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Abstract: Most existing fuzzy forecasting models partition historical training time series into
fuzzy time series and build fuzzy-trend logical relationship groups to generate forecasting rules.
The determination process of intervals is complex and uncertain. In this paper, we present a novel
fuzzy forecasting model based on high-order fuzzy-fluctuation trends and the fuzzy-fluctuation
logical relationships of the training time series. Firstly, we compare each piece of data with the
data of theprevious day in a historical training time series to generate a new fluctuation trend time
series (FTTS). Then, we fuzzify the FTTS into a fuzzy-fluctuation time series (FFTS) according to
the up, equal, or down range and orientation of the fluctuations. Since the relationship between
historical FFTS and the fluctuation trend of the future is nonlinear, a particle swarm optimization
(PSO) algorithm is employed to estimate the proportions for the lagged variables of the fuzzy AR (n)
model. Finally, we use the acquired parameters to forecast future fluctuations. In order to compare
the performance of the proposed model with that of the other models, we apply the proposed method
to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) time series
datasets. The experimental results and the comparison results show that the proposed method can
be successfully applied in stock market forecasting or similarkinds of time series. We also apply the
proposed method to forecast Shanghai Stock Exchange Composite Index (SHSECI) and DAX30 index
to verify its effectiveness and universality.

Keywords: fuzzy forecasting; fuzzy-fluctuation trend; particle swarm optimization; fuzzy time series;
fuzzy logical relationship

1. Introduction

It is well known that historic time series imply the behavior rules of a given phenomenon and
can be used to forecast the future of the same event [1]. Many researchers have developed time series
models to predict the future of a complex system, e.g., regression analysis [2], the autoregressive
moving average (ARIMA) model [3], the autoregressive conditional heteroscedasticity (ARCH)
model [4], the generalized ARCH (GARCH) model [5], and so on. However, these methods require
some premise hypotheses,such as a normality postulate [6], etc. Meanwhile, models that satisfied the
constraints precisely can miss the true optimum design within the confines of practical and realistic
approximations. Therefore, Song and Chissom proposed the fuzzy time series forecasting model [7–9].
Since then, the FTS model has been applied for forecasting in many nonlinear and complicated
forecasting problems, e.g., stock market [10–13], electricity load demand [14,15], project cost [16], and
the enrollment at Alabama University [17,18], etc.
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A vast majority of FTS models are first-order and high-order fuzzy AR (autoregressive) models.
These models can be considered as an equivalent version of AR (n) based on fuzzy lagged variables of
time series. Most of these fuzzy time series models follow the basic steps as Chen proposed [19]:

Step 1: Define the universe U and the number and length of the intervals;
Step 2: Fuzzify the historical training time series into fuzzy time series;
Step 3: Establish fuzzy logical relationships (FLR) according to the historical fuzzy time series and

generate forecasting rules based on fuzzy logical groups (FLG);
Step 4: Calculate the forecast values according to the FLG rules and the right-hand side (RHS) of the

forecasted point.

In order to improve the accuracy of such kinds of FTS models, researchers have proposed other
improved models based on Chen’s model. For example, concerning the determination of suitable
intervals, Huarng [20] proposed averages and distribution methods to determine the optimal interval
length. Huarng and Yu [21] proposed an unequal interval length method based on ratios of data.
Since then, many studies [20,22–27] have been carried out for the determination of the optimal interval
length using statistical theory. Some authors even employed PSO techniques to determine the length
of the intervals [12]. In fact, in addition to the determination of intervals, the definition of the universe
of discourse also has an effect on the accuracy of the forecasting results. In these models, minimum
data value, maximum data value, and two suitable positive numbers must be determined to make a
proper bound of the universe of discourse.

Concerning the establishment of fuzzy logical relationships, many researchers utilize artificial
neural networks to determine fuzzy relations [28–30]. The study of Aladag et al. [28] is considered
as a basic high-order method for forecasting based on artificial neural networks. Meanwhile, fuzzy
AR models are also widely used in many fuzzy time series forecasting studies [11,12,31–35]. In order
to reflect the recurrence and the weights of different FLR in fuzzy AR models, Yu [36] used a
chronologically-determined weight in the defuzzification process. Cheng et al. [37] used the frequencies
of different right-hand sides (RHS) of FLG rules to determine the weight of each LHS. Furthermore,
many studies employed the adaptive fuzzy inference system (ANFIS) method [38] for time series
forecasting. For example, Primoz and Bojan [39] defined soft constraints based on ANFIS to discrete
optimization for obtaining optimal solutions. Egrioglu et al. [40] proposed a model named the modified
adaptive network based fuzzy inference system (MANFIS). Sarica et al. [41] developed a model based
on an autoregressive adaptive network-based fuzzy inference system (AR-ANFIS), etc. Since 2013,
considering the impacts of specification errors, fuzzy auto regressive and moving average (ARMA)
time series forecasting models were proposed [42,43]. The initial first-order ARMA fuzzy time series
forecasting model was proposed by Egrioglu et al. [42] based on the particle swarm optimization
method. Kocak [43] developed a high-order ARMA fuzzy time series model based on artificial
neural networks. Kocak [44] used both fuzzy AR variables and fuzzy MA variables to increase the
performance of the forecasting models.

