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Abstract: This work proposes a new and non-blind steganographic scheme for synthesized pitches.
Synthesized music is popularly used to demonstrate early versions of compositions conveniently and
at low-cost. They can also be utilized to pass secrets or obtain digital rights. The method consists of
two procedures, of which the first is the realistic simulation of synthesized pitches using a computer
and the second is the hiding of secrets during the generated simulated pitches. The first part of this
paper reviews attempts to discover the fundamental patterns of synthesized pitches and to develop a
strategy for generating approximate pitches using a computer. The component frequencies are used
to generate a pitch in which to hide secrets. Legal receivers receive the referenced composition and
frequencies, enabling them to generate the synthesized pitches according to the main frequencies of
the referenced composition. Finally, the generated and received pitches are compared to identify the
secret bits. As more frequencies are used to hide secret bits, more secret bits can be embedded in the
synthesized pitches. The use of more frequencies makes synthesized pitches more realistic compared
to real ones. The performance of the proposed method is also compared with that of competing
methods and under common attacks.
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1. Introduction and Related Work

The Internet is a popular environment in which people exchange personal data. Accordingly, great
importance is now attached to information security. Many techniques for keeping data confidential
have been developed. The field of steganography concerns hiding data that embed messages in
insignificant media before a transmission. Data-hiding schemes are used to hide secrets in cover
media, producing stego-media. The approach enables users to discover attempts by intruders to
replace original messages with fabricated content. One of its applications is to back-up personal,
private data or information on the Internet. Presently, many people frequently upload personal and
secret data to cloud services, while reasonably distrusting cloud vendors. The objective of data-hiding
is to increase hiding capacity while reducing the likelihood that intruders can identify anything is
hidden [1]. Figure 1 displays some applications of steganography: (a) when a user backs up sensitive
data on a cloud storage service, he does not want the data accessible even though it is encrypted;
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(b) when a user create his multimedia files, he wants to obtain his ownerships before he publishes
those files; and (c) when a user wants to communicate to some, he does not want to be noticed so he
makes his messages to be un-perceptual.
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Figure 1. (a) An application of a user backing up his sensitive data on a cloud storage service;
(b) an application of a user making digital rights; and (c) an application of a user achieving an
un-perceptual communication.

Popular multimedia includes images, audio, video and text [1–16]. Audio-based data-hiding
methods [3,17–23] can be divided into two categories. Time domain-based operations tend to replace
the least significant bits [3,20], and the echo parts of a signal [3,23]. Frequency domain-based operations
include directly hiding secrets in high or low frequencies and spreading the secrets throughout
band frequencies. The former approach is known as psychoacoustic masking [3,21] and the latter
is known as spreading the spectrum [3,22,23]. Most audio-based methods suffer from the same
problems as image-based methods, that is, the issue of distortion between cover and stego-medium.
Phase coding and spreading spectrum methods are safer due to they are designed to deployed secrets in
un-perceptual frequencies [3], although their computation time are greater than those of other schemes.

Traditional data-hiding strategies are based on digitalized multimedia. Distortion is the most
important limitation of steganography, and it must therefore be controlled to reduce awareness of
the generated stego-media. Other methods for hiding data in audio are based on ideas that have
been proposed by various authors [3,20–23]. They include least-significant-bit (LSB), phase coding,
spread spectrum, echo data-hiding and psychoacoustic masking methods. Akhaee et al. [17] proposed
a robust data-hiding algorithm to avoid statistical cracking. They found that most time-domain
processing data-hiding schemes are weak and can be easily decoded by current steganalytic strategies.
Their algorithm applies correlated quantization to embed data using a histogram-based detector.
Huang et al. [19] presented a new steganographic scheme with variable capacity and synchronization
for the secure multimedia transmission of acoustic data in real time. Atoum et al. [18] proposed a new
data-hiding scheme that is based on the mp3 file format. They were concerned that human ears are
very sensitive to audio features so the audio content should not be modified. Their method, therefore,
hides secret data only between the frames of an mp3 file. Yamamoto and Iwakiri [24] developed a
method of identifying the ownership of a digital instrumental audio. They mentioned that digital
instrumental audio is now very popular on the Internet. Accordingly, the present work develops a
data-hiding scheme that is based on the fundamental composition of simulated instrumental audio.

Most of the above proposed methods are based on traditional digitalized audio and are therefore
restricted by distortion and exhaustion of transmission, which means the more secrets embedded in a
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cover media, the more differences of a cover and a stego media. They can be used simply to modify
media content, but in so doing, they limit the capacity for and security of the hidden secrets. Currently,
much content is transmitted through the Internet, and a fraction of it is made by computer animators,
and includes text and simulated media [25–32]. Cayre and Macq [28] were the first to propose a
data-hiding method that was based on 3D polygons. Their scheme is applied to 3D meshes of triangles,
and extends one of the simplest data-hiding techniques, called the triangle strip peeling sequence
(TSPS) technique. The basic idea of the TSPS algorithm is the insertion of bits in a path traced on the
mesh. In 2009, Chao et al. [29] improved Cayre’s algorithm and increased its capacity. They redefined
3D polygons as multilayered triangles such that each layer could be used to hide secrets. They also
used coordinates to define each polygon and defined a multi-layer such that the capacity of their
method was 3n times that of Cayre’s method (where n is the number of layers).

