not a pinhole, a blurred
region appears around the exact image point. Accordingly, we can consider that the blur amount (a)
is the energy incident on the region of the image excluding the exact image point. Assume that the
energy E spreads homogeneously on the image area; we can calculate A as shown in Equation (2):

A = E(sp/s) (2)

where sp is the area of one pixel of image sensor. If the image is an ideally-focused one, s becomes the
area of one pixel of the image sensor, and s is the same as sp. If the image is a blurred one, s becomes
the area of multiple pixels of the image sensor, which is larger than sp and symmetrical based on s.
Considering our previous discussion on the difference of daytime and nighttime images, we denote Ed
and En as the energies incident on the sensor in the case of a daytime image and a nighttime image,
respectively. Furthermore, we denote Ad and An as the focus levels of the daytime image and nighttime
image, respectively. Using the same f -number to capture these images, we obtain the same radius of
aperture, R. By referring to Equation (1), we obtain Ed = R2IdM, and En = R2InM. Therefore, by referring
to Equations (1) and (2), we obtain Ad = R2IdM(sp/s), and An = R2InM(sp/s). As explained previously,
since the energy originates from a part of the NIR spectrum of solar radiation and the NIR light of
illuminators, we can rewrite these equations as Ad = R2(IdS + IdI)M(sp/s) and An = R2(InS + InI)M(sp/s),
where IdS and InS denote the NIR light intensity of solar radiation during day and night, respectively;
IdI and InI denote the NIR light intensity of illuminators during day and night, respectively. Since we
have used the same NIR illuminators in the daytime and nighttime cases, IdI = InI = II, we obtain the
following equation:

Ad/An = (IdS + II)/(InS + II) = 1 + ∆IS/(InS + II) (3)
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where ∆IS = IdS − InS is the difference between the light intensities of daytime and nighttime, and
∆IS is a large positive value. Therefore, Ad/An is larger than 1, and consequently, Ad is larger than
An. Since A is defined as the energy of the high frequency component, which defines the focus level,
we determine that the energy (Ad) of the daytime of the high-frequency component, which defines
the focus level, is larger than (An) of the nighttime of the high-frequency component, which also
defines the focus level. Therefore, the focus scores of daytime images are usually higher than those of
nighttime images, as shown in Figures 3 and 4.

In addition, in Equation (3), if II is much larger than InS, ∆IS/(InS + II) is almost 0, and Ad/An

is close to 1, which indicates that the focus scores of the daytime images can be similar to those of
nighttime images. Since we used a brighter NIR illuminator while collecting Database 2 compared
to Database 1 (see Section 3.1), II of Database 2 is larger than II of Database 1, and the consequent
difference between the focus scores of daytime images and nighttime images is smaller in Database 2
compared to that in Database 1, as shown in Figures 3 and 4.

The second explanation is regarding the difference between the two databases. Ignoring the
difference between daytime and nighttime images, we consider the focus amounts A1 and A2 of
Databases 1 and 2, respectively. Based on Equations (1) and (2), we obtain A1 = R1

2I1M(sp/s1), and A2

= R2
2I2M(sp/s2). In our experiments, Database 1 is captured using a camera of f -number 4, whereas

Database 2 is acquired using a camera of f -number 10. Further, the f -number is usually proportional
to the ratio of the focal length of the lens to the diameter of aperture. As shown in Figure 5, R is the
radius of aperture, and F is the focal length of the lens. Therefore, F/R1 = 4 in the case of Database 1,
and F/R2 = 10 in the case of Database 2, which implies R1 = (10/4)R2 = 2.5R2. As shown in Figure 5,
ρ is proportional to R. Therefore, ρ1 = 2.5ρ2, which results in s1 = 2.52s2 because s = πρ2, as shown
in Figure 5. In our experiments, the power of illuminators in Database 2 is twice that in Database 1,
which implies, II1 = 0.5II2. Assuming that the NIR energy of solar light is constant:

I1 = IS + II1 = (IS + II2) − 0.5II2 = I2 − 0.5II2 (4)

Accordingly, we obtain the following equation:

A1 = R1
2 I1M

(
sp/s1

)
= R2

2 I2M
(
sp/s2

)
− 0.5R2

2 II2M
(
sp/s2

) (
because s1 = 2.52s2, R1 = 2.5R2, and based on Equation (4)

)
= A2 − 0.5R2

2 II2M
(
sp/s2

) (5)

The relationship between A1 and A2 is shown as follows:

A1 = A2 − 0.5R2
2 II2M

(
sp/s2

)
= A2 − 0.5R2

2 II2
(
πF2hν/D2)(sp/s2

) (
because Mis defined as π F2hν/D2 in the Equation (1)

)
= A2 − 0.5

[
R2

2/
(
πρ2

2)]II2
(
πF2hν/D2)sp

(
because s2 = πρ2

2)
= A2 − 0.5

[
D2

2/
(

πF2
2
)]

II2

(
πF2

2hν/D2
2
)

sp(because R2/ρ2 = D2/F2 as shown in Figure 5)

= A2 − 0.5II2hνsp

(6)

Based on Equations (5) and (6), we can conclude that the high frequency components of Database 2
(A2) are larger than those of Database 1 (A1). The difference between these two high frequency
components is ∆A = 0.5II2hνsp, which depends on the power of illuminators (II2).

Based on these two explanations, the difference between daytime and nighttime images or the
brightness difference of illuminators can cause a variation of the focus score. The brightness of the
illuminator can be fixed and remains unchanged if the hardware of the gaze-tracking system with an
NIR illuminator is determined. Therefore, we can only consider the difference between daytime and
nighttime images, and the right side of Equation (3) should be equated to 1. Accordingly, we have
two options: decreasing ∆IS (= IdS − InS) or increasing II. In order to decrease ∆IS, we apply linear
normalization by compensating the brightness of the entire pixels of the daytime and nighttime images
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to adjust the average grey-level to be the same value. The result of decreasing ∆IS can be seen in Table 2
by comparing the results of “before linear normalization” and “after linear normalization”. On the
other hand, in order to increase II, we increase the power of illuminators in the gaze-tracking system.
The result of this work is Database 2, in which we set the power of the illuminator to be two-times
larger than that of the illuminator in Database 1. Figures 3 and 4 show that the difference between
daytime and nighttime images in Database 2 is smaller than that in Database 1. This result can be also
observed in Table 2. The last right column (“Database 2” and “after linear normalization”) of Table 2
describes the result of decreasing ∆IS and increasing II, simultaneously.