A forecasting model is used to predict the future fluctuation of a time series based on current
values. Therefore, we present a novel method to forecast the fluctuation of a stock market based on a
high-order AR (n) fuzzy time series model and particle swarm optimization (PSO) arithmetic. Unlike
existing models, the proposed model is based on the fluctuation values instead of the exact values of
the time series. Firstly, we calculate the fluctuation for each datum by comparing it with the data of its
previous day in a historical training time series to generate a new fluctuation trend time series (FTTS).
Then, we fuzzify the FTTS into fuzzy-fluctuation time series (FFTS) according to the up, equal, or
down range of each fluctuation data value. Since the relationship between historical FFTS and future
fluctuation trends is nonlinear, a PSO algorithm is employed to estimate the proportion of each AR and
MA parameter in the model. Finally, we use these acquired parameters to forecast future fluctuations.
The advantages provided by the proposed method are as follows.
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The remaining content of this paper is organized as follows: Section 2 introduces some
preliminaries of fuzzy-fluctuation time series based on Song and Chissom’s fuzzy time series [7–9].
Section 4 introduces the process of the PSO machine learning method. Section 4 describes a novel
approach for forecasting based on high-order fuzzy-fluctuation trends and the PSO heuristic learning
process. In Section 5, the proposed model is usedto forecast the stock market using TAIEX datasets
from 1997 to 2005, SHSECI from 2007 to 2015, and the year 2015 of the DAX30 index. Conclusions and
potential issues for future research are summarized in Section 6.

2. Preliminaries

Song and Chissom [7–9] combined fuzzy set theory with time series and presented the following
definitions of fuzzy time series. In this section, we will extend fuzzy time series to fuzzy-fluctuation
time series (FFTS) and propose the related concepts.

Definition 1. Let L =
{

l1, l2, ..., lg
}

be a fuzzy set in the universe of discourse U ; it can be defined
by its membership function, µL : U → [0, 1] , where µL(ui) denotes the grade of membership of ui,
U = {u1, u2, ...ui, ..., ul}.

The fluctuation trends of a stock market can be expressed by a linguistic set L =
{

l1, l2, ..., lg
}

, e.g.,
let g = 3, L = {l1, l2, l3} = {down, equal, up}. The element li and its subscript i is strictly monotonically
increasing [45], so the function can be defined as follows: f : li = f (i). To preserve all of the given
information, the discrete L =

{
l1, l2, ..., lg

}
also can be extended to a continuous label L = {la|a ∈ R},

which satisfies the above characteristics.

Definition 2. Let X(t)(t = 1, 2, ..., T) be a time series of real numbers, where T is the number of the time series.
Y(t) is defined as a fluctuation time series, where Y(t) = X(t)− X(t− 1), (t = 2, 3, ..., T). Each element of
Y(t) can be represented by a fuzzy set S(t)(t = 2, 3, ..., T) as defined in Definition 1. Then we call time series
Y(t) to befuzzified into a fuzzy-fluctuation time series (FFTS) S(t).

Definition 3. Let S(t) (t = 2, 3, ..., T) be a FFTS. If S(t) is determined by S(t− 1), S(t− 2), ..., S(t− n),
then the fuzzy-fluctuation logical relationship is represented by:

S(t)← S(t− 1), S(t− 2), ..., S(t− n) (1)

and it is called the nth-order fuzzy-fluctuation logical relationship (FFLR) of the fuzzy-fluctuation time series,
where S(t) is called the left-hand side(LHS) and S(t− n), ..., S(t− 2)S(t− 1) is called the right-hand side(RHS)
of the FFLR. This model can be considered as an equivalent of the auto-regressive model of AR (n), defined in
Equation (2):

S(t) = φ1S(t− 1) + φ2S(t− 2), ..., φnS(t− n) + εt (2)

where φk(k = 1, 2, .., n) represents the portion of S(t− k) for calculating the forecast is φk , εt is the calculation
error, and S(t) is introduced to preserve more information, as described in Definition 1.

3. PSO-Based Machine Learning Method

In this paper, the particle swarm optimization (PSO) is employed to estimate the parameters in
Equation (2). The PSO method was introduced as an optimization method for continuous nonlinear
functions [46]. It is a stochastic optimization technique, which is similar to social models, such as
birds flocking or fish schooling. During the optimization process, particles are distributed randomly in
the design space and their location and velocities are modified according to their personal best and
global best solutions. Let m+1 represent the current time step, xi,m+1, vi,m+1, xi,m, vi,m indicate the
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current position, current velocity, previous position, and previous velocity of particle i, respectively.
The position and velocity of particle i are manipulated according to the following equations:

xi,m+1 = xi,m + vi,m+1 (3)

vi,m+1 = w× vi,m + c1 × Rand()× (pi,m − xi,m) + c2 × Rand()× (pg,m − xi,m) (4)

where w is an inertia weight which determines how much the previous velocity is preserved [47], c1
and c2 are the self-confidence coefficient and social confidence coefficient, respectively, Rand() ∈ [0, 1]
is a random number, and pi,m and pg,m are the personal best position found by particle i and the global
best position found by all particles in the swarm up to time step m, respectively.

