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Abstract: In this paper, we develop a new linguistic aggregation operator based on the cloud model
for solving linguistic group decision-making problem. First, an improved generating cloud method
is proposed so as to transform linguistic variables into clouds, which modifies the limitation of the
classical generating cloud method. We then address some new cloud algorithms, such as cloud
possibility degree and cloud support degree which can be respectively used to compare clouds and
determine the weights. Combining the cloud support degree with power aggregation operator,
we develop a new cloud aggregation operator dubbed the cloud generalized power ordered weighted
average (CGPOWA) operator. We study the properties of the CGPOWA operator and investigate
its family including a wide range of aggregation operators such as the CGPA operator, CPOWA
operator, CPOWGA operator, CPWQA operator, CWAA and CWGA operator. Furthermore, a new
approach for linguistic group decision-making is presented on the basis of the improved generating
cloud method and CGPOWA operator. Finally, an illustrative example is provided to examine the
effectiveness and validity of the proposed approach.
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1. Introduction

As an important part of modern decision science, multiple criteria decision-making (MCDM)
is the process of finding the best option from all of the feasible alternatives. It consists of a single
decision maker (DM), multiple decision criteria and multiple decision alternatives [1]. However, the
increasing complexity of the socioeconomic environment makes it less possible for a single DM to
consider all relevant aspects of a problem as many decision-making processes take place in group
settings. This makes the multiple criteria group decision-making (MCGDM) become more and more
attractive in management [2–6]. Due to the complexities of objects and the vagueness of the human
mind, it is more appropriate for the DMs to use linguistic descriptors than other descriptors to express
their assessments in the actual process of MCGDM [7–9]. For example, when evaluating the “comfort”
or “design” of a car, terms such as “good”, “medium”, and “bad” are frequently used, and when
evaluating a car’s speed, terms such as “very fast”, “fast”, and “slow” can be used instead of numerical
values. In such situations, the use of a linguistic approach is necessary. The objective of Linguistic
multiple criteria group decision-making (LMCGDM) is to find the optimal solution(s) from a set
of feasible alternatives by means of linguistic information provided by the DMs. To realize this
objective, aggregating linguistic information is the key point and linguistic aggregation operators are
commonly used.

Until now, many linguistic aggregation operators have been proposed and these operators
can be classified into six types: (1) the first is based on linear ordering, such as the linguistic max
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and min operators [10–12], linguistic max-min weighted averaging operator [13], linguistic median
operator [14], ordinal ordered weighted averaging operator [15], linguistic weighted conjunction
operator [16]; (2) The second is built on the extension principle [17,18] and makes computations
on fuzzy numbers that support the semantics of the linguistic labels, such as the linguistic
OWA operator [19], and the linguistic weighted OWA operator [20], the inverse linguistic OWA
operator degree [21], distance measure operator with linguistic information [22], induced linguistic
continuous ordered weighted geometric operator [23], linguistic distances with continuous aggregation
operator [24], linguistic probabilistic weighted average operator [25]; (3) The third is based upon
2-tuple representation, including the 2-tuple arithmetic mean operator [26], 2-tuple OWA operator [27],
dependent 2-tuple ordered weighted geometric operator [28], 2-Tuple linguistic hybrid arithmetic
aggregation operator [29]; (4) The fourth computes directly with words, such as the linguistic weighted
averaging operator [30], extended ordered weighted geometric operator [31], linguistic weighted
arithmetic averaging operator [32], linguistic ordered weighted geometric averaging operator [33],
uncertain linguistic weighted averaging operator [34], induced uncertain linguistic OWA operator [35],
uncertain linguistic geometric mean operator [36]; (5) The fifth is on the basis of the power ordered
weighted average operator [37], including linguistic power ordered weighted average (LPOWA)
operator [38], the linguistic generalized power average (LGPA) operator [39]; (6) and the last is a class
of cloud aggregation operator which introduces the cloud model [40], in LMCGDM, such as the cloud
weighted arithmetic averaging (CWAA) operator and cloud weight geometric averaging (CWGA)
operator [41], trapezium cloud ordered weighted arithmetic averaging (TCOWA) operator [42]. A detail
description of the operators LPOWA, CCWA, and CWGA will be presented in Section 2 of the paper.

The above mentioned operators of types (1)–(2) develop approximation processes to express the
results in the initial expression domain, but they produce a consequent loss of information and then
result in a lack of precision [26]. This shortcoming of operators of types (1)–(2) is just overcome by
those operators of types (3)–(4) which allow a continuous representation of the linguistic information
on their domains, and then can represent any counting of information obtained in an aggregation
process without loss of information [26–29]. However, the operators of types (3)–(4) do not consider
the information about the relationship between the values being combined [38]. The weakness of
operators of types (3)–(4) can be corrected by operators of type (5) since they allow exact arguments to
support each other in aggregation process and the weighting vectors depend on the input arguments
and allow values to be aggregated to support and reinforce each other [37–39]. In this way, operators
of type (5) consider the information about the relationship between the values being fused, but these
operators of type (5) cannot describe the randomness of languages [41].

