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Abstract: The Multiple Mobile Robot (MMR) cooperative system is becoming a focus of study in
various fields due to its advantages, such as high efficiency and good fault tolerance. However, the
uncertainty and nonlinearity problems severely limit the cooperative localization accuracy of the
MMR system. Thus, to solve the problems mentioned above, this manuscript presents a cooperative
localization algorithm for MMR systems based on Cubature Kalman Filter (CKF) and adaptive
Variance Component Estimation (VCE) methods. In this novel algorithm, a nonlinear filter named
CKF is used to enhance the cooperative localization accuracy and reduce the computational load.
On the other hand, the adaptive VCE method is introduced to eliminate the effects of unknown
system noise. Furthermore, the performance of the proposed algorithm is compared with that of
the cooperative localization algorithm based on normal CKF by utilizing the real experiment data.
In addition, the results demonstrate that the proposed algorithm outperforms the CKF cooperative
localization algorithm both in accuracy and consistency.

Keywords: multi-mobile robot system; cooperative localization; variance component estimation;
cubature Kalman filter

1. Introduction

In recent years, with the development of robot technology, network communication technology
and automatic control technology, the Multiple Mobile Robot (MMR) cooperative system has attracted
the attention of many researchers. Using multiple mobile robots to execute the task, the MMR
cooperative system can not only enhance operation efficiency but also improve the capability of fault
tolerance and reconfiguration. Therefore, the MMR cooperative system has shown broad application
prospects and is becoming a focus of study in various fields, such as the military, space exploration,
traffic control, medical and service trades [1,2].

Exactly knowing the position, velocity, attitude and other motion information of each mobile robot
is one of the basic premises of the MMR cooperative system [3,4]. This means that it requires the ability
of self-localization for each mobile robot. The MMR cooperative system could achieve the goal of
localization by each mobile robot separately and the localization accuracy just depends on the accuracy
of the navigation system that is equipped on each mobile robot. Although this kind of localization
scheme is simple to achieve, the localization accuracy is limited by the insufficiency of information
sharing [5,6]. The relative range or relative bearing between different mobile robots, observed by
binocular cameras, monocular cameras or other kinds of sensors, is exchanged among the mobile
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robot group [1,7]. In addition, the performance of this kind of navigation scheme, which is called
cooperative navigation, is superior to the one of the separate navigation scheme [8,9]. In a cooperative
navigation system, the performance of a low accuracy navigation system will be improved significantly
by utilizing the navigation information from a high accuracy navigation system [10,11]. Furthermore,
when some mobile robots lose their capacity of self-localization, the cooperative navigation will help
them to recover it [12]. Since the cooperative navigation has so many potential advantages in robotics,
it is becoming a key research direction.

The cooperative navigation algorithm is the core and infrastructure of cooperative navigation [13,14].
Typically, the structure of a cooperative navigation algorithm can be implemented in the central
centralized manner [15] or the distributed manner [16]. In the centralized manner, all measurement
data are collected and processed in a central agent. In addition, in the distributed manner, each
agent exchanges information with its neighbors and estimates its own position by itself. Taking
computational cost, survivability, and reliability into account, the distributed manner is superior to the
centralized manner [17,18].

1.1. Problem Statements

A cooperative navigation algorithm is essentially a data fusion technique that is used to estimate
the pose of each mobile robot by utilizing the output of the sensors equipped on each mobile robot.
Due to the characteristics of the nonlinearity of MMR systems, nonlinear estimation methods, such
as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), have proven to be
effective methods for MMR cooperative localization problems. In the EKF, the nonlinear system can be
linearized utilizing the Taylor series expansion for variance propagation, while the prediction of the
state vector and measurement vector are conducted using the nonlinear system. Although EKF has
been used in many MMR cooperative localization systems for its simplicity, the precision is limited in
the systems with strong nonlinearity and the fussy Jacobian matrix should be calculated, which will
inevitably increase the computational load. With the Unscented Transformation (UT), the UKF method
can approximate the mean and the variance of the Gaussian state distribution using the nonlinear
function, avoiding the local linearization and calculation of the Jacobian matrix effectively. However,
the covariance matrix sometimes is easily non-positive in high-dimensional systems, which will lead
to filtering divergence.