Let the design space be defined by [xmin, xmax]. If the position of particle i exceeds the boundary,
then vi,m+1 is modified as follows:

xi,m+1 =

{
xmax − (0.5× Rand()× (xmax − xmin)), i f xi,m+1 > xmax

xmin + (0.5× Rand()× (xmax − xmin)), i f xi,m+1 < xmin
(5)

4. A Novel Forecasting Model Based on High-Order Fuzzy-Fluctuation Trends

In this paper, we propose a novel forecasting model based on high-order fuzzy-fluctuationtrends
and a PSO machine learning algorithm. In order to compare the forecasting results with other
researchers’ work [10,11,27,36,48–51], the authentic TAIEX (Taiwan Stock Exchange Capitalization
Weighted Stock Index) is employed to illustrate the forecasting process. The data from January 1999 to
October 1999 are used as training time series and the data from November 1999 to December 1999 are
used as testing dataset. The basic steps of the proposed model are shown in Figure 1.
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Figure 1. Flowchart of our proposed forecasting model. Figure 1. Flowchart of our proposed forecasting model.
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Step 1: Construct FFTS for historical training data
For each element X(t)(t = 1, 2, ..., T) in the historical training time series, its fluctuation trend

is determined by Y(t) = X(t)− X(t− 1), (t = 2, 3, ..., T). According to the range and orientation of
the fluctuations, Y(t)(t = 2, 3, ..., T) can be fuzzified into a linguistic set {down, equal, up}. Let len
be the whole mean of all elements in the fluctuation time series Y(t)(t = 2, 3, ..., T), define u1 =

[−∞,−len/2), u2 = [−len/2, len/2), u3 = [len/2,+∞], then Y(t)(t = 2, 3, ..., T) can be fuzzified into
a fuzzy-fluctuation time series S(t)(t = 2, 3, ..., T). It is can also be extended to a continuous labeled
time series S(t)(t = 2, 3, ..., T), which preserves the accurate original information of Y(t)(t = 2, 3, ..., T).

Step 2: Establish nth-order FFLRs for the forecasting model
According to Equation (2), each S(t)(t ≥ n + 2) can be represented by its previous n days’

fuzzy-fluctuation number. Therefore, the total of FFLRs for historical training data is pn = T − n − 1.
Step 3: Determine the parameters for the forecasting model based on the PSO machine

learning algorithm
In this paper, the PSO method is employed to determine the parameters and a general error ε in

Equation (2). The personal best position and global best position are determined by minimizing the
root of the mean squared error (RMSE) in the training process:

RMSE =

√√√√√ n
∑

t=1
( f orecast(t)− actual(t))2

n
(6)

where n denotes the number of values forecasted, forecast(t) and actual(t) denote the forecasting value
and actual valueat time tin the training process, respectively. For determined φk(k = 1, 2, .., n) and ε,
the forecast value at time t is as follows:

f orevast(t) = actual(t− 1) + len× (φ1S(t− 1) + φ2S(t− 2), ..., φnS(t− n) + ε− 2) (7)

The pseudo-code for the PSO-based machine learning algorithm is shown in Appendix A.
Step 4: Forecast test time series
For each data in the test time series, its future number can be forecasted according to Equation (7),

based on the observed data point X (t − 1), its n-order fuzzy-fluctuation trends, and the parameters
generated from the training dataset.

5. EmpiricalAnalysis

5.1. Forecasting TAIEX

Many studiesuse TAIEX1999as an example to illustrate their proposed forecasting methods [10,11,
27,36,48–51]. In order to compare the accuracy with their models, we also use TAIEX1999 to illustrate
the proposed method.

Step 1: Calculate the fluctuation trend for each element in the historical training dataset of
TAIEX1999. Then, we use the whole mean of the fluctuation numbers of the training dataset to fuzzify
the fluctuation trends into FFTS.For example, the whole mean of the historical dataset of TAIEX1999
from January to October is 85. That is to say, len = 85. For X(1) = 6152.43 and X(2) = 6199.91, Y(2 ) = 47.48,
S(2) = 3, and S(2) ≈ 2.5586. On the other hand, based on the previous data X(1) and the accurate fuzzy
number S(2), X(2) can be obtained by: X(1) + len× (S(2)− 2), that is 6152.43 + (2.5588− 2)× 85 ≈
6199.91. In this way, the historical training dataset can be represented by a fuzzified fluctuation dataset
as shown in Appendix B.
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Step 2: Based on the FFTS from 5 January 1999 to 30 October shown in Table 1, establish the
nth-order FFLRs for the forecasting model. For example, suppose n=6, the following FFLRs of FFTS
can be generated:

S(7) = 1.082 = φ1 + φ2 + 2φ3 + 2φ4 + 3φ5 + 3φ6 + ε7

S(8) = 4.5091 = φ1 + φ2 + φ3 + 2φ4 + 2φ5 + 3φ6 + ε8
...