The limitation of operators of type (5) can be explained by the following fact. We know that
natural languages generally include uncertainty in which randomness and fuzziness are the two most
important aspects; here, the fuzziness mainly refers to uncertainty regarding the range of extension
of concept, and the randomness implies that any concept is related to the external world in various
ways [42]. The fuzziness and randomness are used to describe the uncertainty of natural languages.
For instance, for a linguistic decision-making problem, DM A may think that 75% fulfillment of a task
is “good”, but DM B may regard that less than 80% fulfillment of the same task cannot be considered as
“good” with the same linguistic term scale. In this way, when considering the degree of certainty of an
element belonging to a qualitative concept in a specific universe, it is more feasible to allow a stochastic
disturbance of the membership degree encircling a determined central value than to allow a fixed
number [41,42]. The cloud model, based on the fuzzy set theory and probability statistics [40,43,44],
can describe the fuzziness with a normal membership function and the randomness by means of three
numerical characteristics (expectation, entropy and Hyper entropy). Hence, the cloud aggregation
operators of type (6) just overcome the limitation of operators of type (5). Nevertheless, the cloud
aggregation operators of type (6) do not take into account the information about the relationship
between the values being fused.
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Based on the above analyses, we find that the limitations of linguistic power aggregation operators
of type (5) and cloud aggregation operators of type (6) are mutually complementary. In other words,
the linguistic power aggregation operators focus on the information about the relationship between
the values being fused, while they ignore the randomness of qualitative concept; the cloud aggregation
operators can capture the fuzziness and randomness of linguistic information, but they neglect the
information about the relationship between values being fused.

Therefore, this paper aims to propose a new cloud generalized power ordered weighted average
(CGPOWA) operator so as to overcome the limitations of existing linguistic power aggregation
operators of (5) and cloud aggregation operators of (6). The novelty of this paper is as follows.

(i) We present an improved generating cloud method to transform linguistic variables into clouds.
The key to linguistic decision-making based on cloud models is the transformation between
linguistic variables and clouds, for which Wang and Feng [45] proposed a method of generating
five clouds on the basis of the golden ratio, but this method has three weaknesses: (a) it is limited
to a linguistic term set of 5 labels; (b) the expectation of clouds sometimes exceeds the range
of the universe; and (c) it cannot effectively distinguish the linguistic evaluation scale over the
symmetrical interval. Regarding these limitations, we present an improved method by applying
the cloud construction principle. This method can transform linguistic term set of any odd labels
rather than only five labels, and can guarantee that all the expectations of clouds fall into the
range of the universe. Meanwhile, it can effectively distinguish the linguistic evaluation scale
over the symmetrical interval. In this way, this method modifies the weaknesses of the classical
generating cloud method.

(ii) We address some new cloud algorithms such as cloud possibility degree and cloud support
degree. Based on “3En rules” of cloud model, a cloud distance is defined. We further put forward
to a cloud possibility degree according to this cloud distance, which can be used to compare the
clouds, and define a cloud support degree which is a similarity index. That is, the greater the
similarity is, the closer the two clouds are, and consequently the more they support each other.
The support degree can be used to determine the weights of aggregation operator.

(iii) We develop a new CGPOWA operator. By using the cloud support degree we defined and
the power aggregation operator [39], we develop the CGPOWA operator, which overcomes the
limitations of existing linguistic power aggregation operators and cloud aggregation operators
and simultaneously maintains the advantages of the two types operators. By studying its
properties, we find that the CGPOWA operator is idempotent, commutative and bounded.
In addition, we investigate the family of the CGPOWA operator which contains a wide range
of aggregation operators such as the CGPA operator, CPOWA operator, CPOWGA operator,
CPWQA operator, CWAA and CWGA operators, the maximum and minimum operators.

(iv) A new approach for LMCGDM is developed by applying the improved generating cloud method
and CGPOWA operator. The main advantage of this approach is that it gives a completely
objective view of the decision problem because the CGPOWA operator and the weighting method
depend on the arguments completely. Comparing our method with three traditional LMCGDM
approaches (linguistic symbolic model, linguistic membership function model, 2-tuple linguistic
model) and the cloud aggregating method [41,42], we find that:

(a) Compared with the three traditional LMCGDM approaches, our method takes a
multi-granular linguistic assessment scale of great psychological sense, while the three
traditional LMCGDM approaches only use a uniform granular linguistic assessment scale.
In other words, when the alternatives are assessed, these three traditional approaches only
regard the average level as the unique criterion, which leads to the evaluations rough
and one-sided. Our method, however, considers not only the average level but also the
fluctuation and stability of qualitative concepts via the cloud model;
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(b) Compared with cloud aggregating method [41,42], our method provides a completely
objective weighting model by using the cloud support degree, while the weights in Wang
et al. [41,42] are subjectively given by the DMs which may result in different ranking
results if the DMs provide different weight vectors. In addition, the CGPOWA operator
considers the relationships between the arguments provided by the DMs, while the cloud
aggregating operators in Wang et al. [41,42] do not;

(c) Our method presents a simple measure to compare different clouds by the cloud
possibility degree (Equation (11)) and the ranking vector (Equation (13)), which requires
no knowledge about the distribution of cloud drops, this is different from the score
function [41] which needs to know the distribution of cloud drops. This is also an attractive
feature because in most case the distribution of cloud drops is unknown and it is rigid to
acquire cloud drops.

This approach is also applicable to different linguistic decision-making problems such as strategic
decision-making, human resource management, product management and financial management.