Inspired by the above research works, the authors developed a new data-hiding scheme that uses
synthesized musical pitches to embed more secrets and reduce distortion. The scheme reproduces a
synthesized musical pitch in which it embeds secrets by amplitude enhancement. The enhancement
slightly pads noises and legal receivers have only to compare the magnitude of the amplitude with that
in standard patterns of synthesized pitches. The restriction is that only one pitch can be used at the same
time. Sound synthesis is an important topic in the simulation of digital musical instruments. This paper
is organized as follows. Section 2 first introduces the fundamental principle of the synthesis of musical
notes, which is the basis of the data-hiding scheme that is presented herein. A reliable formula for
synthesizing notes is introduced and some simulations are carried out. Therefore, a data-hiding
scheme are presented. Section 3 displays some practical experiments to prove the feasibility and
ability. Section 4 compares the performance of the proposed method with of others and presents some
other evaluations and theoretical analysis. Finally, Section 5 draws conclusions. All experiments are
analyzed using MATLAB (2006a, The MathWorks, Natick, MA, USA).

2. Materials and Methods

References [33,34] described efforts to describe objectively the quality of piano tones, as
understood by musicians, and they tried to find synthetic tones that would be considered to be
better than real piano tones. Casey showed that a two-layer feed-forward model can perform inverse
mapping for a simple physical model of a string [35]. References [36,37] showed the numerical
approach and the underlying physical model can be improved to simulate the motion of a piano string
with a high degree of realism. This work develops a model of instruments as follows. First, a discrete
Fourier transform (DFT) is utilized to transform the sampled sound data of an instrument from the
time domain to the frequency domain. When a real instrumental pitch is recorded, analog acoustic
is digitalized with being sampled automatically by a computer. Then the DFT could be adopted to
classify and decompose the composition of the frequencies of a single pitch. Second, use the frequency
domain function and the sound of an instrument is described as a pattern, which is generated using
DFT and the inverse DFT, which are used to analyze sampled data using computers. Section 2.1 is the
fundamental of the methodology, while Section 2.2 is the proposed scheme.

2.1. Fundamentals

This section discusses why musical instruments produce such beautiful music. Harmonics will
be introduced. Fourier transformations are based on the fact that a function in the time domain can
be represented as a summation of cosine functions. Consider the periodic square wave, plotted in
Figure 2. The signal x(t) can be represented by Equation (1) [38]:

x(t) =
2Ts

T
+

∞

∑
k=1

2 sin(2πk f0Ts)

πk
cos(2πk f0t) (1)
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Figure 2. A square wave signal [38].

The frequency f0 is the fundamental frequency. As k increases, the coefficient of the cosine
function, 2 sin(2πk f0Ts)

πk , decreases. Hence, only the coefficients for k = 2, 3, 4 and other low values are
important. The cosine function for k = 2 is known as the second harmonic; that for k = 3 is the third
harmonic, and so on. The sound of any musical note that is produced by a musical instrument contains
the fundamental frequency and a few harmonics. Figure 3 plots the function of a real piano’s Middle C
in the time domain. The DFT is applied to the function in Figure 3 to obtain the frequency spectrum
in Figure 4. Only a few of the magnitudes are marked because space is limited. After the frequency
spectrum of Middle C on a real piano was obtained, the frequency spectra of all of the pitches that are
produced in the middle region of a piano are found. Figure 5 displays these spectra.
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Figure 5. Frequency spectra of all piano pitches.

A real music instrument produces different pitches with different frequency patterns. Consider a
randomly chosen musical instrument, such as a piano and the playing of any note on it. Perform a DFT
on the note. The k frequencies with the largest magnitudes are selected. Denote these frequencies as
f1, f2, . . . , fk, where f1 < f2 < . . . < fk, with magnitudes a1, a2, . . . , ak, 0 ≤ ai ≤ 1. Calculate bi = fi/ f1

for 1 ≤ i ≤ k. Now suppose that the goal is to generate a frequency pattern for Middle C. The
fundamental frequency of Middle C is known to be 262 Hz. Denote this frequency as fap. The Middle
C that is generated by a real piano has frequencies b1 fap, b2 fap, . . . , bk fap with magnitudes a1, a2, . . . , ak,
respectively, and the inverse DFT generates the sound from these frequencies. Of course, musical
sounds that are generated in this way are not expected to be the same as those produced by a piano.
However, as demonstrated by the following experiment, they will be piano-like if k is sufficiently large.
The k frequencies with the largest magnitudes are selected using the prune and search method [39].