S(221) = 3.7433 = 2φ1 + 2φ2 + 2φ3 + 2φ4 + 3φ5 + φ6 + ε221

(8)

Table 1. Global best parameters obtained using PSO for training dataset.

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 E RMSE

−0.1638 0.0803 0.1372 −0.0321 0.0433 0.2546 1.4408 115.73

Step 3: Replace each error εt in Equation (8) with one and the same ε. Let the number of iterations
itern = 100, the inertia weight w = 0.7298, the self-confidence coefficient and social confidence coefficient
c1 = c2 = 1.4962, and use the PSO algorithm listed in Figure 1 to determine the parameters and ε. In the
PSO process, each element in the generalizedEquation (8) is a particle and their personal best and global
best positions are determined by the RMSE of the actual values and forecast values. The obtained
global best parameters are shown in Table 1.

Step 4: Use the obtained global best parameters in Table 1 to forecast the test dataset from
1 November 1999 to 30 December. For example, the forecasting value of the TAIEX on 8 November
1999 is calculated asfollows:

Firstly, according to the fuzzy-fluctuation trends (2,1,1,1,2,1) and the parameters in Table 1,
the forecasted continuous labeled fuzzy-fluctuation number is:

2× (−0.1638) + 0.0803 + 0.1372− 0.0321 + 2 × 0.0433 + 0.2546 + 1.4408 = 1.6398

Then, the forecasted fluctuation from current value to next value can be obtained by defuzzifying
the fluctuation fuzzy number:

(1.6398− 2)× 85 = −30.62

Finally, the forecasted value can be obtained by current value and the fluctuation value:

7376.56− 30.62 = 7345.94

The other forecasting results are shown in Table 2 and Figure 2.
The forecasting performance can be assessed by comparing the difference between the forecasted

valuesand the actual values. The widely used indicators in time series models comparisons are
the mean squared error (MSE), root of the mean squared error (RMSE), mean absolute error
(MAE), mean percentage error (MPE), etc.To compare the performance of different forecasting
results, the Diebold-Mariano test statistic (S) is also widely used. These indicators are defined by
Equations (9)–(13):

MSE =

n
∑

t=1
( f orecast(t)− actual(t))2

n
(9)

RMSE =

√√√√√ n
∑

t=1
( f orecast(t)− actual(t))2

n
(10)



Symmetry 2017, 9, 124 7 of 15

Table 2. Forecasting results from 1 November1999 to 30 December 1999.

Date
(MM/DD/YYYY) Actual Forecast (Forecast–Actual)2 Date

(MM/DD/YYYY) Actual Forecast (Forecast–Actual)2

11/1/1999 7814.89 7869.35 2965.89 12/1/1999 7766.20 7705.59 3673.57
11/2/1999 7721.59 7825.35 10,766.14 12/2/1999 7806.26 7790.48 249.01
11/3/1999 7580.09 7704.00 15,353.69 12/3/1999 7933.17 7824.29 11,854.85
11/4/1999 7469.23 7573.21 10,811.84 12/4/1999 7964.49 7967.96 12.04
11/5/1999 7488.26 7460.24 785.12 12/6/1999 7894.46 7965.87 5099.39
11/6/1999 7376.56 7468.50 8452.96 12/7/1999 7827.05 7897.62 4980.12
11/8/1999 7401.49 7345.94 3085.80 12/8/1999 7811.02 7806.25 22.75
11/9/1999 7362.69 7400.03 1394.28 12/9/1999 7738.84 7823.68 7197.83

11/10/1999 7401.81 7379.30 506.70 12/10/1999 7733.77 7701.12 1066.02
11/11/1999 7532.22 7410.86 14,728.25 12/13/1999 7883.61 7718.38 27,300.95
11/15/1999 7545.03 7553.82 77.26 12/14/1999 7850.14 7921.86 5143.76
11/16/1999 7606.20 7569.42 1352.77 12/15/1999 7859.89 7862.87 8.88
11/17/1999 7645.78 7631.90 192.65 12/16/1999 7739.76 7857.12 13,773.37
11/18/1999 7718.06 7667.91 2515.02 12/17/1999 7723.22 7750.49 743.65
11/19/1999 7770.81 7750.58 409.25 12/18/1999 7797.87 7733.15 4188.68
11/20/1999 7900.34 7800.66 9936.10 12/20/1999 7782.94 7815.10 1034.27
11/22/1999 8052.31 7936.55 13,400.38 12/21/1999 7934.26 7781.74 23,262.35
11/23/1999 8046.19 8079.43 1104.90 12/22/1999 8002.76 7953.13 2463.14
11/24/1999 7921.85 8072.42 22,671.32 12/23/1999 8083.49 8060.46 530.38
11/25/1999 7904.53 7908.83 18.49 12/24/1999 8219.45 8119.70 9950.06
11/26/1999 7595.44 7912.20 100,336.90 12/27/1999 8415.07 8246.57 28,392.25
11/29/1999 7823.90 7576.21 61,350.34 12/28/1999 8448.84 8462.94 198.81
11/30/1999 7720.87 7823.06 10,442.80 Root Mean Square Error(RMSE) 99.31
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MAE =