The rest of the paper is organized as follows. Section 2 reviews the LPOWA, CWAA and CWGA
operators and the cloud model. Section 3 presents an improved method of transforming linguistic
variables into clouds, and provides some new cloud algorithms. Section 4 develops the CGPOWA
operator and studies its properties. Section 5 develops an approach for LMCGDM. Section 6 presents
an illustrative example and the conclusions are drawn in Section 7.

2. Preliminaries

In this section, we briefly review the LPOWA operator, the definitions and operational rules of
the clouds, CWAA operator and CWGA operator.

2.1. The LPOWA Operator

The linguistic approach is an approximate technique that represents qualitative aspects as
linguistic values using linguistic variables. Let S = { si|i = −t, . . . , t} be a finite and completely
ordered discrete term set, which stands for a possible value for a linguistic variable. For instance, a set
of nine terms S could be [8,23]:

S = {s−4 = extremelypoor, s−3 = verypoor, s−2 = poor, s−1 = mediumpoor, s0 = fair,
s1 = mediumgood, s2 = good, s3 = verygood, s4 = extremelygood}

In many real problems, the input linguistic arguments may not match any of the original linguistic
labels, or may be located between two of them. For such cases, Xu [36] presents some operational laws.
Let s1 = [sα1 , sβ1 ] and s2 = [sα2 , sβ2 ], the operational rules are as follows:

(i) s1 ⊗ s2 = [sα1 , sβ1 ]⊗ [sα2 , sβ2 ] = [sα1 ⊗ sα2 , sβ1 ⊗ sβ2 ] = [sα1α2 , sβ1β2 ];

(ii) sλ = [sα, sβ]
λ = [sαλ , sβλ ], where λ ∈ [0, 1];

(iii) s1 ⊗ s2 = s2 ⊗ s1;

(iv) (s1 ⊗ s2)
λ = s1

λ ⊗ s2
λ, where λ ∈ [0, 1].

Yager [37] introduced a nonlinear ordered weighted-average aggregation tool, called the power
ordered weighted average (POWA) operator, which can be defined as follows:

POWA(a1, a2, · · · , an) =
n

∑
j=1

wjβ
λ
j , (1)
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where wj = g
( Rj

TV

)
− g
( Rj−1

TV

)
, Rj =

j
∑

i=1
βi, TV =

n
∑

i=1
βi, Vβi = 1 + T(βi), T(βi) =

n
∑

j = 1
j 6= i

Sup(βi, β j).

Here Sup(βi, β j) is the support for βi from β j such that Sup(βi, β j) ∈ [0, 1], Sup(βi, β j) =

Sup(β j, βi) and Sup(βi, β j) ≥ Sup(x, y) for
∣∣βi − β j

∣∣ < |x− y|; and βi is the ith largest of the
arguments, and the basic unit-interval monotonic (BUM) function g(·) satisfies g(0) = 0, g(1) = 1,
g(x) ≥ g(y), if x > y.

Based on the POWA operator, Xu, Merigó and Wang [38] provided a linguistic power ordered
weighted average (LPOWA) operator, which is defined as follows.

Definition 1 (Xu, Merigó and Wang, [38]). Let sαj(j = 1, 2, . . . , n) be a collection of linguistic variables,

a linguistic power ordered weighted averaging (LPOWA) operator is a mapping LPOWA: Sn → S , if

LPOWA(sα1 , sα2 , . . . , sαn) =
n
⊕

j=1
ujsασ(j) (2)

where (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n) such that sασ(j−1) ≥ sασ(j) for all j, and

uj = g
( Bj

TV

)
− g
(Bj−1

TV

)
, Bj =

j

∑
i=1

Vσ(i), TV =
n

∑
j=1

Vσ(j), Vσ(j) = 1 + T(sασ(j)),

where g : [0, 1]→ [0, 1] is a basic unit-interval monotonic (BUM) function satisfying g(0) = 0, g(1) = 1,
g(x) ≥ g(y) if x > y. T(sασ(j)) denotes the support of the jth largest argument by all the other arguments.

Remark 1. The LPOWA operator considers the linguistic information about the relationship between the values
being combined since it allows exact arguments to support each other in aggregation process and the weighting
vectors depend on the input arguments and allow arguments being aggregated to support each other. However,
this type operator can not characterize the randomness of languages. Here the randomness implies that any
language is related to the external world in various ways [44]. In fact, natural languages usually involve in
randomness and fuzziness (refer to uncertainty regarding the range of extension of languages). For example,
DM A thinks 75% fulfillment of a task is “good”, but DM B thinks that less than 80% fulfillment of the same
task cannot be considered “good” with the same linguistic term scale. When considering the degree of certainty
of an element belonging to a qualitative concept in a specific universe, it is more feasible to allow a stochastic
disturbance of the membership degree encircling a determined central value than to allow a fixed number.

2.2. Cloud Model

The cloud model, based on the fuzzy set theory and probability statistics [40], can describe the
fuzziness with membership function and the randomness via probability distribution.