In addition, the above nonlinear filters are optimal only when the mathematical model is
exactly known and system noises are of white Gaussian type. However, in actual MMR systems,
the measurement noise is not white Gaussian noise. For example, the noise is quantitative in a
vision-based MMR system, which is caused by the limited resolution and is relative to distance
between the depth from the viewpoint. In [19], the authors separated the measurement depths into
different segments according to the quantized measurement error of stereo vision camera firstly. For
each segment, the measurement error is modeled as a combination of a fixed constant error and white
Gaussian noise. Finally, an adaptive EKF is established, taking the measurement error segment into
consideration. Moreover, the experiment result illustrated the effectiveness of the proposed algorithm.
However, the key problem of this method is that the quantized measurement error model of the
camera should be known as priori knowledge and the quantized error needs accurate calibration
before operation. For actual MMR systems, this is difficult to satisfy because of the vast workload. It is
well known that the adaptive filter can be utilized to estimate and correct the model parameters and the
noise characteristics at the same time [20]. As a result, the adaptive filter has been considered to enhance
the estimation accuracy in robotics [21,22]. A Sage–Husa adaptive filter is an outstanding adaptive
filter method that is widely used to estimate the variance matrices of the process and measurement
noises [23]. Nevertheless, it cannot estimate these two variance matrices simultaneously, which means
that one of them should be known as prior knowledge. By adjusting or restraining the impacts of the
current observations on the parameter estimation using the fading factor, an adaptive filter makes full
use of the current observations to improve the filtering accuracy [24]. However, it is difficult to obtain
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the optimal fading factor, and the computational complexity will accordingly be increased as well.
Furthermore, the weights of the a priori reliable information would be decreased to a certain extent if
the current observation is abnormal, and then the filtering accuracy would also be degraded.

1.2. Contributions

By taking the high dimensionality, nonlinearity and the colored measurement noise into account,
a novel cooperative localization algorithm is proposed in this paper based on an adaptive CKF method.
In order to overcome the influence on cooperative localization accuracy caused by the nonlinearity and
high-dimension, the Cubature Kalman filter (CKF) [25,26] is used in the novel algorithm. CKF is based
on the Cubature Transform to conduct the prediction using the Cubature points that have the same
weight. It has better performance compared with EKF and UKF, especially for the high-dimensional
and strong nonlinear system [25,26]. Moreover, in order to overcome the influence on cooperative
localization accuracy caused by the uncertainty of measurement noise, the Variance-Covariance
Components Estimation (VCE) is used to estimate the noise adaptively [27,28]. At present, various
adaptive and robust estimations have been widely used in statistics and geodesy. In addition, one of
the famous methods is an a posteriori VCE method on the basis of Helmert, in which the weights of
different observations can be calculated by the adaptive iteration. Since the matrix will be negative
sometimes during the calculation, some improved methods were proposed. Wang et al. proposed
an adaptive Kalman filter (AKF) based on the VCE method, and verified its effectiveness using the
actual experiments [27,29]. The state estimation algorithm based on VCE has many advantages and
has been widely used in linear systems, but few researchers have applied VCE to nonlinear systems.
Since the novel algorithm cannot only estimate the statistical property of the system’s noise, but also be
applied in nonlinear MMR systems, the cooperative localization accuracy could be further improved
by utilizing the novel algorithm.

The rest is organized as follows. In Section 2, the system model and CKF algorithm are formulated.
In Section 3, a novel cooperative localization algorithm based on CKF and VCE is presented. The
experiment results are presented in Section 4 and the conclusions are drawn in Section 5.