n
∑

t=1
|( f orecast(t)− actual(t))|

n
(11)

MPE =

n
∑

t=1
|( f orecast(t)− actual(t))|/actual(t)

n
(12)

S =
d

(Variance(d))
1/2 , d =

n
∑

t=1
(error o f f orecast1)

2
t −

n
∑

t=1
(error o f f orecast2)

2
t

n
(13)

where n denotes the number of values forecasted, forecast(t) and actual(t) denote the predicted value
and actual valueat time t, respectively. S is a test statistic of the Diebold method which is used to
compare predictive accuracy of two forecasts obtained by different methods. Forecast1 represents the
dataset obtained by method 1, and Forecast2 represents another dataset from method 2. If S>0 and
|S| > Z = 1.64, at the 0.05 significant level, Forecast2 has better predictive accuracy than Forecast1.



Symmetry 2017, 9, 124 8 of 15

With respect to the proposed method for the sixth-order, the MSE, RMSE, MAE, and MPE are 9862.33,
99.31, 75.22, and 0.01, respectively.

In order to compare the forecasting results with different parameters such as the number n of
the nth-order and the element number g of linguistic set used in the fluctuation fuzzifying process,
different experiments under different parameters were carried out. Each typeof experiment was
repeated 30 times. The forecasting errors of the averages for the experiments are shown in Tables 3
and 4.

Table 3. Comparison of forecasting errors for different nth-orders (g=3).

n 1 2 3 4 5 6 7 8 9 10

RMSE 109.04 105.47 103.04 102.96 101.92 99.12 99.59 99.6 98.75 99

Table 4. Comparison of forecasting errors for different linguistic sets (n=6).

g 3 5 7 None

RMSE 99.12 101.67 105.82 128.97

In Table 4, g = 3 represents that the linguistic set is {down, equal, up}, g = 5 means {greatly down,
slightly down, equal, slightly up, greatly up}, g = 7 means {very greatly down, greatly down, slightly down,
equal, slightly up, greatly up, very greatly up}, and “none” means that the fluctuation values will not be
fuzzified at all.

From Tables 3 and 4, we can see that the RMSEs are lower when n is equal to six or more.
With respect to the parameter g, obviously, the fuzzified fluctuation trends perform better than none
fuzzified ones, and it is proper to let g = 3.

Letting n=6 and g=3, we employ the proposed method to forecast the TAIEX from 1997 to 2005.
The forecasting results and errors are shown in Figure 3 and Table 5.
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Table 5. RMSEs of forecast errors for TAIEX 1997 to 2005.

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005

RMSE 143.60 115.34 99.12 125.70 115.91 70.43 54.26 57.24 54.68

Table 6 shows a comparison of RMSEs for different methods for forecasting the TAIEX1999.
From this table, we can see that the performance of the proposed method is acceptable. The greatest
advantage of the proposed method is that it puts forward a method relying completely on the machine
learning mechanism. Though RMSEs of some of the other methods outperform the proposed method,
they oftenneed to determine complex discretization partitioning rulesor use adaptive expectation
models to justify the final forecasting results. The method proposed in this paper is simpler and easily
realized by a computer program.

Table 6. A comparison of RMSEs for different methods for forecasting the TAIEX1999.

Methods RMSE S

Yu’s Method(2005) [36] 145 1.62 **
Hsieh et al.’s Method(2011) [51] 94 −0.32
Chang et al.’s Method(2011) [48] 100 0.11
Cheng et al.’s Method(2013) [50] 103 0.34
Chen et al.’s Method(2013) [49] 102.11 0.21

Chen and Chen’s Method(2015) [11] 103.9 0.36
Chen and Chen’s Method(2015) [10] 92 −0.42

Zhao et al.’s Method(2016) [27] 110.85 1.08
The Proposed Method 99.12 -

** The proposed method has better predictive accuracy than the method at the 5% significance level.

5.2. Forecasting DAX30

The German DAX30 index is an important stock index in Germany. The RMSEs of different
models forecastingyear 2015 of DAX30 are shown in Table 7.

Table 7. RMSEs of the forecast errors for year 2015 of DAX30.