The following experiments involve synthesized pitches. Let k = 10 so the ten frequencies with the
largest magnitudes are obtained. The magnitudes a1, a2, . . . , a10 and respective multiples b1, b2, . . . , b10

are found and shown in Table 1. Middle C on a piano has frequencies ( fap, 1.0038 fap, . . . , 7.0843 fap)
with respect magnitudes (0.2635, 0.7042, . . . , 0.2402). Let fap = 262, yielding frequencies of (262,
263, . . . , 1856 Hz). Figures 6 and 7 plot the experimental results in the frequency and time domains.
Comparing Figures 3 and 7, the waves are not similar.

Table 1. The values of ai, bi and bi fap of Middle C of a piano with k = 10.

i ai bi bifap

1 0.2635 1.0000 262
2 0.7042 1.0038 263
3 0.5050 1.0077 264
4 0.3326 2.0038 525
5 0.8000 2.0077 526
6 0.2255 2.0115 527
7 0.3013 5.0345 1320
8 0.2823 7.0766 1854
9 0.2631 7.0805 1855
10 0.2402 7.0843 1856
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Figure 8 presents the similarity between a simulated piano note with k = 10, 000 and a real piano
note. The difference between them is negligible and this fact will be exploited in the following section.
A higher k yields a smaller distortion and the higher ability to embed more secrets. Various pitches
from different musical instruments were simulated and analyzed.
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2.2. Data Hiding Scheme

The proposed data-hiding scheme involves the following steps. First, choose an instrumental
pitch P to be the reference pitch. With reference to the preceding sections, all of the required parameters
can be obtained. These include the magnitudes ai and the main frequencies bi fap. The number of ai
terms is k and the number of bi fap terms is k because the system is used only to generate the main
k frequencies of the signals. Next, suppose that the length of the secret bit stream bt1, bt2, . . . , btk is
also k. If bt1 = 1, then a1 is increased to σa1, 1 < σ < 2 ; the same operation is applied to a2, a3, . . . , ak.
Figure 9 is the overview of the scheme. The sender uses the standard pattern of synthesized pitches
and k to encode the secrets to generate a synthesized pitch using amplitude enhancement. A legal
receiver uses the standard pattern of synthesized pitches and k to decode the secret.
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Algorithm 1 is the simple encoding procedure. Algorithm 2 is the decoding procedure.

Algorithm 1 Encoding Procedure

Input: secret bit stream bt1, bt2, . . . , btk and reference instrumental pitch P
Output: a stego-synthesized pitch
Step 1: find a1, a2, . . . , ak and b1 fap, b2 fap, . . . , bk fap by referencing P
Step 2: for all ai, 1 ≤ i ≤ k, obtain a′1, a′2, . . . , a′k as follows;

if (bti = 1)
set a′i = σai

else
set a′i = ai

Step 3: use a′1, a′2, . . . , a′k and b1 fap, b2 fap, . . . , bk fap to create a pitch p
Step 4: return p

Algorithm 2 Encoding Procedure

Input: length of secret k, reference pitch P and received pitch p
Output: secret bit stream bt1, bt2, . . . , btk
Step 1: use standard pattern in Section 2.1 to obtain A1, A2, . . . , Ak of P
Step 2: use standard pattern in Section 2.1 to obtain a1, a2, . . . , ak of p
Step 3: for each Ai and ai, decode secret bit bti as follows.

if (Ai 6= ai)
set bti = 1

else
set bti = 0

Step 4: concatenate b1, b2, . . . , bi, . . . , bk, 1 ≤ i ≤ k to form a bit stream B
Step 5: return B
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The value (σ− 1)a1 shall be too small to be perceived by the human ear. Consider, for example,
Table 2: hiding bit stream 1001101101 in the synthesized pitch yields the enhanced magnitudes, which
are shown in the first table.

Table 2. The modified parameters after embedding secret 1001101101 in Middle C of a simulated piano
with σ = 1.01.

i ai bi bifap

1 0.2661 1.0000 262
2 0.7042 1.0038 263
3 0.5050 1.0077 264
4 0.3359 2.0038 525
5 0.8080 2.0077 526
6 0.2255 2.0115 527
7 0.3043 5.0345 1319
8 0.2851 7.0766 1854
9 0.2631 7.0805 1855
10 0.2426 7.0843 1856

Legitimate receivers obtain the reference instrumental pitch P, the length of the secret k and the
method of generation of the synthesized pitches. The decoding procedure is as follows. First, identify
the main frequencies that correspond to the k largest magnitudes from P and the received pitch p. The
frequencies of the former are denoted as F1, F2, . . . , Fk and those of the latter are denoted as f1, f2, . . . , fk.
The magnitudes of all main frequencies are obtained as A1, A2, . . . , Ak and a1, a2, . . . , ak. Each Ai is
compared with the corresponding ai; for Algorithm 4, Step 3, if Ai 6= ai, then the secret bit bti = 1;
otherwise, bti = 0. Finally, all btis are concatenated and the secret bit stream can be produced.