In these derivations, we attempt to confirm that the high frequency components (A2) of daytime
images are theoretically larger than those (A1) of nighttime images if not considering other factors.
To prove this, all of the mentioned factors of object distance, image distance, point spread function,
etc., are actually set to be the same in both daytime and nighttime images of our experiments. Through
this simplified derivation, in the case that all of the mentioned factors are the same, we found that
the variation of high frequency components in the captured images even at the same position of Z
distance can be reduced by decreasing the brightness change of captured images (∆IS of Equation (3)),
and it can be done by our linear normalization method. Considering that all of these factors for this
theoretical derivation are so complicated, and we would do this derivation considering all of these
factors in future work.

2.3. Four Focus Measurements

As explained in Section 2.1 with Figure 2, four separate focus scores are used as the inputs to
ε-SVR in our method. In order to calculate the focus scores, we use two spatial domain-based methods:
Daugman’s symmetrical convolution kernel [9] and Kang’s symmetrical convolution kernel [10].
In addition, two wavelet domain-based methods are used: the ratio of high-pass and low-pass bands
of DWT [11] and that of HWT.

A defocused image can be usually described as a convolution of a focused image by a 2D
point-spread function (PSF) defined by a Gaussian function, whose sigma value is proportional to the
defocus level. Daugman considered the PSF as an isotropic (symmetrical) Gaussian function, and in
the 2D Fourier domain, a defocused image is the product of a focused image and the Gaussian function
of defocusing. Daugman’s convolution kernel is an 8 × 8 pixel mask, shown in Figure 6a, and it is a
band-pass filter that accumulates the high frequency components of the image. The summated 2D
spectral power measured by the convolution kernel was passed through a compressive nonlinearity
equation in order to generate a normalized focus score in the range of 0–100 [9]. In our method, the
focus score is scaled into the range of 0–1 for the input of ε-SVR.Symmetry 2017, 9, 86  11 of 23 
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Figure 6. Symmetrical kernels for measuring the focus score in the spatial domain-based methods.
(a) Daugman’s convolution kernel; and (b) Kang’s convolution kernel.

Kang’s convolution kernel improves the performance of Daugman’s method [10]. The size of
Kang’s mask is 5 × 5 pixels, as shown in Figure 6b, which achieves a smaller processing time than
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Daugman’s mask. Similar to Daugman’s mask, Kang’s mask has the symmetrical shape. It collects the
total high frequency energy of the input image, which is passed through a nonlinear normalization.
Thus, the focus score is represented in the range of 0–100, and we re-scale the score into the range of
0–1 for the input of ε-SVR.

In the wavelet domain-based method, the more focused the image, the larger the focus score [16].
Since the wavelet transform requires a square-sized image, a change of image width or height is
needed. In our work, the size of the captured images is 1600 × 1200 pixels, and their size is changed
into 1024 × 1024 pixels for DWT and HWT by bi-linear interpolation, whereas the original image can
be used for the spatial domain-based method of focus measurement. Consequently, the focus measure
in DWT and HWT can be more erroneous owing to the change in size compared to that of the spatial
domain-based method.

The procedures used for DWT and HWT in our method are the same. When an input image
f (x, y) with the dimensions of Height×Width is decomposed by the wavelet transforms with a level
of n and a multiplicity of m, we can obtain high-pass sub-bands H( f (x, y)) and low-pass sub-bands
L( f (x, y)) with the dimensions of (Height/nm)× (Width/nm). In the proposed method, we collect
the ratios of the average values per pixel in the high-pass (avg(HHi( f (x, y)))) and low-pass sub-bands
(avg(HHi( f (x, y)))) of the four levels of the transformed image, as shown in Equation (7).

F =
4

∑
i=1

wi ×
avg(HHi( f (x, y)))
avg(LLi( f (x, y)))

(7)

where F denotes the focus score of the image and wi represents the weight at the i-th level index. HHi
and LLi are the high frequency (in both horizontal and vertical directions) sub-band and low frequency
(in both horizontal and vertical directions) sub-band, respectively, at the i-th level index. The weight is
required because the values of high-high (HH) components are very small and decrease according
to the level of transformation. The focus score is passed through nonlinear normalization to obtain a
focus score in the range of 0–1.

2.4. ε-Support Vector Regression with a Symmetrical Gaussian Radial Basis Function Kernel for Combining
Four Focus Scores

Using four individual methods of focus measurement, we propose a method to use ε-SVR
with a symmetrical Gaussian RBF kernel to combine the information from both spatial and wavelet
domain-based methods, as shown in Figure 2. The output of our architecture is the combination of the
four input focus scores obtained from the four individual methods. Consequently, the accuracy of the
focus assessment can be increased. In the four individual focus measurements, the focus score graphs
vary according to the users. The variation of the focus score graph leads to an error in auto-focusing.
However, the reasons for an error in one method may be different from those of other methods, and
they do not affect each other. Therefore, we utilize the advantages of one of these four methods to
overcome the errors in the other methods by using a suitable combiner.

Various methods can be considered as the combiner, including SVR [26–29], linear regression
(LR) [30] and multi-layered perception (MLP) [31–36]. SVR represents the decision boundary in terms
of a typically small subset of all training examples [28]. This algorithm seeks estimation functions
based on independent and identically distributed data. This type of SVR is called ε-SVR because it
uses an ε-insensitive loss function proposed by Vapnik [26]. The parameter ε is related to a specific
level of accuracy. This detail makes ε-SVR different from the subsequent proposed method of ν-SVR
in [28]. In the proposed method, we use focus values of four individual measurements as the input for
ε-SVR to obtain the final focus score. The experimental result using our two experimental databases
shows that ε-SVR performs better than ν-SVR, LR, and MLP (see Section 3).