2. Basic Knowledge

2.1. Nonlinear Model of MMR Cooperative Localization System

2.1.1. State Model

The state model equation of n mobile robots system can be expressed as

x = [x1, x2, . . . , xn]
>, (1)

where xi = [xi, yi, θi]
> represents the pose of the i-th mobile robot in the MMR group, and it can be

expressed as 
xi (k + 1) = xi (k) + vi (k) · cos θi (k),
yi (k + 1) = yi (k) + vi (k) · sin θi (k),

θi (k + 1) = θi (k) + ωi (k).
(2)

2.1.2. Observation Model

In an MMR system, the bearing and range measurement information is used as the observation
and the observation equations are represented as

z(k) =
[
rij, φij

]> , (3)
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if mobile robot i measures the range and bearing relative to mobile robot j or

z(k) = [rik, φik]
> , (4)

if mobile robot i measures the range and bearing relative to landmark k, where tan
(
θi + φij

)
=

xi−xj
yi−yj

rij =
√(

xi − xj
)2

+
(
yi − yj

)2,
(5)

 tan (θi + φik) =
xi−xk
yi−yk

rik =
√
(xi − xk)

2 + (yi − yk)
2,

(6)

where Equation (5) represents the observation equation if the mobile robot measures the relative range
and bearing relative to another mobile robot, while Equation (6) represents the observation equation
if the mobile robot measures the relative range and bearing relative to landmarks; [xi, yi, θi]

> and[
xj, yj, θj

]> represent the poses of the i-th mobile robot and the j-th mobile robot, respectively; (xk, yk)

represents the position of k-th landmark.

2.2. MMR Cooperative Localization Algorithm Based on CKF

2.2.1. Structure of MMR Cooperative Localization

Without a loss of generality, it is usually assumed that state transitions and observations occur in
alternating order, i.e., after each state transition from x(k− 1) to x(k) an observation z(k) is recorded.
However, the observation information cannot be obtained at each time index for mobile robot systems
because of the occlusion. As a result, the cooperative localization algorithm under the framework of
an extended Kalman filter is re-established as Algorithm 1. In Algorithm 1, the measurement update is
carried out only when measurement information exists. Otherwise, the predicted state estimate and
covariance estimate act as the updated state estimate and covariance estimate, respectively.

Algorithm 1 Cooperative localization of MMR

Require: Pi(k− 1, k− 1), x̂i(k− 1, k− 1)
Ensure: Pi(k, k), x̂i(k, k)

1: for k = 1→ n do
2: x̂i(k, k− 1)← f [x̂i(k− 1, k− 1)]
3: P̂i(k, k− 1)← Fi(k)Pi(k− 1, k− 1)Fi(k)> + Qi(k)
4: if Obs = 1 then
5: ỹi(k) = zi(k)− h[x̂i(k− 1, k− 1)]
6: Si(k) = Hi(k)P(k, k− 1)H>i (k) + Ri(k)
7: Ki(k) = Pi(k, k− 1)H>i (k)Si(k)−1

8: x̂i(k, k) = x̂i(k, k− 1) + Ki(k)ỹi(k)
9: Pi(k, k) = [I − Ki(k)Hi(k)]Pi(k, k− 1)

10: else
11: x̂i(k, k)← x̂i(k, k− 1)
12: Pi(k, k)← P̂i(k, k− 1)
13: end if
14: return Pi(k, k), x̂i(k, k)
15: k← k + 1
16: end for

In Algorithm 1, Pi(k− 1, k− 1), P̂i(k, k− 1) and Pi(k, k) denote the previous covariance estimate,
the predicted covariance estimate and the updated covariance estimate, respectively; x̂i(k− 1, k− 1),
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x̂i(k, k− 1) and x̂i(k, k) indicate the previous state estimate, the predicted state estimate, the updated
state estimate; f (·) and F(·) is the state transition model and its Jacobian matrix, respectively; h(·) and
H(·) mean the observation model and its Jacobian matrix, respectively; Ri(k) and Qi(k) denote the
covariance of process noise observation noise, respectively; ỹi(k) and Si(k) signify the measurement
residual and its covariance, respectively; Ki(k) denotes the near-optimal Kalman gain.

2.2.2. Cubature Kalman Filter Algorithm

Since the CKF is not only simple and easy to be implemented but also highly precise and converges
well, it is widely used in nonlinear estimations, especially for the MMR system.