Year Yu (2005) [36] Cheng et al. (2008) [37] Wang et al. (2013) [25] Rubio et al. (2017) [13] Proposed Model

RMSE 172.69 170.56 376.80 153.15 159.22
S 1.31 1.23 3.68 ** −0.26 -

** The proposed method has better predictive accuracy than the method at the 5% significancelevel.

From Table 7, we can see that the proposed method can successfully predict the DAX30 index.
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5.3. Forecasting SHSECI

The SHSECI (Shanghai Stock Exchange Composite Index) is the most famous stock market index
in China. In the following, we apply the proposed method to forecast the SHSECI from 2007 to 2015.
For each year, the authentic datasets of historical daily SHSECI closing prices from January to October
are used as the training data, and the datasets from November to December are used as the testing
data. The RMSEs of forecast errors are shown in Table 8.

Table 8. RMSEs of forecast errors for SHSECI from 2007 to 2015.

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015

RMSE 113.11 55.28 49.59 45.73 28.45 25.05 19.86 41.44 59.5

From Table 8, we can see that the proposed method can successfully predict the SHSECI
stock market.

6. Conclusions

In this paper, a novel forecasting model is proposed based on high-order fuzzy-fluctuation logical
trends and the PSO machine learning method. The proposed method is based on the fluctuations of
the time series. The PSO method is employed to look for the best parameters to minimize the RMSE
of a historical training dataset. Experiments show that the parameters generated from the training
dataset can be successfully used for future datasets as well. In order to compare the performance with
that of other methods, we take the TAIEX1999 as an example. We also forecasted TAIEX1997–2005,
DAX30 2015 and SHSECI 2007–2015 to verify its effectiveness and universality. In the future, we will
consider other factors which might affect the fluctuation of the stock market, such as the trade volume,
the beginning value, the end value, etc. We will also consider the influence of other stock markets,
such as the Dow Jones, the NASDAQ, the M1b, and so on.
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Appendix A

The Pseudo-code of PSO-based machine learning algorithm for seeking for global best position of
each constant parameter in the forecasting model is shown in Table A1.

Table A1. Pseudo-code of the PSO-based machine learning algorithm.

PSO-Based Machine Learning Algorithm for the Training Process

INPUT:

X: training time series, containing T cases, denoted as X[1], X[2], ..., X[i]..., X[T].
S: a fuzzy-fluctuation time series of training data, containing T−1 cases, denoted as
S[2], S[3], ..., S[i]..., S[T].
n: the number of nth-order.
itern: the number of iterations.
xmin, xmax: lower and upper bounds of space.
w, c1, c1: parameters described in Equations (3) and (4).
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Table A1. Cont.

PSO-Based Machine Learning Algorithm for the Training Process

OUPUT: Φ[k] and ε: parameters for the forecasting model, k = 1,2, . . . ,n.

1.

Initialize the position and velocity for each particle i:
pn = T−1−n;
/* the number of particles. */
For i = 1 to pn
For j = 1 to n
x[i,j] = rand(xmin, xmax);
v[i,j] = rand(xmin, xmax);

2.
Calculate the fitness value for each particle i according to Equation (6):
Set x[pbest] to current x[i] for each particle.
Locate the global best fitness value x[gbest] and set Φ[k] and ε to the corresponding x[gbest].

3.

for m=1 to itern loop
For each particle i
Calculate particle velocity according to Equation (3).
Update particle position according to Equations (4) and (5)
If the fitness value is better than the best fitness value x[pbest] of particle i in history:
Set current value as the new x[pbest] for particle i
Locate the current global best fitness value, if it is better than the x[gbest] in history:
Set current global best fitness value as the new x[gbest], and set Φ[k] and ε to x[gbest].

4. Output Φ[k] and ε

Appendix B

The historical training dataset can be represented by a fuzzified fluctuation dataset as shown in
Table A2.



Symmetry 2017, 9, 124 12 of 15

Table A2. Historical training data and fuzzified fluctuation data of TAIEX1999.

Date
(MM/DD/YYYY) TAIEX Fluctuation Fuzzified Date

(MM/DD/YYYY) TAIEX Fluctuation Fuzzified Date
(MM/DD/YYYY) TAIEX Fluctuation Fuzzified

1/5/1999 6152.43 - - 4/17/1999 7581.5 114.68 3 7/26/1999 7595.71 −128.81 1
1/6/1999 6199.91 47.48 3 4/19/1999 7623.18 41.68 2 7/27/1999 7367.97 −227.74 1
1/7/1999 6404.31 204.4 3 4/20/1999 7627.74 4.56 2 7/28/1999 7484.5 116.53 3
1/8/1999 6421.75 17.44 2 4/21/1999 7474.16 −153.58 1 7/29/1999 7359.37 −125.13 1