Definition 2 (Li, Meng and Shi, [40]). Let U be a quantitative domain expressed by precise values, and C a
qualitative concept on the domain. If the quantitative value x (x ∈ U) is a random instantiation to C, whose
membership µ(x) ∈ [0, 1] for C is a random number with stable tendency:

µ : U → [0, 1], ∀x ∈ U, x 7→ µ(x). (3)

Then, the distribution of x on the domain is named as a cloud and each x is named as a droplet.
The normal cloud model is applicable and universal for it is based on normal distribution and on the Gauss

membership function [43].
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Definition 3 (Li and Du, [43]). Suppose that U is the universe of discourse and T is a qualitative concept in
U. If x(x ∈ U) is a random instantiation of concept T satisfying x ∼ N(Ex, En′2) and En′ ∼ N

(
En, He2)

and the certainty degree of x belonging to T satisfies µ = exp
(
− (x−Ex)2

2(En′)2

)
, then the distribution of x in the

universe U is called a normal cloud.
The cloud model can effectively integrate the randomness and fuzziness of concepts and describe the overall

quantitative property of a concept via Expectation Ex, Entropy En, and Hyper entropy He. If A is a cloud with
three numerical characteristics Ex, En, and He, then cloud A can be described as A(Ex, En, He). Li, Liu and
Gan [44] provided operation rules of clouds as follows. Assume that there are two clouds A(Ex1, En1, He1) and
B(Ex2, En2, He2), operations between cloud A and cloud B are given by:

(i) A + B =
(

Ex1 + Ex2,
√

En2
1 + En2

2,
√

He2
1 + He2

2

)
;

(ii) A− B =
(

Ex1 − Ex2,
√

En2
1 + En2

2,
√

He2
1 + He2

2

)
;

(iii) A× B =

(
Ex1 × Ex2,

√
(En1Ex2)

2 + (En2Ex1)
2,
√
(He1Ex2)

2 + (He2Ex1)
2
)

;

(iv) λA =
(

λEx1,
√

λEn1,
√

λHe1

)
;

(v) Aλ =
(

Ex1
λ,
√

λExλ−1
1 En1,

√
λExλ−1

1 He1

)
.

Figure 1 shows that fuzziness is about the extension range of x, such as [37, 62]. Randomness is
about the various cognitions for the DMs. In linguistic decision-making, there are occasions for which
different individuals attribute different meanings to a linguistic expression. The same individual may
even interpret the same linguistic expression differently in different situations. For instance, DM A
may believe the membership degree of 45 belonging to the “number near 40” is 0.8, whereas DM B
may regard it to be 0.85. Non-uniform cognition exists among the DMs. The process of aggregation of
linguistic information will be distorted owing to the lack of uniformity. The cloud model allows the
certainty degree of x to follow a probability distribution, which allows the distortion held by the DMs
in the aggregation process to be neutralized to a great extent [41].
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Figure 1. Cloud (50, 3.93, 0.1). 
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Figure 1. Cloud (50, 3.93, 0.1).

2.3. The CWAA Operator and CWGA Operator

Wang, Peng and Zhang [41] introduced the cloud model in LMCGDM and presented the
cloud weighted arithmetic averaging (CWAA) operator and cloud weight geometric averaging
(CWGA) operator.

Definition 4 (Wang, Peng and Zhang, [41]). Let Ω be the set of all clouds and Yi(Exi, Eni, Hei)

(i = 1, 2, . . . , n) be a subset of Ω. A mapping CWAA: Ωn → Ω is defined as the cloud-weighted arithmetic
averaging (CWAA) operator so that the following is true:

CWAAω(Y1, Y2, . . . , Yn) =
n

∑
i=1

wiYi, (4)
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Here W = (w1, w2, . . . , wn) is the associated weight vector of Yi(Exi, Eni, Hei) (i = 1, 2, . . . , n),

wi ∈ [0, 1] (i = 1, 2, . . . , n) and
n
∑

i=1
wi = 1.

Definition 5 (Wang, Peng and Zhang, [41]). Let Ω be the set of all clouds and Yi(Exi, Eni, Hei) (i =
1, 2, . . . , n) be a subset of Ω. A mapping CWGA: Ωn → Ω is defined as the CWGA operator, and the
following is true:

CWGAw(Y1, Y2, . . . , Yn) =
n

∏
i=1

Ywi
i (5)

Remark 2. The CWAA and CWGA operators characterize the fuzziness and randomness of languages with
cloud model, while they do not take into account the information about the relationship between the values
being fused.

3. An Improved Generating Cloud Method and Cloud Algorithms

This section provides an improved method to transform linguistic values into clouds, and define
some new cloud algorithms, such as cloud possibility degree and cloud support degree.

3.1. An Improved Generating Cloud Method

For an LMCGDM problem, natural languages generally include vague and imprecise information
which is too complex and ill-defined to describe by using conventional quantitative expressions, and
thus there is a barrier for transforming linguistic information into quantitative values. The cloud
model describes linguistic concepts via three numerical characteristics which realize the objective and
interchangeable transformation between qualitative concepts and quantitative values. Hence, it is
necessary to transform linguistic variables into clouds. The key of this transformation is to select a
transformation method. As for this, Wang and Feng [45] proposed a classical method for generating
five clouds on the basis of the golden ratio, which is equal of 1

2

(
1 +
√

5
)

.
Let n be the linguistic evaluation scale and U = [Xmin, Xmax] be an effective universe given by

the DMs. Assume that the intermediate cloud is expressed by Y0(Ex0, En0, He0). The adjacent clouds
around Y0(Ex0, En0, He0) are respectively expressed by:

Y−1(Ex−1, En−1, He−1), Y1(Ex1, En1, He1),
Y−2(Ex−2, En−2, He−2), Y2(Ex2, En2, He2),

. . . . . . ,
Y−(n−1)/2(Ex−(n−1)/2, En−(n−1)/2, He−(n−1)/2), Y(n−1)/2(Ex(n−1)/2, En(n−1)/2, He(n−1)/2).