Contrary to SVM, which deals with the output of {±1}, SVR is a regression estimate concerned
with real-valued estimating functions [27]. Vapnik proposed ε-SVR, including ε-insensitive loss
functions; L(y, f (xi, α)) = L(|y − f (xi, α)|ε), where y is the output, xi is the input pattern, α is a dual
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variable and f (xi, α) is the estimation function. |y − f (xi, α)|ε is zero if |y − f (xi, α)| ≤ ε, and the
value of (|y − f (xi, α)| − ε) is obtained otherwise [26]. In order to estimate the regression function
using SVR, we adjust two parameters: the value of ε-insensitivity and the regularization parameter
C with the kernel type [27]. There are many types of kernel functions used in ε-SVR, such as linear,
polynomial, sigmoid, RBF kernels, etc. In our research, we compared the accuracies of various kernels
(see Section 3), and we used the RBF kernel in ε-SVR. The RBF kernel is described as a symmetrical
Gaussian function, k(u, v) = e−γ|u−v|2 . With training data, the parameter γ is optimized to the value
of 0.025. By changing the value of ε, we can control the sparseness of the SVR solution [27]. In our
research, we set ε to be the optimal value of 0.001 with training data, and the regularization parameter
C is set to 10,000.

Figure 7 shows the proposed architecture of ε-SVR with RBF. The input vectors, xt, consist of
four elements, which are the focus scores obtained by four individual methods: Daugman’s kernel,
Kang’s kernel, DWT and HWT. The input vectors (xi) are mapped through mapping function Φ(xi)
onto the feature space, where the kernel function RBF can be computed. Φ(xi) is used for mapping the
input vector (xt) in low dimension into the vector in high dimension. For example, the input vector
in 2 dimensions is transformed into that in 3 dimensions by Φ(xi). That is because the possibility
of separating the vectors in higher dimensions is greater than those in lower dimensions [26–29].
The function of Φ(xi) is not determined as one type, such as the sigmoid function, and any kinds of
non-linear function can be used. The mapped vectors are sent to the symmetrical Gaussian RBF kernel:
k(xi, x) = RBF(Φ(xi), Φ(x)). Subsequently, the kernel function values are weighted with wi to calculate
the output focus score (fsout). In the last step, the weighted kernel function values are summed into the
value P (=Σi(wi k(xi, x))), and subsequently, P is passed to the linear combination for the regression
estimation fsout = σ(P) = P + b, where b is a scalar real value.
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The ideal graph of the focus score according to the Z distance should be a linearly-increased
one from 125 cm to 140 cm, whereas it should be a linearly-decreased one from 140 cm to 155 cm of
Figures 3 and 4. Based on this, we determine the desired output for the training of ε-SVR. For example,
with the image captured at the position of the Z distance of 125 cm, the desired output is determined
as 10, whereas with that of 140 cm, the desired output is determined as 100. In addition, with the
image at the position of the Z distance of 155 cm, the desired output is determined as 10. In the ranges
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from 125 cm to 140 cm and from 140 cm to 155 cm, the desired output is determined based on two
linear equations, respectively.

2.5. Criterion for Comparing Performances of Different Focus Measurement Methods

The focus score is illustrated as a graph according to the Z distance, as shown in Figure 8. At each
point of image capturing, the focus score varies in the range of the error bar of 2 standard deviations
(2STD). In order to adjust the focus lens, we expect the range of the error bar of each point not to overlap
with that of the adjacent point. Therefore, we discovered a method that minimizes the overlapping
amount. Based on the overlapping amount, we can evaluate and compare the performances of different
focus assessment methods. First, we consider the relation between the focus score graph and focus
lens adjustment. As shown in Figure 8a, the amounts a, b and c are the relative overlapping amount
of three pairs of adjacent capturing points. When the focus score falls in these overlapping ranges,
the focus assessment is inaccurate because it is impossible to decide to which capturing point the
focus score belongs. The ideal graph is the one that does not include any relative overlapping amount.
Unfortunately, we usually obtain high or low relative overlapping amount (ROA). We can use the ROA
to evaluate the performances of the focus score graphs. Figure 8b illustrates the method to calculate
ROA as follows:

ROA = ( f s1 + STD1)− ( f s2− STD2)
= (STD1 + STD2)− gradient1, 2

(8)

where gradient1,2 = fs2 − fs1. The accurate amount (ACC) is the range from the lower terminal of
Point 1 to the upper terminal of Point 2 restricting the ROA as follows, shown in Figure 8b.

ACC = ( f s2 + STD2)− ( f s1− STD1)− ROA
= (STD1 + STD2) + gradient1, 2− ROA

(9)
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Figure 8. An example graph of the average focus score according to the Z distance. (a) Graph with
the error bar of 2 standard deviations (2STD); (b) graph with relative overlapping amount (ROA) and
accurate amount (ACC) + ROA. As shown in Figures 3 and 4, the capturing points are 125, 130, 135, 140,
145, 150 and 155 cm, respectively.
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The proposed criterion, which is the so-called “performance evaluation ratio” (PER), can be
defined as follows, shown in Figure 8b.

PER = ROA/(ACC + ROA) (10)

Generally, we calculate the PER between two adjacent points of image capturing based on
Equations (8)–(10) as shown in Equation (11):

PERi,i+1 =
ROA

ACC + ROA
=

STDi + STDi+1 − gradienti,i+1

STDi + STDi+1 + gradienti,i+1
(11)

As shown in Figure 8b, negative or zero ROA indicates that there is no error in controlling the
focus lens from the i-th point to the (i + 1)-th point. As shown in Equation (11), if ROA is negative or
zero, PER is negative or zero, respectively. Therefore, we can also expect that negative or zero PER
indicates that there is no error in controlling the focus lens from the i-th point to the (i + 1)-th point.
If ROA is positive, PER is also positive. Therefore, we can also expect that positive PER indicates that
there is an error in controlling the focus lens from the i-th point to the (i + 1)-th point.