While the synthesis of musical pitches and the data-hiding scheme are public, the above algorithms
can be designed more secure by including a parameter R, which is the real order of ai and bi fap during
the data embedding procedure. R is generated using a random number generator and the seed of the
generator is obtained by legal receivers. The formal definition of R is R = {ri}, 1 ≤ ri ≤ k, where all ri
have different values. An example follows. Consider R = {3, 1, 7, 9, 2, 10, 4, 6, 5, 8}; Table 3 is obtained
after the complex version of the data embedding scheme is implemented. The red numbers indicate
hidden secret “1” bits. Evidently, the positions of the secret bits differ from those in the second table.
Algorithms 3 and 4 describe the complex version of the proposed scheme.

Algorithm 3 Encoding Procedure

Input: secret bit stream bt1, bt2, . . . , btk, secret order R and reference instrumental pitch P
Output: a stego-synthesized pitch
Step 1: find a1, a2, . . . , ak and b1 fap, b2 fap, . . . , bk fap by referencing P
Step 2: for all Ri, 1 ≤ i ≤ k, obtain a′1, a′2, . . . , a′k as follows.

if (bti = 1)
set a′Ri

= σaRi

else
set a′Ri

= aRi

Step 3: use a′1, a′2, . . . , a′k and b1 fap, b2 fap, . . . , bk fap to create a pitch p
Step 4: return p
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Table 3. The modified parameters after embedding secret 1001101101 in Middle C of a simulated piano
with R = {3, 1, 7, 9, 2, 10, 4, 6, 5, 8} and σ = 1.01.

i ai bi bifap

1 0.2635 1.0000 262
2 0.7112 1.0038 263
3 0.5101 1.0077 264
4 0.3359 2.0038 525
5 0.8000 2.0077 526
6 0.2278 2.0115 527
7 0.3013 5.0345 1320
8 0.2851 7.0766 1854
9 0.2657 7.0805 1855

10 0.2402 7.0843 1856

Unlike in the first version, receivers no longer need the value of k but only the secret order R or
random seed.

Algorithm 4 Encoding Procedure

Input: secret order R, reference pitch P and received pitch p
Output: secret bit stream bt1, bt2, . . . , btk
Step 1: use standard pattern in Section 2.1 to obtain A1, A2, . . . , Ak of P
Step 2: use standard pattern in Section 2.1 to obtain a1, a2, . . . , ak of p
Step 3: for all Ri, 1 ≤ i ≤ k, decode secret bit bti with reference to the following condition:

if (ARi 6= aRi )
set bti = 1

else
set bti = 0

Step 4: concatenate b1, b2, . . . , bi, . . . , bk, 1 ≤ i ≤ k to form a bit stream B
Step 5: return B

The above two proposed embedding schemes focus on enhancing amplitudes when secret “1”
bits are embedded. However, it shall be considered that the enhancement will be too large if there
are too many “1” bits. A strengthened version is presented here called alternating current (AC)
algorithm. The main idea of AC algorithm is to reduce a large enhancement caused by embedding
secret “1” bits. The embedding scheme goes on alternatively enhancing each amplitude by multiply
σ and 1

σ . For the example in Table 3, the parameters are modified as listed in Table 4 by adopting
AC algorithm. The numbers of the even positions (9, 4, 8) of embedding secret “1” bits are modified
by multiplying 1

σ . Algorithms 5 and 6 describe the embedding and extracting procedures of the AC
algorithm, respectively.

Table 4. The modified parameters after embedding secret 1001101101 in Middle C of a simulated piano
using the alternating current (AC) algorithm with R = {3, 1, 7, 9, 2, 10, 4, 6, 5, 8} and σ = 1.01.

i ai bi bifap

1 0.2635 1.0000 262
2 0.7112 1.0038 263
3 0.5101 1.0077 264
4 0.3293 2.0038 525
5 0.8000 2.0077 526
6 0.2278 2.0115 527
7 0.3013 5.0345 1320
8 0.2795 7.0766 1854
9 0.2605 7.0805 1855

10 0.2402 7.0843 1856
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Algorithm 5 Encoding Procedure

Input: secret bit stream bt1, bt2, . . . , btk, secret order R and reference instrumental pitch P
Output: a stego-synthesized pitch
Step 1: find a1, a2, . . . , ak and b1 fap, b2 fap, . . . , bk fap by referencing P
Step 2: initialize AC = 0
Step 3: for all Ri, 1 ≤ i ≤ k, obtain a′1, a′2, . . . , a′k as follows.