The numerical characteristics of five clouds are shown as follows (Wang and Feng, [45]):

Ex0 = (Xmin + Xmax)/2, En−1 = En1 = 0.382 · (Xmax − Xmin)/6, En0 = 0.618En1,
En−2 = En2 = En1/0.618, Ex−1 = Ex0 − 0.382 · (Xmin + Xmax)/2, Ex−2 = Xmin, Ex2 = Xmax,
He−1 = He1 = He0/0.618, Ex1 = Ex0 + 0.382 · (Xmin + Xmax)/2, He−2 = He2 = He1/0.618,

Here He0 is given beforehand.
However, we find that there are three weaknesses in the method of Wang and Feng [45].

• First, the expectation of clouds may exceed the range of the universe U. For example,
if U = [10, 20], then Ex−1 = Ex0 − 0.382 Xmin+Xmax

2 = 9.27 < 10, and Ex1 = Ex0 +

0.382 Xmin+Xmax
2 = 20.73 > 20.

• Second, the method of Wang and Feng [45] can not be widely used for it is only limited to five
labels of the linguistic evaluation scale.
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• And third, the method cannot effectively distinguish the linguistic evaluation scale over the
symmetrical interval. For instance, if U = [−a, a], a > 0, then the expectation values Ex−1 =

Ex1 = Ex0 = 0, which results in the linguistic evaluation scale undistinguished.

To overcome the above weaknesses, we present an improved method to transform linguistic
variables into clouds by means of the cloud construction principle, which is shown as follows.

Procedure for transforming linguistic variables into clouds:
Step 1. Calculate Ex

Ex0 = (Xmin + Xmax)/2, Exi = Ex0 + 0.382i
(

Xmax−Xmin
2

)
/ (n−3)

2 , Ex(n−1)/2 = Xmax

Ex−(n−1)/2 = Xmin, Ex−i = Ex0 − 0.382i
(

Xmax−Xmin
2

)
/ (n−3)

2 , (1 ≤ i ≤ n−3
2 ).

Step 2. Compute En

En−1 = En1 = 0.382× (Xmax − Xmin)/6, En0 = 0.618En+1, En−i = Eni =
Eni−1

0.618
, (2 ≤ i ≤ n− 1

2
).

Step 3. Calculate He
He−i = He+i = Hei−1/0.618, 1 ≤ i ≤ (n− 1)/2, here He0 is given beforehand.
The following Theorem proves that our method can overcome the weaknesses of method given

by Wang and Feng [45].

Theorem 1. Let n be the linguistic evaluation scale and U = [Xmin, Xmax] be a valid
universe given by the DMs. If Yi(Exi, Eni, Hei) (i = 1, 2, . . . , n) are the cloud in U,
then Exi 6= Exj (i 6= j), (i, j = −(n− 1)/2, . . . , 0 , . . . , (n− 1)/2), and Xmin ≤ Exi ≤
Xmax (i = −(n− 1)/2, . . . , 0, . . . , (n− 1)/2).

Proof.

(1) First, we prove that the expectations of clouds are different from each other.

Let lU = Xmax − Xmin 6= 0, according to Step 1 of the procedure for transforming linguistic
variables into clouds, we get:

0.382× (Xmax − Xmin)/2 = 0.382lU/2 6= 0.

Therefore,

Exi = Ex0 + 0.382i× lU/(n− 3) 6= Exj = Ex0 + 0.382j× lU/(n− 3) (i 6= j), (6)

Ex−i = Ex0 − 0.382i× lU/(n− 3) 6= Ex−j = Ex0 − 0.382j× lU/(n− 3) (i 6= j). (7)

It follows from expressions (6) and (7) that expectations of clouds are different from each other.

(2) Second, we prove that all the expectations of clouds fall within the range of the universe.

From Step 1 of the procedure for transforming linguistic variables into clouds, we see that:

Ex1 = min{Exi},Ex(n−1)/2 = max{Exi}, (1 ≤ i ≤ (n− 1)/2).

Since Ex1 = Xmax −
(
0.5− 0.382

n−3
)
× lU , it can be concluded that:

Xmin < Ex1 < Xmax. (8)
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Similarly, note that Ex(n−1)/2 = Xmax − 0.309× lU , we then have:

Xmin < Ex (n−1)
2

< Xmax. (9)

Therefore, the expectations of clouds Yi

(
1 ≤ i ≤ n−1

2

)
fall into the range of the universe.

By the same token, it is easy to verify that the expectations of clouds Y−i

(
1 ≤ i ≤ n−1

2

)
fall into

the range of the universe. Based on the above analysis, we can conclude that all the expectations of
clouds fall into the range of the universe.

Remark 3. Theorem 1 shows that the improved generating cloud method can guarantee that all the expectations
fall into the range of the universe, and meanwhile this method can effectively distinguish the linguistic evaluation
scale over the symmetrical interval and transform linguistic term set of any odd labels into cloud rather than
only five labels.