Let us consider the MMR system model:{
x(k) = f [x(k− 1)] + Γ(k− 1)w(k− 1),
z(k) = h [x(k), ] + ∆(k),

(7)

where x(k) and z(k), as introduced in Section 2.1 well, are the state vector and the measurement vector,
respectively; f (·) and h(·) are the nonlinear state and measurement vector functions; w(k− 1) ∼ N(0, Q)

and ∆(k) ∼ N(0, R) represent the process noise and the measurement noise vectors, respectively;
Γ(·) denotes the noise driven matrix.

CKF is proposed to solve the nonlinear filtering problem on the basis of the spherical radial
cubature criterion [25,26]. CKF approximates the mean and variance of probability distribution
through a set of 2m (where m is the dimension of the nonlinear system) Cubature points with the same
weight, propagates the above cubature points through the nonlinear functions, and then calculates
the mean and variance of the current approximate Gaussian distribution by the propagated cubature
points. A set of 2m Cubature points are given by [ξi, ωi], where ξi is the i-th cubature point and ωi is
the corresponding weight: {

ξi =
√

m[1]i,
ωi =

1
2m ,

(8)

wherein m is the dimension of the nonlinear system, m = 2n, and n is the number of mobile robots in
the whole system.

Without a loss of generality, it is assumed that state transitions and observations occur in
alternating order, i.e, after each state transition from xk−1 to xk, an observation zk is recorded. When the
observation matrix is full rank, which means that all of the mobile robots could observe all of the other
mobile robots and landmarks, the estimation process is as follows:

The time update:
P(k− 1, k− 1) = S(k− 1, k− 1)S>(k− 1, k− 1), (9)

xi(k− 1, k− 1) = S(k− 1, k− 1)ξi + x̂(k− 1, k− 1), (10)

x∗i (k, k− 1) = f [xi(k− 1, k− 1)], (11)

x̂(k, k− 1) =
1

2N

2N

∑
i=1

x∗i (k, k− 1), (12)

P(k, k− 1) =
1

2N

2N

∑
i=1

x∗i (k, k− 1)x∗>i (k, k− 1)− x̂(k, k− 1)x̂>(k, k− 1) + Q(k− 1). (13)

The measurement update:
P(k, k− 1) = S(k, k− 1)S>(k, k− 1), (14)

xi(k, k− 1) = S(k, k− 1)ξi + x̂(k, k− 1), (15)

yi(k, k− 1) = h[xi(k, k− 1)], (16)
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ẑ(k, k− 1) =
1

2N

2N

∑
i=1

yi(k, k− 1), (17)

Pzz(k, k− 1) =
1

2N

2N

∑
i=1

yi(k, k− 1)y>i (k, k− 1)− ẑ(k, k− 1)ẑ>(k, k− 1) + Rk, (18)

Pxz(k, k− 1) =
1

2N

2N

∑
i=1

xi(k, k− 1)y>i (k, k− 1)− x̂(k, k− 1)ẑ>(k, k− 1). (19)

In addition, the gain matrix is:

K(k) = Pxz(k, k− 1)P−1
zz (k, k− 1). (20)

The estimation of the state vector can be obtained:

x̂(k, k) = Pxz(k, k− 1)P−1
zz (k, k− 1), (21)

where d(k) = z(k)− ẑ(k, k− 1) is the system innovation vector of the nonlinear system.
The variance matrix of the estimated state vector is:

P(k, k) = P(k, k− 1)−K(k)Pzz(k, k− 1)K>(k). (22)

CKF uses the cubature rule and 2m cubature point sets [ξi, ωi] to compute the mean and variance of
probability distribution without any linearization of a nonlinear model. Thus, the modeling can reach
the third order or higher. Furthermore, this filtering solution does not demand Jacobians and Hessians
so that the computational complexity will be alleviated to a certain extent. Therefore, compaered with
EKF and UKF, CKF is widely used in attitude estimation and navigation due to its high accuracy and
low calculation load.