if (bti = 1)
if(AC = 0)

set a′Ri
= σaRi

set AC = 1
else

set a′Ri
= 1

σ aRi

set AC = 0
else

set a′Ri
= aRi

Step 4: use a′1, a′2, . . . , a′k and b1 fap, b2 fap, . . . , bk fap to create a pitch p
Step 5: return p

Algorithm 6 Encoding Procedure

Input: secret order R, reference pitch P and received pitch p
Output: secret bit stream bt1, bt2, . . . , btk
Step 1: use standard pattern in Section 2.1 to obtain A1, A2, . . . , Ak of P
Step 2: use standard pattern in Section 2.1 to obtain a1, a2, . . . , ak of p
Step 3: for all Ri, 1 ≤ i ≤ k, decode secret bit bti with reference to the following condition:

if (ARi 6= aRi )
set bti = 1

else
set bti = 0

Step 4: concatenate b1, b2, . . . , bi, . . . , bk, 1 ≤ i ≤ k to form a bit stream B
Step 5: return B

It shall be proven that even if the proposed steganographic scheme is applied twice, it is still
able to get the embedded secrets. A simple proof is given as follows. The basic idea of this presented
research work is the enhancement of amplitudes if embeds a secret “1” bits. Applying the embedding
procedure twice makes the enhanced amplitudes multiply σ of 1

σ again, that is, ai will be σ2ai or
1

σ2 ai but not σai or 1
σ ai. When legal receivers apply the decoding procedure, the main strategy is to

compare the enhanced amplitudes to the original amplitudes of the standard patterns. The are only
three possible values of ai: ai, σ2ai, and 1

σ2 ai. Apparently, the comparisons work and are able to obtain
the embedded secrets.

3. Results

This section displays experiments of the proposed scheme. Figure 10 displays the cover and
the stego-pitches with k = 10. The red numbers indicate secret “1” bits that are hidden. Figure 11
shows that the cover and the stego-pithes when k = 10,000 by embedding 10,000 random bits and the
differences are nearly none because the enhancement of amplitudes is too small. Figure 12 plots the
signal-to-noise ratio (SNR) between the embedded noise and the standard pitch as a function of σ from
1.001 to 1.01 for k from 10 to 50. A larger σ causes greater distortions of the cover pitches.

The performance of a data-hiding scheme is generally measured using capacity and distortion.
As mentioned above, more multimedia are being produced by Internet users, so intruders have
difficulty in distinguishing stego-media from cover media. This work develops a new cover medium,
and comparisons can only be made between frequencies for different values of k, as selected by the
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standard pattern in Section 2.1. First, the capacity of the proposed scheme is discussed. Since the
proposed scheme embeds a secret bit in a selected pitch, the capacity increases with the number of
selected pitches. Figure 13 displays the capacity for different values of k; a larger k allows more secret
bits to be embedded. The value of k is linearly related to capacity.
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Figure 13. The curvy of capacity to k

Second, the distortions between the stego and real pitches are provided for different values of
k and σ. The following experiment is conducted. The peak-signal-to-noise ratio (PSNR) function in
the MATLAB library is utilized to evaluate the distortion of two plotted images of stego and real
pitches. Figure 14 plots the variation of the PSNR associated with different values of k and σ. Each
point represents a comparison between a stego and a real pitch; for example, the point (10,000, 35)
compares a stego pitch (with 10,000 bits hidden, σ = 1.0001) and a real pitch.
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Figure 14. The curve of capacity (k) to distortion (PSNR) between real and simulated stego-pitches
with different σ values.

The above curve reveals that the proposed scheme yields a smaller distortion as more secret bits
are embedded up to a limit beyond which too many secret bits are hidden. In the proposed experiment,
the upper bound of the distortion is 37 dB when σ = 0.0001 and 12,000 bits are embedded. In practical
applications, the advantage of the present scheme is that the capacity grows and the distortion declines.

Third, the computational performance of the proposed scheme is addressed. Figure 15 plots the
time consumption of the proposed scheme.



Symmetry 2017, 9, 92 13 of 20

Symmetry 2017, 9, 92 13 of 20 

 

 

Figure 15. The curve of computational performance to 𝑘. 

4. Discussion 

This section presents the comparison with other related work, performance under other attacks 

and some theoretical analysis. 

4.1. Comparisons with Related Work 

Common attacks against an audio data-hiding scheme include the low pass filter (LPF) attack, 

mp3-like compression, and re-quantization. The bit error ratio (BER) is used to measure the 

performance of a data-hiding scheme under common attacks. The BER is defined as the ratio of 

exact matching of the embedded secret bit-stream and of the decoded secret bit-stream after the 

stego cover pitch has undergone by the above common attacks. The mathematical definition is: 

𝐵𝐸𝑅 =
∑ 𝐵′𝑖 ⊕ 𝐵𝑖

𝑘
𝑖=1

|𝐵|
 (⊕ is exlusive or) (2) 

The definitions of the common attacks adopted in the proposed comparisons are as follows: 

 LPF (3 kHz) filters all signals with frequencies lower than 3 kHz. 

 mp3 (64 kbps) adopts an existing multimedia tool (Adobe Audition) to compress the 

stego-pitch (.wav file->.mp3 file) and decompress back to .wav file format.  