Example 1. Let U = [10, 20], He0 = 0.05 and the linguistic assessment set H = {h−2 = very poor, h−1 =

poor, h0 = f air, h1 = good, h2 = very good}. Then the five clouds can be obtained by using the classical
method and the improved generating cloud method, respectively.

• The classical method given by Wang and Feng [45]:

Y−2 = (10.0, 1.031, 0.13), Y−1 = (9.27, 0.637, 0.08), Y0 = (15.0, 0.394, 0.05),
Y2 = (20.73, 0.637, 0.08), Y2 = (20.0, 1.031, 0.13).

• The improved generating cloud method:

Y′−2 = (10.0, 1.031, 0.13), Y′−1 = (13.1, 0.637, 0.08), Y′0 = (15.0, 0.394, 0.05),
Y′1 = (16.9, 0.637, 0.08), Y′2 = (20.0, 1.031, 0.13).

From Example 1, we find that some expectations of clouds obtained by the classical method
exceed the range of the universe, e.g., Ex−1 = 9.27 < 10, Ex1 = 20.73 > 20.0. In particular, we see
that Ex1 > Ex2, En1 < En2, He1 < He2. That is, cloud Y1 is absolutely better than cloud Y2. This is
obviously inconsistent with the fact that linguistic variable h2 is absolutely better than h1. Fortunately,
these weaknesses have been corrected by the improved generating cloud method.

3.2. New Algorithms of the Cloud Model

This subsection defines the cloud distance, cloud possibility degree and cloud support degree,
which will be used for cloud comparison and the weight determination, respectively.

Based on “3En rules” of cloud model, the distance between clouds is defined as follows.

Definition 6. Let Y1 = Y1(Ex1, En1, He1) and Y2 = Y2(Ex2, En2, He2) be two clouds in the universe U.
Then, the distance d(Y1, Y2) of these clouds Y1 and Y2 is given by:

d(Y1, Y2) =
1
2

(
d(Y1, Y2) + d(Y1, Y2)

)
, (10)

where d(Y1, Y2) =
∣∣∣(1− 3

√
En2

1 + He2
1/Ex1)Ex1 − (1− 3

√
En2

2 + He2
2/Ex2)Ex2

∣∣∣, and d(Y1, Y2) =∣∣∣(1 + 3
√

En2
1 + He2

1/Ex1)Ex1− (1 + 3
√

En2
2 + He2

2/Ex2)Ex2

∣∣∣.
Proposition 1. The cloud distance has the following properties:
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(i) d(Y1, Y2) ≥ 0;
(ii) d(Y1, Y2) = d(Y2, Y1);
(iii) For ∀ Y3 ∈ F, d(Y1, Y3) ≥ d(Y1, Y2) + d(Y2, Y3).

where F stands for the collection of all clouds in U.

Proof. See Appendix A.

Remark 4. If En1 = He1 = En2 = He2 = 0, then the cloud will degenerate into a real number, in this case,
d(Y1, Y2) = |Ex1 − Ex2|.

Based on the cloud distance, a cloud possibility degree can be defined as follows.

Definition 7. Let Y1 = Y1(Ex1, En1, He1) and Y2 = Y2(Ex2, En2, He2) be two clouds in universe U, and
Y∗ = Y(maxExi, minEni, minHei) (i = 1, 2) be the positive ideal cloud, then the cloud possibility degree is
defined as:

p(Y1 ≥ Y2) =
d(Y∗, Y2)

d(Y∗, Y1) + d(Y∗, Y2)
, (11)

where d(Y∗, Y1) and d(Y∗, Y2) are the distances between Y∗ and Y1, Y2, respectively.

Definition 7 shows that the cloud possibility degree p(Y1 ≥ Y2) is described by the distance
d(Y∗, Y1) and d(Y∗, Y2). The larger the distance between Y2 and Y∗ is, the larger the cloud possibility
degree p(Y1 ≥ Y2) is. The cloud possibility degree can be used for clouds comparison.

From Definition 7, we can easily obtain the following properties of cloud possibility degree.

Proposition 2. Let Y1 = Y1(Ex1 , En1 , He1), Y2 = Y2(Ex2, En2, He2) and Y3 = Y3(Ex3, En3, He3) be
three cloud variables. Then, the cloud possibility degree has the following properties:

(i) 0 ≤ p(Y1 ≥ Y2) ≤ 1;
(ii) p(Y1 ≥ Y2) = 1⇔ Y∗ = Y1 ;
(iii) p(Y1 ≥ Y2) = 0⇔ Y∗ = Y2 ;
(iv) p(Y1 ≥ Y2) + p(Y1 ≤ Y2) = 1, particularly, p(Y1 ≥ Y1) = 0.5;
(v) if p(Y1 ≥ Y2) ≥ 1 and p(Y2 ≥ Y3) ≥ 1 , then p(Y1 ≥ Y3) ≥ 1;
(vi) if p(Y1 ≥ Y2) = 1, then p(Y1 ≥ Y3) ≥ p(Y2 ≥ Y3).