3. Cooperative Localization Algorithm Based on VCKF

3.1. Adaptive Filter Based on the VCE Method

The adaptive filter based on the VCE method can estimate the variance components of the process
noise and the measurement noise vectors in real time using the residual vectors to decompose the
system innovation vector. On the basis of the estimated variance components, the weighting matrices
of the process noise and the measurement noise vectors can be adjusted and then their effects on the
state vector can be adjusted accordingly. The principle of the adaptive filter based on the VCE will be
introduced as follows.

Considering the standard linear system model, the state and measurement equations are:{
x(k) = Φ(k, k− 1)x(k− 1) + Γ(k)w(k),
z(k) = H(k)x(k) + ∆(k),

(23)

where x(k) and z(k) are the state vector and the measurement vector, respectively; Φ(k, k − 1)
and Γ(k) denote the state-transition matrix and the coefficient matrix of the process noise vector,
respectively; w(k) and ∆(k) are the process noise vector and the measurement noise vector, respectively.
Furthermore, w(k) and ∆(k) are the zero mean Gaussian noises and expressed as follows:{

w(k) ∼ N(0, Q(k)),
∆(k) ∼ N(0, R(k)),

(24)

where Q(k) and R(k) are positive definite matrices.
Thus, the two-step update process of the original Kalman filter is as follows:
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The time update: {
x̂(k, k− 1) = Φ(k, k− 1)x̂(k− 1),

∆(k) = N(0, R(k)).
(25)

The measurement update: {
x̂(k) = x̂(k, k− 1) + G(k)d(k),

Pxx(k) = [I −G(k)H(k)]Pxx(k, k− 1),
(26)

where G(k) and d(k) denote the gain matrix and the system innovation vector, respectively:

G(k) = Pxx(k, k− 1)H>(k)Pdd(k), (27)

d(k) = z(k)− H(k)x̂(k, k− 1), (28)

Pdd(k) = H(k)Pxx(k, k− 1)H>(k) + R(k). (29)

The estimated state vector is optimal only if Q(k) and R(k) are exactly known. However, it is
difficult to know them from the prior knowledge in practice. Thus, it would be great if they could be
estimated by utilizing the adaptive filter in real time.

According to the sources, the random information in a system can normally be divided into three
independent parts: the process noise vector lx, the measurement noise vector lw and the predicted
states noise vector lz [29]. They are defined as follows respectively:

lx(k) = Φ(k, k− 1)x̂(k− 1),
lw(k) = w0(k),
lz(k) = z(k).

(30)

Considering their residual equations, the system in Equation (23) can be rewritten as:
vlx(k) = x̂(k− 1) + Γ(k)ŵ(k) − lx(k),

vlx(k) = ŵ(k) − lw(k),
vlz(k) = H(k)x̂(k) − lz(k),

(31)

with their measurement variance matrices as follows:
Plxlx(k) = Φ(k, k− 1)Pxx(k− 1)Φ>(k, k− 1),
Plwlw(k) = Q(k),
Plzlz(k) = R(k).

(32)

Thus, we can estimate the covariance matrices of the system as long as we calculate the covariance
matrices of the residual vectors. According to the frame of the Kalman filter, the estimations of the
residual vectors can be calculated by Equation (33):

vlxlx(k) = Plxlx(k)P
−1
xx (k, k− 1)G(k)d(k),

vlwlw(k) = Q(k− 1)Γ>(k− 1)P−1
xx (k, k− 1)G(k)d(k),

vlzlz(k) = [H(k)G(k)− I]d(k).
(33)
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In addition, the corresponding variance matrices are then represented as:

Pvlx lx
(k) = Φ(k− 1)Pxx(k− 1)Φ>(k− 1)H>(k)P−1

dd (k)H(k)Φ(k− 1)·
Pxx(k− 1)Φ>(k− 1),

Pvlwlw
(k) = Q(k− 1)Γ>(k− 1)H>(k)·

P−1
dd (k)H(k)Γ(k− 1)Q(k− 1),

Pvlzlz
(k) = {I − H(k)G(k)}R(k).