 Re-quantization (16 to 32 bits) adopts an existing multimedia tool (Adobe Audition) to 

re-quantize the sampling point from 16 bits to 32 bits and then to re-quantize it back to 16 bits.  

 Re-quantization (16 to 8 bits) adopts an existing multimedia tool (Adobe Audition) to 

re-quantize the sampling point from 16 bits to 8 bits and then to re-quantize it back to 8 bits. 

Table 5 compares the BERs of the proposed scheme and methods proposed elsewhere 

[17,40,41]. The results indicate that the methods developed herein outperform the others under the 

indicated attacks. In [17], the authors proposed two steganographic methods, hard quantization 

(HQ) and soft quantization (SQ) using correlated quantization to embed data with histogram based 

detector. A novel mapping denoted as point to point graph (PPG) is used to evaluate the correlation 

among each value of samples. PPG point radii are suggested to embed data to obtain the 

performances. In [40], the authors presented a self-synchronization scheme for audio watermarking. 

The synchronization codes are hidden into audio as the informative data, thus the embedded data 

have the ability of self-synchronization. The synchronization codes are hidden into low frequency 

coefficients in discrete wavelet transform domain. In [41], the authors proposed an echo hiding 

scheme. Some echoes are adequately adapted when the embedding process is executing. 

The proposed scheme protects all of the hidden secrets under the specified common attacks for 

the following reasons. 

Figure 15. The curve of computational performance to k.

4. Discussion

This section presents the comparison with other related work, performance under other attacks
and some theoretical analysis.

4.1. Comparisons with Related Work

Common attacks against an audio data-hiding scheme include the low pass filter (LPF) attack,
mp3-like compression, and re-quantization. The bit error ratio (BER) is used to measure the
performance of a data-hiding scheme under common attacks. The BER is defined as the ratio of
exact matching of the embedded secret bit-stream and of the decoded secret bit-stream after the stego
cover pitch has undergone by the above common attacks. The mathematical definition is:

BER =
∑k

i=1 B′i ⊕ Bi

|B| (⊕ is exlusive or) (2)

The definitions of the common attacks adopted in the proposed comparisons are as follows:

• LPF (3 kHz) filters all signals with frequencies lower than 3 kHz.
• mp3 (64 kbps) adopts an existing multimedia tool (Adobe Audition) to compress the stego-pitch

(.wav file->.mp3 file) and decompress back to .wav file format.
• Re-quantization (16 to 32 bits) adopts an existing multimedia tool (Adobe Audition) to

re-quantize the sampling point from 16 bits to 32 bits and then to re-quantize it back to 16 bits.
• Re-quantization (16 to 8 bits) adopts an existing multimedia tool (Adobe Audition) to re-quantize

the sampling point from 16 bits to 8 bits and then to re-quantize it back to 8 bits.

Table 5 compares the BERs of the proposed scheme and methods proposed elsewhere [17,40,41].
The results indicate that the methods developed herein outperform the others under the indicated
attacks. In [17], the authors proposed two steganographic methods, hard quantization (HQ) and
soft quantization (SQ) using correlated quantization to embed data with histogram based detector.
A novel mapping denoted as point to point graph (PPG) is used to evaluate the correlation among each
value of samples. PPG point radii are suggested to embed data to obtain the performances. In [40],
the authors presented a self-synchronization scheme for audio watermarking. The synchronization
codes are hidden into audio as the informative data, thus the embedded data have the ability of
self-synchronization. The synchronization codes are hidden into low frequency coefficients in discrete
wavelet transform domain. In [41], the authors proposed an echo hiding scheme. Some echoes are
adequately adapted when the embedding process is executing.
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The proposed scheme protects all of the hidden secrets under the specified common attacks for
the following reasons.

Table 5. The bit error ratio (BER) of the proposed methods and related work. LPF: low pass filter; HQ:
hard quantization; SQ: soft quantization.

Methods/Attacks LPF (3 kHz) mp3 (64 kbps) Re-Quantization
16–32 bits

Re-Quantization
16–8 bits

Ours (k = 40) 0.0% 0.0% 0.0% 0.0%
Akhaee et al. [17]: HQ, SQ 15.0%, 15.0% 10.2%, 0.1% 0.0%, 0.0% 0.0%, 0.0%

Wu et al. [40] ∅ 4.3% ∅ ∅
Chen et al. [41] ∅ 6.5% ∅ 11.9%

∅: Not mentioned by the corresponding authors.