1/11/1999 6406.99 −14.76 2 4/22/1999 7494.6 20.44 2 7/30/1999 7413.11 53.74 3
1/12/1999 6363.89 −43.1 1 4/23/1999 7612.8 118.2 3 7/31/1999 7326.75 −86.36 1
1/13/1999 6319.34 −44.55 1 4/26/1999 7629.09 16.29 2 8/2/1999 7195.94 −130.81 1
1/14/1999 6241.32 −78.02 1 4/27/1999 7550.13 −78.96 1 8/3/1999 7175.19 −20.75 2
1/15/1999 6454.6 213.28 3 4/28/1999 7496.61 −53.52 1 8/4/1999 7110.8 −64.39 1
1/16/1999 6483.3 28.7 2 4/29/1999 7289.62 −206.99 1 8/5/1999 6959.73 −151.07 1
1/18/1999 6377.25 −106.05 1 4/30/1999 7371.17 81.55 3 8/6/1999 6823.52 −136.21 1
1/19/1999 6343.36 −33.89 2 5/3/1999 7383.26 12.09 2 8/7/1999 7049.74 226.22 3
1/20/1999 6310.71 −32.65 2 5/4/1999 7588.04 204.78 3 8/9/1999 7028.01 −21.73 2
1/21/1999 6332.2 21.49 2 5/5/1999 7572.16 −15.88 2 8/10/1999 7269.6 241.59 3
1/22/1999 6228.95 −103.25 1 5/6/1999 7560.05 −12.11 2 8/11/1999 7228.68 −40.92 2
1/25/1999 6033.21 −195.74 1 5/7/1999 7469.33 −90.72 1 8/12/1999 7330.24 101.56 3
1/26/1999 6115.64 82.43 3 5/10/1999 7484.37 15.04 2 8/13/1999 7626.05 295.81 3
1/27/1999 6138.87 23.23 2 5/11/1999 7474.45 −9.92 2 8/16/1999 8018.47 392.42 3
1/28/1999 6063.41 −75.46 1 5/12/1999 7448.41 −26.04 2 8/17/1999 8083.43 64.96 3
1/29/1999 5984 −79.41 1 5/13/1999 7416.2 −32.21 2 8/18/1999 7993.71 −89.72 1
1/30/1999 5998.32 14.32 2 5/14/1999 7592.53 176.33 3 8/19/1999 7964.67 −29.04 2
2/1/1999 5862.79 −135.53 1 5/15/1999 7576.64 −15.89 2 8/20/1999 8117.42 152.75 3
2/2/1999 5749.64 −113.15 1 5/17/1999 7599.76 23.12 2 8/21/1999 8153.57 36.15 2
2/3/1999 5743.86 −5.78 2 5/18/1999 7585.51 −14.25 2 8/23/1999 8119.98 −33.59 2
2/4/1999 5514.89 −228.97 1 5/19/1999 7614.6 29.09 2 8/24/1999 7984.39 −135.59 1
2/5/1999 5474.79 −40.1 2 5/20/1999 7608.88 −5.72 2 8/25/1999 8127.09 142.7 3
2/6/1999 5710.18 235.39 3 5/21/1999 7606.69 −2.19 2 8/26/1999 8097.57 −29.52 2
2/8/1999 5822.98 112.8 3 5/24/1999 7588.23 −18.46 2 8/27/1999 8053.97 −43.6 1
2/9/1999 5723.73 −99.25 1 5/25/1999 7417.03 −171.2 1 8/30/1999 8071.36 17.39 2

2/10/1999 5798 74.27 3 5/26/1999 7426.63 9.6 2 8/31/1999 8157.73 86.37 3
2/20/1999 6072.33 274.33 3 5/27/1999 7469.01 42.38 2 9/1/1999 8273.33 115.6 3
2/22/1999 6313.63 241.3 3 5/28/1999 7387.37 −81.64 1 9/2/1999 8226.15 −47.18 1
2/23/1999 6180.94 −132.69 1 5/29/1999 7419.7 32.33 2 9/3/1999 8073.97 −152.18 1
2/24/1999 6238.87 57.93 3 5/31/1999 7316.57 −103.13 1 9/4/1999 8065.11 −8.86 2
2/25/1999 6275.53 36.66 2 6/1/1999 7397.62 81.05 3 9/6/1999 8130.28 65.17 3
2/26/1999 6318.52 42.99 3 6/2/1999 7488.03 90.41 3 9/7/1999 7945.76 −184.52 1
3/1/1999 6312.25 −6.27 2 6/3/1999 7572.91 84.88 3 9/8/1999 7973.3 27.54 2
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Table A2. Cont.