(34)

Therefore, the innovation vector is projected into three residual vectors associated with the three
groups of the measurements. Hence, we can estimate the variance factors.

Assume that all components in lz(k) and lw(k) are uncorrelated, so both R(k) and Q(k) become
diagonal. In this case, the redundancy index of each measurement noise factor is given by [29]

rzi = 1− [H(k)G(k)]ii. (35)

Similarly, the redundancy index of each process noise factor is equal to

rwi = [Q(k)Γ>(k)H>(k)P−1
dd (k)H(k)Γ(k− 1)]ii. (36)

Furthermore, individual group redundancy contributions, equal to the totals of each group
redundant index, can be expressed as follows:

rx(k) = trace[Φ(k− 1)Pxx(k)Φ>(k− 1)H>(k)P−1
dd (k)H(k)],

rw(k) = trace[Q(k)Γ>(k)H>(k)P−1
dd (k)]H(k)Γ(k− 1)],

rz(k) = trace[I − H(k)G(k)].
(37)

On the basis of the Herlmet VCE method, the individual group variance factors of unit weight are
estimated by the residual vector, and the corresponding redundant index is as follows:

σ̂2
0g =

vg(k)>Plglg(k)vg(k)

rg(k)
(g = x, w, z). (38)

Thus, at time k, the individual variance factors of lz(k) can be calculated by:

σ̂2
zi
=

v2
zi
(k)

rzi(k)
. (39)

In addition, the covariance matrix of the measurement noise is as follows:

R(k) =


σ̂2

z1
(k)

. . .
σ̂2

zp(k)

 . (40)

Similarly, the variance factors of lw(k) and the variance matrix Q(k) can be calculated by the
Equations (41) and (42):

σ̂2
wj

=
v2

wj
(k)

rwj(k)
, (41)

Q(k) =

 σ̂2
w1
(k)

. . .
σ̂2

wm(k)

 . (42)
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3.2. An MMR Cooperative Localization Algorithm Based on VCKF

To solve the nonlinear problem and improve the stochastic model simultaneously in MMR
system cooperative localization, a novel improved adaptive nonlinear state estimation algorithm by
considering both CKF and the VCE adaptive method, called VCKF, is proposed here.

Considering the nonlinear system described in Equation (23), three pseudo measurement groups
are defined as follows: 

lx(k) = f [x̂(k− 1, k− 1)],
lw(k) = w(k− 1),
lz(k) = z(k).

(43)

The residual equation of the nonlinear system is represented as
vlx(k) = x̂(k, k) + ŵ(k− 1)− lx(k),
vlw(k) = ŵ(k− 1)− lw(k),
vlz(k) = h[x̂(k, k)]− lw(k).

(44)

According to the steps of the CKF, Equation (34) can be rewritten as:
vlxlx(k) = Plxlx P−1(k, k− 1)K(k)d(k),
vlwlw(k) = Q(k− 1)P−1(k, k− 1)K(k)d(k),
vlzlz(k) = [P>xz(k, k− 1)P−1(k, k− 1)K(k)− I]d(k).

(45)

The corresponding variance matrices are:

Pvlx lx
(k) = Plxlx(k)P

−1(k, k− 1)Pxz(k, k− 1)P−1
zz (k, k− 1)P>xz(k, k− 1)P−1(k, k− 1)·

Plxlx(k),
Pvlwlw

(k) = Q(k− 1)P−1(k, k− 1)Pxz(k, k− 1)P−1
zz (k, k− 1)P>xz(k, k− 1)P−1(k, k− 1)·

Q(k− 1),
Pvlzlz

(k) = [I − P>xz(k, k− 1)P−1(k, k− 1)K(k)]R(k).

(46)

The individual group redundant indices are equal to:

rx(k) = trace[Plxlx(k)P
−1(k, k− 1)Pxz(k, k− 1)P−1

zz (k, k− 1)·
P>xz(k, k− 1)P−1(k, k− 1)],

rw(k) = trace[Q(k− 1)P−1(k, k− 1)Pxz(k, k− 1)P−1
zz (k, k− 1)·

P>xz(k, k− 1)P−1(k|k− 1)],
rz(k) = trace[I − P>xz(k, k− 1)P−1(k, k− 1)K(k)].