Equation (11) shows only the PER value between two adjacent points (the i-th point and the
(i + 1)-th point), and the average PER in all of the points is used as the criterion for comparing the
performance of various focus measurement methods as shown in Equation (12):

average PER =
∑N−1

i=0 PERi,i+1

N
(12)

where N + 1 is the number of all of the points of image capturing in the graph of the average focus
score to the Z distance of Figure 8.

Because it is difficult to quantitatively compare the performances of various focus measurement
methods just with the graphs of the average focus score to the Z distance, we propose the average
PER value as a new criterion for performance the comparison. In conclusion, PER is a just criterion for
comparing the performances of various focus measurement methods, as shown in Tables 3–5, and it is
not used for the actual auto-focusing operation.

3. Experimental Results

3.1. Two Experimental Databases

In our experiment, two databases were gathered by our lab. These databases were captured using
the gaze-tracking system shown in Figure 1. All of the images were captured in both daytime and
nighttime, and our databases involve variety in brightness. The brightness of an image can be changed
by various factors, such as time, location, illuminations and the characteristics of the camera. Further,
an important characteristic of a camera is the f -number, which shows the characteristics of the trade-off
between the image intensity and DOF [8]. When the f -number is larger, we obtain a darker image
and a longer DOF, which results in the difference between the two databases. Database 1 contains 84
gray images from 12 people, which were captured by the gaze-tracking camera with the f -number of
four. In addition, Database 2 contains 140 images from 20 people captured using a camera with the
f -number of 10 in order to increase the DOF. However, when we captured Database 2, we increased the
power of the NIR illuminators twice by increasing the number of NIR LEDs, which causes the images
in Database 2 to be brighter than those in Database 1, although the f -number in Database 2 is larger.
The difference in f -number leads to Database 1 being more sensitive to user movement than Database
2 because the DOF in Database 1 is smaller than that in Database 2. Regarding the user movement,
seven images were captured for each person with one focused image at the focus point (the Z distance
of 140 cm), three blurred images behind the focus point (farther from camera) and three blurred images
ahead of the focus point (closer to camera). In detail, seven images were captured at the Z distances of
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125, 130, 135, 140, 145, 150 and 155 cm from the camera to the human eye. Further, the ground-truth Z
distance was measured using a laser distance measurement device [37]. This scheme of user movement
is used in both Databases 1 and 2. The captured image has a size resolution of 1600 × 1200 pixels with
a gray image of eight bits. The examples of Databases 1 and 2 are shown in Figure 9.

Based on the two-fold cross-validation scheme, which has been widely used, half of Database 1
was used for training and the other half for testing as the first trial. Then, as the second trial, the training
and testing data were exchanged with each other, and training/testing are performed again. From
these two trials, we obtained two experimental values and used the average one in our experiment.
The same procedure was repeated with Database 2, also. Therefore, each method was trained and
tested for each dataset separately because the camera and illuminator specification (f -number of 10
and twice the number of illuminators) of Database 2 are different from those of Database 1.
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3.2. Performance Comparison of Various Focus Measurement Methods

Table 2 shows the performance of the linear normalization to reduce the effect of brightness
variation. The values in Table 2 represent the average difference between the focus score of daytime
and nighttime images in the two experimental databases. After applying linear normalization, the
difference between the focus scores of daytime and nighttime images is decreased. In Table 2, we can
observe that the difference between the focus scores of daytime and nighttime images in Database 2 is
smaller than that in Database 1. The reason for this result is discussed in the aforementioned Section 2.2
about linear normalization.

Table 2. The average difference between focus scores of daytime and nighttime images: before and
after using linear normalization.

Methods
Database 1 Database 2

Before linear Normalization After Linear Normalization Before Linear Normalization After Linear Normalization

Daugman [9] 4.08 3.43 2.99 2.51
Kang [10] 4.81 3.93 3.78 1.95
DWT [11] 1.97 1.93 0.32 0.18
HWT [18] 5.98 4.78 2.16 0.86

Subsequently, we compared the performances of the four spatial domain methods in order to
choose two methods as the inputs to ε-SVR. Figure 10 shows the graphs of the focus score according to
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the Z distance of four spatial methods—Daugman [9], Kang [10], LoG [12] and entropy [13]—and two
wavelet domain methods: DWT [11] and HWT [18].

As shown in Figure 10, the performances of LoG and entropy are lower than those of other
methods (the graphs obtained using LoG and entropy are less affected by the change of the Z distance
compared to the other methods). In order to quantitatively measure the performances of these methods,
we measured the average PERs described in Equation (12) for all of the methods, as shown in Table 3.
As explained in Section 2.5, the smaller the PER, the better the method. We can easily determine
that Daugman and Kang methods, DWT and HWT are better than the LoG and entropy methods.
Therefore, we choose the four methods—Daugman and Kang methods with DWT and HWT—as the
four inputs to ε-SVR.Symmetry 2017, 9, 86  16 of 23 
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Figure 10. Graph of the average focus score according to the Z distance of the spatial domain methods
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Table 3. Average performance evaluation ratio (PER) (standard deviation) of four spatial domain
methods and two wavelet domain methods.