Date
(MM/DD/YYYY) TAIEX Fluctuation Fuzzified Date

(MM/DD/YYYY) TAIEX Fluctuation Fuzzified Date
(MM/DD/YYYY) TAIEX Fluctuation Fuzzified

3/2/1999 6263.54 −48.71 1 6/4/1999 7590.44 17.53 2 9/9/1999 8025.02 51.72 3
3/3/1999 6403.14 139.6 3 6/5/1999 7639.3 48.86 3 9/10/1999 8161.46 136.44 3
3/4/1999 6393.74 −9.4 2 6/7/1999 7802.69 163.39 3 9/13/1999 8178.69 17.23 2
3/5/1999 6383.09 −10.65 2 6/8/1999 7892.13 89.44 3 9/14/1999 8092.02 −86.67 1
3/6/1999 6421.73 38.64 2 6/9/1999 7957.71 65.58 3 9/15/1999 7971.04 −120.98 1
3/8/1999 6431.96 10.23 2 6/10/1999 7996.76 39.05 2 9/16/1999 7968.9 −2.14 2
3/9/1999 6493.43 61.47 3 6/11/1999 7979.4 −17.36 2 9/17/1999 7916.92 −51.98 1
3/10/1999 6486.61 −6.82 2 6/14/1999 7973.58 −5.82 2 9/18/1999 8016.93 100.01 3
3/11/1999 6436.8 −49.81 1 6/15/1999 7960 −13.58 2 9/20/1999 7972.14 −44.79 1
3/12/1999 6462.73 25.93 2 6/16/1999 8059.02 99.02 3 9/27/1999 7759.93 −212.21 1
3/15/1999 6598.32 135.59 3 6/17/1999 8274.36 215.34 3 9/28/1999 7577.85 −182.08 1
3/16/1999 6672.23 73.91 3 6/21/1999 8413.48 139.12 3 9/29/1999 7615.45 37.6 2
3/17/1999 6757.07 84.84 3 6/22/1999 8608.91 195.43 3 9/30/1999 7598.79 −16.66 2
3/18/1999 6895.01 137.94 3 6/23/1999 8492.32 −116.59 1 10/1/1999 7694.99 96.2 3
3/19/1999 6997.29 102.28 3 6/24/1999 8589.31 96.99 3 10/2/1999 7659.55 −35.44 2
3/20/1999 6993.38 −3.91 2 6/25/1999 8265.96 −323.35 1 10/4/1999 7685.48 25.93 2
3/22/1999 7043.23 49.85 3 6/28/1999 8281.45 15.49 2 10/5/1999 7557.01 −128.47 1
3/23/1999 6945.48 −97.75 1 6/29/1999 8514.27 232.82 3 10/6/1999 7501.63 −55.38 1
3/24/1999 6889.42 −56.06 1 6/30/1999 8467.37 −46.9 1 10/7/1999 7612 110.37 3
3/25/1999 6941.38 51.96 3 7/2/1999 8572.09 104.72 3 10/8/1999 7552.98 −59.02 1
3/26/1999 7033.25 91.87 3 7/3/1999 8563.55 −8.54 2 10/11/1999 7607.11 54.13 3
3/29/1999 6901.68 −131.57 1 7/5/1999 8593.35 29.8 2 10/12/1999 7835.37 228.26 3
3/30/1999 6898.66 −3.02 2 7/6/1999 8454.49 −138.86 1 10/13/1999 7836.94 1.57 2
3/31/1999 6881.72 −16.94 2 7/7/1999 8470.07 15.58 2 10/14/1999 7879.91 42.97 3
4/1/1999 7018.68 136.96 3 7/8/1999 8592.43 122.36 3 10/15/1999 7819.09 −60.82 1
4/2/1999 7232.51 213.83 3 7/9/1999 8550.27 −42.16 2 10/16/1999 7829.39 10.3 2
4/3/1999 7182.2 −50.31 1 7/12/1999 8463.9 −86.37 1 10/18/1999 7745.26 −84.13 1
4/6/1999 7163.99 −18.21 2 7/13/1999 8204.5 −259.4 1 10/19/1999 7692.96 −52.3 1
4/7/1999 7135.89 −28.1 2 7/14/1999 7888.66 −315.84 1 10/20/1999 7666.64 −26.32 2
4/8/1999 7273.41 137.52 3 7/15/1999 7918.04 29.38 2 10/21/1999 7654.9 −11.74 2
4/9/1999 7265.7 −7.71 2 7/16/1999 7411.58 −506.46 1 10/22/1999 7559.63 −95.27 1
4/12/1999 7242.4 −23.3 2 7/17/1999 7366.23 −45.35 1 10/25/1999 7680.87 121.24 3
4/13/1999 7337.85 95.45 3 7/19/1999 7386.89 20.66 2 10/26/1999 7700.29 19.42 2
4/14/1999 7398.65 60.8 3 7/20/1999 7806.85 419.96 3 10/27/1999 7701.22 0.93 2
4/15/1999 7498.17 99.52 3 7/21/1999 7786.65 −20.2 2 10/28/1999 7681.85 −19.37 2
4/16/1999 7466.82 −31.35 2 7/22/1999 7678.67 −107.98 1 10/29/1999 7706.67 24.82 2
4/17/1999 7581.5 114.68 3 7/23/1999 7724.52 45.85 3 10/30/1999 7854.85 148.18 3
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