(47)

Here, the covariance factors and the variance matrices for the nonlinear system can be calculated
by Equations (44)–(47).

After combining the VCKF algorithm and MMR cooperative localization framework shown as
Algorithm 1 together, a novel MMR cooperative localization algorithm is proposed in this manuscript,
solving the nonlinearity and the uncertainty problems at the same time. Its performance is analyzed in
the following section.

4. Experiment and Analysis

Real data is used to examine the effectiveness and superiority of the proposed cooperative
localization algorithm based on VCKF. In this section, the experiment environment is introduced first.
In addition, then taking CKF as a reference, the experiment data is processed by utilizing CKF and
VCKF, respectively. The experiment results has also been analyzed in this section.
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4.1. Experiment Setup

The prerecorded dataset, captured by the University of Toronto, the Institute of Aerospace Studies
(UTIAS) [30], used a fleet of five identically iRobot Creates. Shown in Figure 1, each mobile robot was
equipped with a monocular camera and an encoder. The monocular camera is used to capture its
range-bearing relative to other mobile robots and landmarks, which is shown in Figure 2, while the
encoder is used to measure its own motion information. A Vicon system with 1× 10−3 m accuracy is
used as ground truth, whose sampling frequency is 100 Hz.

Figure 1. Experiment environment and the mobile robots fleet of the University of Toronto, the Institute
of Aerospace Studies.

Figure 2. Top-view of mobile robots fleet to illustrate the relative measurements between different
mobile robots and landmarks.

4.2. Cooperative Localization Accuracy Analysis

The normal CKF and the proposed VCKF methods are used to estimate the system state here. State
estimation error and associated 3-σ error boundaries of each mobile robot are shown in Figures 3–7.
It can be seen obviously that estimation errors of x- and y-directions with the proposed VCKF algorithm
are always sandwiched within associated 3-σ error boundaries, while the errors with CKF are out of
the associated 3-σ error boundaries at some epochs. This implies that, although both the localization
scheme based on CKF and the localization scheme based on VCKF are capable of generating a state
estimation for each mobile robots, the VCKF algorithm has a better performance.
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(a) Positioning error of mobile robot 1 by CKF
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(b) Positioning error of mobile robot 1 by VCKF

Figure 3. (a) Positioning estimation error curves of mobile robot 1 by utilizing Cubature Kalman Filter
(CKF); (b) Positioning estimation error curves of mobile robot 1 by utilizing improved algorithm based
on CKF and VCE methods, denoted by VCKF. The red solid line indicates the estimation error while
the shaded regions indicate double-sided 3-σ error boundaries.
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(a) Positioning error of mobile robot 2 by CKF
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(b) Positioning error of mobile robot 2 by VCKF

Figure 4. (a) Positioning estimation error curves of mobile robot 2 by utilizing CKF; (b) Positioning
estimation error curves of mobile robot 2 by utilizing VCKF. The red solid line indicates the estimation
error while the shaded regions indicate double-sided 3-σ error boundaries.
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(a) Positioning error of mobile robot 3 by CKF
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(b) Positioning error of mobile robot 3 by VCKF

Figure 5. (a) Positioning estimation error curves of mobile robot 3 by utilizing CKF; (b) Positioning
estimation error curves of mobile robot 3 by utilizing VCKF. The red solid line indicates the estimation
error while the shaded regions indicate double-sided 3-σ error boundaries.
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(a) Positioning error of mobile robot 4 by CKF
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(b) Positioning error of mobile robot 4 by VCKF

Figure 6. (a) Positioning estimation error curves of mobile robot 4 by utilizing CKF; (b) Positioning
estimation error curves of mobile robot 4 by utilizing and VCKF. The red solid line indicates the
estimation error while the shaded regions indicate double-sided 3-σ error boundaries.
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(a) Positioning error of mobile robot 5 by CKF
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(b) Positioning error of mobile robot 5 by VCKF

Figure 7. (a) Positioning estimation error curves of mobile robot 5 by utilizing CKF; (b) Positioning
estimation error curves of mobile robot 5 by utilizing and VCKF. The red solid line indicates the
estimation error while the shaded regions indicate double-sided 3-σ error boundaries.