Method Database 1 Database 2

Daugman [9] 0.25 (0.031) −0.0007 (0.029)
Entropy [13] 0.37 (0.027) 0.16 (0.03)

Kang [10] 0.18 (0.025) 0.13 (0.026)
LoG [12] 0.35 (0.028) 0.24 (0.029)
DWT [11] 0.05 (0.025) −0.09 (0.03)
HWT [18] 0.08 (0.026) −0.15 (0.025)
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3.3. Performance Comparison of Various Regressions with Four Focus Measurements

Subsequently, we performed comparative experiments with MLP, ν-SVR, LR and ε-SVR with
different kernels using the same inputs of four focus measurements: Daugman [9], Kang [10], DWT [11]
and HWT [18]. In our experiment, we implemented ε-SVR and ν-SVR using four kernels: RBF,
polynomial, linear and sigmoid. In addition, MLP is implemented using three kernels: linear,
hyperbolic tangent and general sigmoid. As explained in Section 2.4, the ideal graph of the focus
score according to the Z distance should be a linearly-increased one from 125 cm to 140 cm, whereas it
should be a linearly-decreased one from 140 cm to 155 cm in Figure 11. Based on this, we determine
the desired output for the training of SVR and MLP. For example, with Figure 11b, with the image
captured at the position of the Z distance of 125 cm, the desired output is determined as 10, whereas
with that of 140 cm, the desired output is determined as 100. In addition, with the image at the Z
distance of 155 cm, the desired output is determined as 10. In the ranges from 125 cm to 140 cm and
from 140 cm to 155 cm, the desired outputs are determined based on two linear equations, respectively.
The focus score graphs of these regressions and neural networks are shown in Figure 11.Symmetry 2017, 9, 86  17 of 23 
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The graphs in Figure 11 are very similar, and it is difficult to determine the best method among
them. Therefore, we use the average PER of Equation (12) to evaluate these graphs. As explained in
Section 2.5, the smaller the PER, the better the method. Table 4 shows the PER values of ε-SVR, ν-SVR,
LR and MLP using different kernels with the two databases.

In Table 4, ε-SVR with RBF shows the smallest PER in both databases. Therefore, we can confirm
that the focus assessment performance of our proposed method using ε-SVR with the RBF kernel is
higher than that of other regression methods with various kernels.
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Table 4. Average PER (standard deviation) values of ε-SVR, ν-SVR, LR and MLP using different kernels
with the two databases.

Method Kernel Database 1 Database 2

ν-SVR

Linear 0.0399 (0.029) −0.2492 (0.03)
Polynomial 0.0434 (0.028) −0.3036 (0.031)

Sigmoid 0.0971 (0.026) −0.0649 (0.029)
RBF 0.0382 (0.027) −0.2667 (0.032)

LR 0.0186 (0.031) −0.2381 (0.028)

ε-SVR

Linear 0.0654 (0.03) −0.2568 (0.027)
Polynomial 0.0382 (0.025) −0.1798 (0.029)

Sigmoid 0.1462 (0.028) −0.2095 (0.027)
RBF 0.0002 (0.025) −0.3531 (0.026)

MLP
Linear 0.0185 (0.028) −0.2392 (0.029)

Sigmoid 0.0788 (0.029) −0.3528 (0.03)
Tanh 0.2286 (0.03) −0.1530 (0.031)

3.4. Performance Comparison of Proposed Method and Four Individual Methods of Focus Measurement.

Figure 12 shows the focus score graphs of the proposed method using ε-SVR with the RBF kernel
and the four individual methods of focus measurement: Daugman [9], Kang [10], DWT [11] and
HWT [18]. In addition, Table 5 shows the average PER values of Equation (12) of these methods.
Because the four focus scores (input vectors, xt of Section 2.4) by Daugman’s mask, Kang’s mask,
Daubechies and Haar wavelet transform are not linearly changed according to the change of the Z
distance, as shown in Figure 12, and these vectors are passing through nonlinear mapping function
(Φ(xi) of Section 2.4) and nonlinear target function of RBF (k(xi, x) of Section 2.4), the graphs of Figure 12
can be linear or nonlinear.
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As shown in Figure 12, the graph of the proposed method is affected more by the Z distance
compared to the other methods. As explained in Section 2.5, the smaller the PER, the better the method.
In Table 5, the proposed method exhibits the smallest PER values in both databases and in the average
of the two databases. Based on Figure 12 and Table 5, we can confirm that the proposed method can
enhance the focus assessment performance compared to the four individual methods: Daugman [9],
Kang [10], DWT [11] and HWT [18].

Table 5. Average PER (standard deviation) values of the proposed method and the four individual
methods of the focus measurement with the two databases.

Method Database 1 Database 2 Average

Daugman [9] 0.25 (0.031) −0.0007 (0.029) 0.12465 (0.03)
Kang [10] 0.18 (0.025) 0.13 (0.026) 0.155 (0.026)
DWT [11] 0.05 (0.025) −0.09 (0.03) −0.02 (0.028)
HWT [18] 0.08 (0.026) −0.15 (0.025) −0.035 (0.026)

Proposed method 0.0002 (0.025) −0.3531 (0.026) −0.17645 (0.026)

As the next experiment, we measured the accuracy of estimating the Z distance by proposed or
previous focus measurement methods. For the experiment, a total of 20,000 image frames were obtained
from 20 people at Z distances of 1.25–1.55 m (10,000 frames in daytime and another 10,000 frames
in nighttime). Ground-truth Z distances were measured by a Polhemus Patriot 3-D motion tracking
device [38]. By positioning the receiver close to the camera lens and attaching the transmitter of
the Patriot device near the user’s left eye, we could obtain the ground-truth Z distance between the
receiver and transmitter, as shown in Figure 13. The disparity of position between the camera lens
and the receiver of the Patriot device was compensated. The accuracy of the Z distance estimation
was evaluated based on the mean absolute error (MAE) of Equation (13) between the ground-truth Z
distance and the Z distance obtained by proposed or previous focus measurement methods.
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MAE =
∑M−1

i=0 |Z(i)− Z′(i)|
M

(13)

Z(i) and Z’(i) are respectively the ground-truth Z distance and Z distance estimated by the
proposed or previous methods. M is the total number of image frames. As shown in Table 6, we can find
that the accuracy of the Z distance estimation by our method is higher than those by previous methods.
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Table 6. Comparisons on MAEs of Z distance estimation by our method and previous methods (unit: cm).