To rank clouds Yi(i = 1, 2, . . . , m), following Wan and Dong [46] who ranked interval-valued
intuitionistic fuzzy numbers via possibility degree, we can construct a fuzzy complementary matrix of cloud
possibility degree as follows:

P =


p11 p12 · · · p1m
p21 p22 · · · p2m

...
pm1 pm2 · · · pmm

, (12)

where Y∗ = Y(maxExi, minEni, minHei), pij ≥ 0, pij + pji = 1 and pii = 0.5. Then, the ranking vector
V = (v1, v2, . . . , vm)

T is determined by:

vi =
1

m(m− 1)

(
m

∑
j=1

pij +
m
2
− 1

)
(i = 1, 2, . . . , m), (13)

and consequently, the clouds Yi(i = 1, 2, . . . , m) can be ranked in descending order via values of vi
(i = 1, 2, . . . , m). That is, the smaller the value of vi is, the larger the corresponding order of Yi
(i = 1, 2, . . . , m) is.
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The advantage of utilizing the vector V = (v1, v2, · · · , vm)
T for ranking clouds lies in the fact that fully

uses the decision-making information and makes the calculation simple.

Proposition 3. Suppose that Y1(Ex1, En1, He1) and Y2(Ex2, En2, He2) are two clouds in the universe U, if
Ex1 ≥ Ex2, En1 ≤ En2, He1 ≤ He2, then Y1 ≥ Y2.

Proof. See Appendix A.

Example 2. Let Y1(3.80, 0.663, 0.09), Y2(4.30, 1.025, 0.13), Y3(7.58, 1.320, 0.17), Y4(4.76, 0.676, 0.09)
be four normal clouds, and these clouds can be ranked by the values of vi(i = 1, 2, . . . , m).

Note that the positive ideal cloud Y∗ = Y(7.58, 0.663, 0.09) and according to Equation (10), we have that
d(Y∗, Y1) = 3.78 , d(Y∗, Y2) = 3.28, d(Y∗, Y3) = 1.96 and d(Y∗, Y4) = 2.82.

Consequently, based on Equation (11), the possibility degree matrix can be derived as follows:

P =


0.500 0.465 0.344 0.427
0.535 0.500 0.377 0.462
0.656 0.623 0.500 0.587
0.573 0.538 0.413 0.500

.

According to Equation (13), we further derive the ranking vector V = (0.228, 0.240, 0.280, 0.252)T .
So the ranking of the normal clouds is: Y3 > Y4 > Y2 > Y1.

Following Yager [37], we can define the cloud support degree.

Definition 8. Let F be the set of all clouds and support (hereafter, Sup) a mapping from F× F to R. For any Yα

and Yβ, if the term Sup satisfies:

(i) Sup(Ya, Yβ) ∈ [0, 1];

(ii) Sup(Ya, Yβ) = Sup(Yβ, Ya);

(iii) Sup(Ya, Yβ) ≥ Sup(Yi, Yj) if d(Yα, Yβ) < d(Yi, Yj). where d is a distance measure for clouds.

Then Sup(Ya, Yβ) is called the support degree for Yα from Yβ.
Note that Sup measure is essentially a similarity index, meaning that the greater the similarity is, the closer

the two clouds are, and consequently the more they support each other. The support degree will be used to
determine the weights of aggregation operator.

4. Cloud Generalized Power Ordered Weighted Average Operator

For an LMCGDM problem, when the linguistic information is converted to clouds, an aggregation
step must be performed for a collective evaluation. In this section, we provide a cloud generalized
power ordered weighted average (CGPOWA) operator and study its family which includes many
different operators.

Following LPOWA operator of Xu, Merigó and Wang [38] and using the cloud support degree,
we can define a cloud generalized power ordered weighted average (CGPOWA) operator as follows.

Definition 9. Let F be the set of all clouds and {Yi(Exi, Eni, Hei)|i = 1, 2, . . . , n} be a subset of
F. A mapping CGPOWA : Fn → F is defined as a cloud generalized power ordered weighted average
(CGPOWA) operator,

f (Y1, Y2, . . . , Yn) =

(
n

∑
j=1

wj(Yj)
λ

)1/λ

, (14)
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where λ is a parameter satisfying λ ∈ (0, +∞),

wj = ϕ
( Rj

TV

)
− ϕ

( Rj−1
TV

)
, Rj =

j
∑

i=1
Vi, TV =

n
∑

i=1
Vi, Vi = 1 + T(Yi), T(Yi) =

n
∑

j = 1
j 6= i

Sup
(
Yi, Yj

)
, (15)

and Yj is the jth largest cloud of Yi for all i = 1, 2, · · · , n, the function ϕ : [0, 1]→ [0, 1] is a BUM function
which satisfies ϕ(0) = 0, ϕ(1) = 1 and ϕ(x) ≥ ϕ(y) if x > y.

There is a noteworthy theorem that can be deduced from the definition given above.

Theorem 2. The CGPOWA operator is still a cloud and such that:

f (Y1, Y2, . . . , Yn) =((
n
∑

i=1
wi(Exi)

λ
) 1

λ

,

√
n
∑

i=1
wi

(
(Exi)

λ−1Eni

)2
×
(

n
∑

i=1
wi(Exi)

λ
) 1

λ−1
,

√
n
∑

i=1
wi

(
(Exi)

λ−1Hei

)2
×
(

n
∑

i=1
wi(Exi)

λ
) 1

λ−1
)

.
(16)

Proof. From operational rules of the cloud given by Li, Liu and Gan [44], we have

wiYλ
i =

(
wi(Exi)

λ,
√

λwi(Exi)
λ−1Eni,

√
λwi(Exi)

λ−1Hei

)
,

and
n

∑
i=1

wiYλ
i =

(
n

∑
i=1

wi(Exi)
λ,

√
λ

n

∑
i=1

wi

(
(Exi)

λ−1Eni

)2
,

√
λ

n

∑
i=1

wi

(
(Exi)

λ−1Hei

)2
)

.