In order to evaluate the superiority of the proposed cooperative localization algorithm based on
VCKF quantitatively, the root mean square (RMS) of each robot’s estimation error has been calculated
and summarized in Table 1. From Table 1, it can be seen that the Root Mean Square (RMS) of x- and
y-directions by utilizing the cooperative localization algorithm based on VCKF are smaller than the ones
by using algorithms based on CKF. Therefore, this offers further proof that the proposed localization
algorithm based on VCKF has better performance in localization accuracy than the algorithm based on
normal CKF methods.

Table 1. Comparison of the estimation error RMS by CKF and VCKF methods.

Method
CKF VCKF

x-Direction y-Direction x-Direction y-Direction

Mobile robot 1 0.156 0.227 0.122 0.136
Mobile robot 2 0.132 0.182 0.087 0.154
Mobile robot 3 0.095 0.134 0.076 0.112
Mobile robot 4 0.201 0.177 0.105 0.126
Mobile robot 5 0.192 0.268 0.108 0.137
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4.3. Algorithm Consistency Analysis

To examine the consistency of the proposed cooperative localization algorithm, Normalized
Estimation Error Squared (NEES) is calculated by utilizing

εci ,k = ξ>ci ,kP−1
ci ,k

ξci ,k, (48)

where ε is the computed NEES; ξ denotes the pose estimation error at time step k and P represents the
estimated error covariance matrix. For a single run, the estimation is consistent if the computed NEES
can make the following inequality hold:

εci ,k ≤ χ2
nx ,δ, (49)

where χ2
nx ,δ represents the chi-square distribution with nx Degree of Freedom (DOF) and δ is the

significance level [31]. Therefore, the upper-bound of the 95% acceptance region for the 15-DOF
stochastic process is given by χ2

15,0.95 and is equal to 24.95.
Figures 8 and 9 give the situations in which the NEES values fall outside of the 95% acceptance

region of the cooperative localization algorithm based on CKF and proposed VCKF methods,
respectively. In addition, the percentage of the NEES values falling outside the 95% acceptance
region based on the CKF method is 8.24%, while the one based on VCKF method is 3.78%. Thus, it can
be seen that the percentages are both less than 10%, which is acceptable. Furthermore, we also can see
that the cooperative localization algorithm based on VCKF has better performance in consistency than
the algorithm based on CKF.
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Figure 8. The Normalized Estimation Error Squared (NEES) of the cooperative localization algorithm
based on VCKF. The red straight line indicates χ2

15,0.95 and the blue solid line indicates εk; 3.78 percent
of εk are above the red straight line.
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Figure 9. NEES of the cooperative localization algorithm based on CKF. The red straight line indicates
χ2

15,0.95 and the blue solid line indicates εk; 8.24 percent of εk are above the red straight line.
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5. Conclusions

In order to overcome the influence on cooperative localization accuracy caused by the uncertainty
of measurement noise and the nonlinearity for the MMR system at the same time, the adaptive VCE
method was introduced to cubature Kalman filter, proposing a novel cooperative localization algorithm
based on the adaptive VCKF method in this manuscript. By using the adaptive VCE method, the
statistical property of the system’s noise can be estimated well, and this proposed algorithm can
also be applied in nonlinear MMR systems owing to the nonlinear CKF method. Therefore, this
proposed algorithm can not only avoid the influence on state estimation caused by the uncertainty
of measurement noise availably, but also improve the cooperative localization accuracy for MMR
systems significantly. Real experiment data was also used to verify the effectiveness and superiority of
the novel cooperative localization algorithm. Furthermore, the experiment results showed that the
cooperative localization algorithm based on VCKF has better performance than the one based on CKF
both in accuracy and in consistency.
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