LPF (3 kHz), by the definition of the LPF, frequencies higher than 3 kHz will be eliminated
under this attack, while in the proposed scheme, the selected k-pitches are all beyond 3 kHz such
that no bits are eliminated. mp3 (64 kbps), the main purpose of mp3 compression is to eliminate
frequencies higher than 22 kHz, and as under the LPF attack, the proposed scheme selects all low
frequencies so that no bits disappear. Re-quantization (16 to 32 bits), this attack increases the size of the
binary representation of numbers and extension will not affect the sampled values of the stego-pitches.
Evidently, no secret bits will be destroyed. Re-quantization (16 to 8 bits), this attack shrinks the size
of the binary representation of numbers, eliminating the suffix numbers when is re-quantized to its
original size. In the proposed scheme, the selected σ does not produce long floating numbers after the
enhancement of amplitudes so the scheme performs well under this attack.

Another fact of the comparison is the curve of the trend among capacity and distortion. Figure 16
demonstrates the difference of the curve between the related work [17] and the proposed work. It can
be seen that the distortion decreases when the capacity increases, while, in this work, the distortion
increases to a boundary value when the capacity increases. The phenomenon is because the proposed
scheme is designed for breaking the bottleneck of traditional steganography, as illustrated in Figure 16a.
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4.2. Performances under Other Attacks

The performances of the proposed work under other attacks like frequency cropping [42], direct
current (DC) and high pass filter (HPF) [43] are discussed in this subsection. The definition of DC
attack is to pad a certain power on a stego audio, then run the decoding procedure to examine the
BER. The definition of HPF attack is to filter all signals whose frequencies are higher than a certain
frequency, then run the decoding procedure to examine the BER. The frequency cropping attack
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is to randomly pad signals with certain frequencies on a stego pitch. The presented schemes are
conditionally outperformed under the above three attacks.

For frequency cropping attack, if, frequencies of all randomly padded signals are exactly the same
with the frequencies of the selected bi faps, a high BER occurs. Figure 17 presents the experiments of
frequency cropping attack. In the setting of the experiment, 50 frequencies are randomly generated to
replace the corresponding frequencies of a pitch with different k selected. Another 50 frequencies are
generated by normal distribution. In addition, a baseline of the theoretical upper bound is also drawn
in the figure.
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For DC attack, all sampled values increase after padding a DC signal, and the decoding procedure
will fail because the testing condition is the quality of the power of the cover and the stego pitches.
However, if the decoding procedure is adequately modified to inspect all amplitudes of bi faps, it is
possible to filter out the DC power and obtain all correct secrets. The inspection could be achieved as
follows. Subtract all amplitudes of the selected bi faps and discover the most appeared value. The most
appeared value is the power of DC, and the subtraction of the DC power from the stego pitch will
successfully filter out the DC.

For HPF attack, all selected bi faps will be filtered out under a certain frequency fHP, that is, only
those selected bi faps which are larger than fHP can survive after exploiting HPF on the stego pitch.
However, it is a trick to avoid the sabotage of HPF; selecting higher bi fap will outperform under
HPF attack. Table 6 presents the performances under DC and HPF attacks compared with [17,40,41].
Two types of the selected bi faps are used.

Table 6. The BER of the proposed methods and related work. HPF: high pass filter; DC: direct current.

Methods/Attacks HPF (8 kHz) DC

Ours (k = 40, all bi faps are larger than 8,000) 0.0% 0.0%
Akhaee et al. [17]: HQ, SQ 0.0%, 0.0% 0.0%, 0.0%

Wu et al. [40] ∅ ∅
Chen et al. [41] 4.2% 4.5%

∅: Not mentioned by the corresponding authors.

In recent years, many steganography were proposed with considering the cracking
probability [44–51] under a brute force guessing. The threating mode evaluated here is based on
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the intruders knowing algorithms but without the order R. In practice, R is a private key and it should
be transmitted via a secure channel. If an intruder uses a computer and successfully detects all slight
noises between the stego and cover pitch (the standard patterns are also public knowledge), he could
dress all enhanced frequencies but without a correct order. This means that he knows which frequency
is used to embed “1” or “0” but he cannot reconstruct the exact bit-stream without R. Absolutely, the
only thing he can do is to try all combinations of these 1s and 0s with n 1s and i 0s where 0 ≤ n ≤ k
and k is the number of selected frequencies. Denote the summation of the combinations as S(n). For
n = 0, there are k possibilities of embedded bit-stream because an intruder does not obtain the length
of R, so that S(0) = k.

For n = 1: S(1) = 1!
1! +

2!
1!1! + . . . + (k−1)!

1!(k−2)! +
k!

1!(k−1)! .

For n = 2: S(2) = 2!
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2!1! + . . . + (k−1)!