Method Daytime Nighttime Average

Daugman [9] 9.8 9.9 9.9
Kang [10] 11.3 11.5 11.4
DWT [11] 7.7 7.9 7.8
HWT [18] 6.6 6.7 6.7

Proposed method 2.1 2.3 2.2

3.5. Auto-Focusing Based on Our Focus Measurement Method

In our method, the initial rough position of the Z-distance of the user’s eye is estimated based
on the width of the detected face in the captured image. As shown in the right bottom image of
Figure 1a,b, by using a wide-view camera, the user’s face image is captured, and the face region is
detected by the AdaBoost face tracker [39]. Based on the assumption that the rough (actual) widths of
people’s faces are similar, the rough Z distance can be estimated based on the actual width, the width
of the face detected in the image and the camera focal length. In our system, the information of the
camera focal length is successively transmitted to our desktop computer via serial communication
at a speed of 9600 bits per second (bps). In addition, the position of focus lens and the movement
commands are transmitted to the focus motor by serial communication of same speed. Then, as shown
in the right top image of Figure 1a, the focus motor rotates the ring of the focus lens (attached on the
narrow-view camera), and the focus lens moves forward or backward in order to capture a focused
image. Therefore, the camera focal length can be obtained based on the position of the focus lens, and
consequently, the rough Z distance of the user’s eye can be obtained.

However, because there exist individual variances among the actual width of people’s face,
the rough position of the Z distance calculated is not accurate. Therefore, our system performs the
procedure of additional auto-focusing based on the graph of the focus score according to the Z distance,
like Figures 11 and 12. In detail, at the rough position of the Z distance measured by the user’s face, the
focus score of the captured eye image is calculated by our focus measurement method. If the score is
less than the threshold (in our research, we set the threshold as 85, which is experimentally determined
based on the possibility of detecting the pupil center and corneal SR center for gaze detection), our
system sends the movement command of the focus lens to the farther direction compared to the current
position of the Z distance by units of 2 cm. For example, in the case of the current position of 130 cm,
the lens is moved to the position that corresponds to the Z distance of 132 cm. Then, at this position,
our system captures the eye image and calculates the focus score again. If the score is higher than that
in the previous position (130 cm), but it is still less than the threshold (85), this procedure is repeated
until the focus score of the captured eye image is higher than the threshold. If it is lower than that in
the previous position, our system sends the command to move the focus lens to the closer direction
(128 cm) compared to the current position, and this procedure is repeated until the focus score of the
captured eye image is higher than the threshold.

Experiments for measuring the time of auto-focusing were performed with 20 people having
10 trials. During the experiments, the participating subjects were not asked to hold their head still, but
gazed at nine reference positions (on the TV display of Figure 1a) by natural movement of the head
and eye. Experimental results showed that the average focusing time (obtaining the focused image
whose focus score is higher than 85) by our method is about 81.9 ms (81.5 ms in daytime and 82.3 ms in
nighttime), as shown in Table 7. Based on these results, we can find that the difference of auto-focusing
time by our method is small between daytime and nighttime images. In addition, we can confirm
that the speed of auto-focusing by our method is faster than those by previous methods. In previous
methods [9–11,18], we used the same auto-focusing mechanism (explained above), except for the focus
measurement method. The reason why the sub-methods took more time than our method is that more
iterations (capturing image, calculating focus score, sending the command of lens movement to the
focus motor and moving the focus lens) were taken by the sub-methods than our method.
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Table 7. Comparisons of auto-focusing time by our method and previous methods (unit: ms).

Method Daytime Nighttime Average

Daugman [9] 158.3 169.2 163.75
Kang [10] 170.3 181.4 175.85
DWT [11] 132.7 144.8 138.75
HWT [18] 131.4 138.7 135.05

Proposed method 81.5 82.3 81.9

Including auto-focusing time, our gaze-tracking system can be operated at the speed of about
12 frames/s based on multi-thread processing of the auto-focusing and gaze detection, where these
two processes are performed in parallel operation.

As explained in Sections 2.4 and 3.3, the ideal graph of focus score according to the Z distance
should be a linearly increased one from 125 cm to 140 cm, whereas it should be a linearly decreased
one from 140 cm to 155 cm of Figure 11. Based on this, we determine the desired output for the training
of the proposed ε–SVR.

For the example with Figure 11b, with the image captured at the position of the Z distance of
125 cm, the desired output is determined as 10, whereas with that of 140 cm, the desired output is
determined as 100. In addition, with the image at the Z distance of 155 cm, the desired output is
determined as 10. In the ranges from 125 cm to 140 cm and from 140 cm to 155 cm, the desired output
for the training of our ε–SVR is determined based on two linear equations, respectively. Through
the training based on these desired outputs, the graph shape of our ε–SVR is closer to a linear shape
(having the wider range of focus score) than those of other methods, as shown in Figures 10b and 11b.
In addition, even with Figure 11a compared to Figure 10a, the graph shape of our ε–SVR is closer to a
linear shape (having a wider range of focus scores) than those of other methods.

If the relationship graph between the Z distance and desired output (focus score) is closer to a
linear shape with high sharpness and a wider range of focus scores, the auto-focusing based on this
graph is usually easier, which can increase the consequent accuracy and speed of auto-focusing [11].

All of the individual methods of focus measurement, such as Daugman’s convolution kernel,
Kang’s convolution kernel, Daubechies wavelet transform (DWT), Haar wavelet transform (HWT),
LoG and entropy, were not originally designed to produce the desired output (focus score) based on
the linear equation because they did not perform the training procedure with the desired outputs.
However, our ε–SVR was trained in order to produce the ideal focus value (the desired output based
on the linear equation) at each Z distance. Therefore, it is possible to obtain a new focus score with less
error without any new information added to the system by combining several methods with high error.

4. Conclusions

In this paper, we propose a new method of focus assessment by combining Daugman’s and Kang’s
methods, DWT and HWT based on ε-SVR with the RBF kernel. In order to prevent the focus score from
being affected by a change in image brightness, both linear and nonlinear normalizations are adopted
in the focus score calculation. In addition, based on the camera optics, we mathematically prove
the reason for the increase in the focus score in the case of daytime images or a brighter illuminator
compared to the nighttime images or a darker illuminator. Moreover, we propose a new criterion to
compare the accuracies of the focus measurement methods. This criterion is based on the ratio of the
relative overlapping amount (standard deviation of focus score) between two adjacent positions along
the Z-axis to the entire range of the focus score variety between these two points. The experimental
results show that the proposed method for focus assessment of a gaze-tracking camera exhibits a higher
performance compared to other regression methods. In comparison to the four individual methods of
focus measurement, the proposed method also exhibits higher performance, which proves that the
disadvantages of the four individual methods are overcome by using the ε-SVR combination. As future
work, we will evaluate the performance of our method in various environments, such as auto-focusing
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of a surveillance camera in the outdoors, of a mobile phone camera, etc. In addition, we will consider
other kinds of data fusion methods for enhancing the performance of focus measurements.

Acknowledgments: This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01056761), in part
by the Bio & Medical Technology Development Program of the NRF funded by the Korean government, MSIP
(NRF-2016M3A9E1915855), and in part by the Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03028417).

Author Contributions: Duc Thien Luong and Kang Ryoung Park designed the overall system for focus
measurement. In addition, they wrote and revised the paper. Jeon Seong Kang, Phong Ha Nguyen and
Min Beom Lee helped with the comparative experiments and collecting databases.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hansen, D.W.; Ji, Q. In the Eye of the Beholder: A Survey of Models for Eyes and Gaze. IEEE Trans. Pattern
Anal. Mach. Intell. 2010, 32, 478–500. [CrossRef] [PubMed]

2. Duchowski, A.T. A Breadth-First Survey of Eye-Tracking Applications. Behav. Res. Methods Instrum. Comput.
2002, 34, 455–470. [CrossRef] [PubMed]

3. Morimoto, C.H.; Mimica, M.R.M. Eye Gaze Tracking Techniques for Interactive Applications. Comput. Vis.
Image Underst. 2005, 98, 4–24. [CrossRef]

4. Zhu, Z.; Ji, Q. Novel Eye Gaze Tracking Techniques under Natural Head Movement. IEEE Trans. Biomed. Eng.
2007, 54, 2246–2260. [PubMed]

5. Cho, D.-C.; Kim, W.-Y. Long-range Gaze Tracking System for Large Movements. IEEE Trans. Biomed. Eng.
2013, 60, 3432–3440. [CrossRef] [PubMed]

6. Hennessey, C.; Noureddin, B.; Lawrence, P. A Single Camera Eye-Gaze Tracking System with Free Head
Motion. In Proceedings of the Symposium on Eye Tracking Research & Applications, San Diego, CA, USA,
27–29 March 2006; pp. 87–94.

7. Shih, S.-W.; Liu, J. A Novel Approach to 3-D Gaze Tracking Using Stereo Cameras. IEEE Trans. Syst. Man
Cybern. Part B Cybern. 2004, 34, 234–245. [CrossRef]

8. F-Number. Available online: https://en.wikipedia.org/wiki/F-number (accessed on 7 June 2016).
9. Daugman, J. How Iris Recognition Works. IEEE Trans. Circuits Syst. Video Technol. 2004, 14, 21–30. [CrossRef]
10. Kang, B.J.; Park, K.R. A Robust Eyelash Detection Based on Iris Focus Assessment. Pattern Recognit. Lett.

2007, 28, 1630–1639. [CrossRef]
11. Jang, J.; Park, K.R.; Kim, J.; Lee, Y. New Focus Assessment Method for Iris Recognition Systems.

Pattern Recognit. Lett. 2008, 29, 1759–1767. [CrossRef]
12. Wan, J.; He, X.; Shi, P. An Iris Image Quality Assessment Method Based on Laplacian of Gaussian Operation.

In Proceedings of the IAPR Conference on Machine Vision Applications, Tokyo, Japan, 16–18 May 2007;
pp. 248–251.

13. Grabowski, K.; Sankowski, W.; Zubert, M.; Napieralska, M. Focus Assessment Issues in Iris Image Acquisition
System. In Proceedings of the International Conference on Mixed Design of Integrated Circuits and Systems,
Ciechocinek, Poland, 21–23 June 2007; pp. 628–631.

14. Zhang, J.; Feng, X.; Song, B.; Li, M.; Lu, Y. Multi-Focus Image Fusion Using Quality Assessment of Spatial
Domain and Genetic Algorithm. In Proceedings of the Conference on Human System Interactions, Krakow,
Poland, 25–27 May 2008; pp. 71–75.

15. Wei, Z.; Tan, T.; Sun, Z.; Cui, J. Robust and Fast Assessment of Iris Image Quality. In Proceedings of the
International Conference on Biometrics, Hong Kong, China, 5–7 January 2006; pp. 464–471.

16. Kautsky, J.; Flusser, J.; Zitová, B.; Šimberová, S. A New Wavelet-based Measure of Image Focus.
Pattern Recognit. Lett. 2002, 23, 1785–1794. [CrossRef]

17. Bachoo, A. Blind Assessment of Image Blur Using the Haar Wavelet. In Proceedings of the Annual Research
Conference of the South African Institute of Computer Scientists and Information Technologists, Bela,
South Africa, 11–13 October 2010; pp. 341–345.

http://dx.doi.org/10.1109/TPAMI.2009.30
http://www.ncbi.nlm.nih.gov/pubmed/20075473
http://dx.doi.org/10.3758/BF03195475
http://www.ncbi.nlm.nih.gov/pubmed/12564550
http://dx.doi.org/10.1016/j.cviu.2004.07.010
http://www.ncbi.nlm.nih.gov/pubmed/18075041
http://dx.doi.org/10.1109/TBME.2013.2266413
http://www.ncbi.nlm.nih.gov/pubmed/23751947
http://dx.doi.org/10.1109/TSMCB.2003.811128
https://en.wikipedia.org/wiki/F-number
http://dx.doi.org/10.1109/TCSVT.2003.818350
http://dx.doi.org/10.1016/j.patrec.2007.04.004
http://dx.doi.org/10.1016/j.patrec.2008.05.005
http://dx.doi.org/10.1016/S0167-8655(02)00152-6


Symmetry 2017, 9, 86 23 of 23

18. Tong, H.; Li, M.; Zhang, H.; Zhang, C. Blur Detection for Digital Images Using Wavelet Transform.
In Proceedings of the IEEE International Conference on Multimedia and Expo, Taipei, Taiwan,
27–30 June 2004; pp. 17–20.