2!(k−3)! +
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2!(k−2)! .
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For n = k− 3: S(k− 3) = (k−3)!
(k−3)! +

(k−2)!
(k−3)!1! +

(k−1)!
(k−3)!2! +
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(k−2)!2! .

For n = k− 1: S(k− 1) = (k−1)!
(k−1)! +
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(k−1)!1! .

For n = k: S(k) = k!
k! .

The above equations reveal a fact that the probability is the same of [S(0), S(k)], [S(1), S(k − 1)],
[S(2), S(k − 2)], . . . , [S(
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the above equations:
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∑
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It is the worst case of the successful guessing under brute force. Figure 18 performs S(k/2) as an

exponential function performed and the probability is then equal to
k
2 ! k+2

2 !
(k+1)! .
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4.3. Theoretical Analysis

This section describes some theoretical analyses of the proposed scheme. Theorem 1 is the
theoretical boundary condition of the enhancement. The lower bound is according to the limit of
the floating points provided by the software. The upper bound is decided by a user with selected
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number of capacity and expected distortion. Theorem 2 is the theoretical evaluation of the capacity,
and it is according to the selected number of hidden secrets. Theorem 3 describes the theoretical time
consumption of the proposed scheme. The parameter n is the total sampled data of a pitch and k is
the number of secrets. The total computations include DFT, time of data embedding and inverse DFT.
Theorem 4 describes the theoretical evaluate of the limit when error bits occur. Because the least bits of
the proposed re-quantization are eight bits, this indicates that each datum needs at least eight bits to
represent the number. Therefore, if the bit-represent of the enhancement larger than eight, the suffix of
the number will disappear when the down-re-quantization (16 to 8 bits) deployed.

Theorem 1. The practical boundary condition of σ is 1+ 10−L < σ < 1+ 1
kSNR where L is the bit length of the

floating point in the corresponding software; k is the number of the selected pitches, and SNR is the set quality of
the stego-pitches.

Proof. The value of σ is considered here. Ideally, the range of σ is 1 to 2 because less noises is better
and embedding a signal in a cover pitch that is identical to it is meaningless. A smaller σ is preferred
because it supports lower distortion and the length of the floating point is limited such that lg(σ− 1)
cannot exceed the size of the floating point, say L, which is defined by the software. Therefore,
lg(σ− 1) < L, 1 < σ < 2→ 1 + 10−L < σ (becasue 0 < σ− 1 < 1) . The practical upper bound is

obtained by the setting
Psignal

Pstego−Psignal
> SNR (signal-to-noise ratio). The denominator Pstego − Psignal

causes the embedded noise to stisfy 1
k(σ−1) > SNR. With fixed k and SNR, the upper bound of σ is

obtained as 1 + 1
kSNR .

Theorem 2. The capacity of the proposed data-hiding scheme is O(k), where k is the number of selected pitches.

Proof. According to Figure 15, the capacity complexity is related to k, the number of selected pitches.

Theorem 3. The time complexity of the proposed scheme is O(nlgn + k(1 + lgk)).

Proof. The DFT and inverse DFT cause a temporal bottleneck in the scheme. The best time consumption
of DFT and inverse DFT is O(nlgn), and the time consumed by the proposed scheme, for embedding
secrets is O(k). Because k frequencies are selected, the inverse DFT has a time cost of O(klgk) rather
than O(nlgn). The total time complexity of the proposed scheme is addressed by the following theory.

Theorem 4. Error bits start to appear if lgσ > 8.

Proof. The value of σ at which the error bit of re-quantization (16 to 8 bits) begins to be caused is of
interest. The key point is the bit-size of σai, so lgσ should be smaller than 8. A theory concerning the
production of the error under re-quantization (16 to 8 bits) that corresponds to σ is provided.

5. Conclusions and Future Work

This work developed a data-hiding scheme that is based on a new cover medium, and synthesized
pitches, which are popularly used to demonstrate initial versions of compositions conveniently and
at low-cost. This data-hiding scheme relies on the similarity between synthesized pitches and real
instrumental pitches to remove concern about the compromising of the hidden of data by audio
distortion. To demonstrate the feasibility of the scheme, secret bits are embedded during the generation
of simulation of instrumental pitches. Experimental results reveal that more secrets can be hidden
without distortion. The proposed method differs from traditional data-hiding schemes in that the data
embedding procedure causes insignificant signal distortion. Finally, comparisons of the BER values
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obtained herein and in related work under common attacks reveal that the scheme herein outperforms
under some attacks.

The main restriction is that only one pitch can be used at the same time and it is expected
that there shall be a more efficient scheme using several pitches at the same time. To achieve more
applicability, multiple pitches with multiple instruments used at a single time slot shall be developed.
Moreover, according to the progress of technologies of signal processing and the faster computation
of computers, exploiting further robust strategies such as spread transform dither modulation is
necessary to against attacks.
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