19. Daubechies Wavelet. Available online: https://en.wikipedia.org/wiki/Daubechies_wavelet (accessed on
25 May 2017).

20. Daubechies, I. Ten Lectures on Wavelets, 1st ed.; SIAM: Philadelphia, PA, USA, 1992.
21. Haar Wavelet. Available online: https://en.wikipedia.org/wiki/Haar_wavelet (accessed on 25 May 2017).
22. Ultraviolet. Available online: https://en.wikipedia.org/wiki/Ultraviolet (accessed on 13 January 2017).
23. Visible Spectrum. Available online: https://en.wikipedia.org/wiki/Visible_spectrum#cite_note-1

(accessed on 13 January 2017).
24. Infrared. Available online: https://en.wikipedia.org/wiki/Infrared (accessed on 13 January 2017).
25. Angus, A.A. A New Physical Constant and Its Application to Chemical Energy Production. Fuel Chem.

Div. Prepr. 2003, 48, 469–473.
26. Vapnik, V.N. The Nature of Statistical Learning Theory, 1st ed.; Springer: Berlin, Germany, 1995.
27. Schölkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P.L. New Support Vector Algorithms. Neural Comput.

2000, 12, 1207–1245. [CrossRef] [PubMed]
28. Schölkopf, B.; Smola, A.J. Learning with Kernels-Support Vector Machines, Regularization, Optimization, and

Beyond, 1st ed.; The MIT Press: Cambridge, MA, USA, 2001.
29. Support Vector Machines. Available online: http://www.stanford.edu/class/cs229/notes/cs229-notes3.pdf

(accessed on 7 June 2016).
30. Bishop, C. Pattern Recognition and Machine Learning; Springer: Berlin, Germany, 2006.
31. Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Prentice Hall: Upper Saddle River, NJ,

USA, 1998.
32. Multilayer Perceptron. Available online: http://en.wikipedia.org/wiki/Multilayer_perceptron (accessed on

7 June 2016).
33. Areerachakul, S.; Sanguansintukul, S. Classification and Regression Trees and MLP Neural Network to

Classify Water Quality of Canals in Bangkok, Thailand. Int. J. Intell. Comput. Res. 2010, 1, 43–50. [CrossRef]
34. Wefky, A.M.; Espinosa, F.; Jiménez, J.A.; Santiso, E.; Rodriguez, J.M.; Fernández, A.J. Alternative Sensor

System and MLP Neural Network for Vehicle Pedal Activity Estimation. Sensors 2010, 10, 3798–3814.
[CrossRef] [PubMed]

35. Vehtari, A.; Lampinen, J. Bayesian MLP Neural Networks for Image Analysis. Pattern Recognit. Lett. 2000, 21,
1183–1191. [CrossRef]

36. Patino-Escarcina, R.E.; Costa, J.A.F. An Evaluation of MLP Neural Network Efficiency for Image
Filtering. In Proceedings of the International Conference on Intelligent Systems Design and Applications,
Rio de Janeiro, Brazil, 20–24 October 2007; pp. 335–340.

37. Laser Rangefinder DLE70 Professional. Available online: http://www.bosch-pt.com/productspecials/
professional/dle70/uk/en/start/index.htm (accessed on 19 January 2017).

38. “Patriot”, Polhemus. Available online: http://www.polhemus.com/?page=Motion_Patriot (accessed on
24 March 2017).

39. Viola, P.; Jones, M.J. Robust Real-time Face Detection. Int. J. Comput. Vis. 2004, 57, 137–154. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://en.wikipedia.org/wiki/Daubechies_wavelet
https://en.wikipedia.org/wiki/Haar_wavelet
https://en.wikipedia.org/wiki/Ultraviolet
https://en.wikipedia.org/wiki/Visible_spectrum#cite_note-1
https://en.wikipedia.org/wiki/Infrared
http://dx.doi.org/10.1162/089976600300015565
http://www.ncbi.nlm.nih.gov/pubmed/10905814
http://www.stanford.edu/class/cs229/notes/cs229-notes3.pdf
http://en.wikipedia.org/wiki/Multilayer_perceptron
http://dx.doi.org/10.20533/ijicr.2042.4655.2010.0004
http://dx.doi.org/10.3390/s100403798
http://www.ncbi.nlm.nih.gov/pubmed/22319326
http://dx.doi.org/10.1016/S0167-8655(00)00080-5
http://www.bosch-pt.com/productspecials/professional/dle70/uk/en/start/index.htm
http://www.bosch-pt.com/productspecials/professional/dle70/uk/en/start/index.htm
http://www.polhemus.com/?page=Motion_Patriot
http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Motivation 
	Related Works 

	Proposed Method 
	Overview of the Proposed Method 
	Linear Normalization of Image Brightness Based on Mathematical Analyses 
	Four Focus Measurements 
	-Support Vector Regression with a Symmetrical Gaussian Radial Basis Function Kernel for Combining Four Focus Scores 
	Criterion for Comparing Performances of Different Focus Measurement Methods 

	Experimental Results 
	Two Experimental Databases 
	Performance Comparison of Various Focus Measurement Methods 
	Performance Comparison of Various Regressions with Four Focus Measurements 
	Performance Comparison of Proposed Method and Four Individual Methods of Focus Measurement. 
	Auto-Focusing Based on Our Focus Measurement Method 

	Conclusions 