Therefore, from Definition 9, we derive that

f (Y1, Y2, . . . , Yn) =((
n
∑

i=1
wi(Exi)

λ
) 1

λ

,

√
n
∑

i=1
wi

(
(Exi)

λ−1Eni

)2
×
(

n
∑

i=1
wi(Exi)

λ
) 1

λ−1
,

√
n
∑

i=1
wi

(
(Exi)

λ−1Hei

)2
×
(

n
∑

i=1
wi(Exi)

λ−1
) 1

λ−1
)

.

The GPOWA operator given in Definition 9 has the following properties.

Proposition 4.

(i) (Idempotency). If Yi = Y = (Ex, En, He) for i = 1, 2, . . . , n, then f (Y1, Y2, . . . , Yn) = Y.

(ii) (Commutativity). If Ỹi is any permutation of Yi, then f (Y1, Y2, . . . , Yn) = f
(

Ỹ1, Ỹ2, · · · , Ỹn

)
.

(iii) (Boundedness). If P(Yi ≥ Y1) = 1 and P(Yn ≥ Yi) = 1 (i = 1, 2, . . . , n), we then have P(Y ≥ Y1) = 1,
and P(Yn ≥ Y) = 1.

Proof. See Appendix A.

Remark 5. The CGPOWA operator possesses the following attractive features: (a) it considers the importance of
the ordered position of each input argument, here each input argument is a cloud; (b) it has the basic features of
LPOWA operator, for instance, it considers the relationships between the arguments and gauges the similarity
degrees of the arguments; (c) the weighting vectors associated with the CGPOWA operator can be determined
by Equation (15), which provides an objective weighting model based on the objective data rather than relying
on the preferences and knowledge of the DMs, moreover, it will reduce the influence of those unduly high (or
low) arguments on the decision result by using the support measure to assign them lower weights; (d) the
CGPOWA operator considers the decision arguments and their relationships, which are neglected by existing
cloud aggregation operators; in addition, it can describe the randomness of linguistic terms, whereas linguistic
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power aggregation operators cannot do this work; (e) if the linguistic information is converted to a sequence of
random variables with certain distribution and moment properties, it is possible to formulate the CGPOWA
operator in an abstract stochastic model.

Table 1 shows that the CGPOWA operator can degenerate into many aggregation operators
(here ϕ(x) = x), such as cloud power ordered weighted quadratic average (CPOWQA) operator,
cloud power ordered weighted average (CPOWA) operator, cloud power ordered weighted geometric
average(CPOWGA) operator, CGPA operator, CGM operator, cloud power weighted quadratic average
(CPWQA) operator, CWAA and CWGA operator (See Appendix B for a proof).

Table 1. Family of CGPOWA operator.

No. λ Formulation Name of Operator

1 λ = 2 f (Y1, Y2, . . . , Yn) =

(
n
∑

i=1
ωiYi

2
)1/2

CPOWQA operator

2 λ = 1 f (Y1, Y2, . . . , Yn) =
n
∑

i=1
ωiYi CPOWA operator

3 λ→ 0 f (Y1, Y2, . . . , Yn) =
n
∑

i=1
(Yi)

ωi CPOWGA operator

4 - f (Y1, Y2, . . . , Yn) =

 n
∑

i=1

1+T(Yi)
n
∑

i=1
(1+T(Yi))

Yi
λ

1/λ

CGPA operator

5 Sup
(

Yi, Yj

)
= k(i 6= j)

f (Y1, Y2, . . . , Yn) =

(
n
∑

i=1

1
n Yi

λ

)1/λ

CGM operator

6 λ = 2

f (Y1, Y2, . . . , Yn) =√ n
∑

i=1
wi(Exi)

2,

√√√√√ n
∑

i=1
wi(Exi Eni)

2

n
∑

i=1
wi(Exi)

2
,

√√√√√ n
∑

i=1
wi(Exi Hei)

2

n
∑

i=1
wi(Exi)

2

 CPWQA operator

7 λ = 1 f (Y1, Y2, . . . , Yn) =

(
n
∑

i=1
wiExi,

√
n
∑

i=1
wi(Eni)

2,

√
n
∑

i=1
wi(Hei)

2

)
CWAA operator

8 λ→ 0
f (Y1, Y2, · · · , Yn) =(

n
∏
i=1

(Exi)
wi ,

√
n
∑

i=1
wi

(Eni)
2

Exi
×

n
∏
i=1

(Exi)
wi ,

√
n
∑

i=1
wi

(Eni)
2

Exi
×

n
∏
i=1

(Exi)
wi

)
CWGA operator

By taking different weighting vector W = (w1, w2, · · · , wn)
T in CGPOWA operator, we can

obtain some other aggregation operators such as the maximum operator, the minimum operator,
the cloud generalized mean operator and the Window-CGPOWA operator (See Table 2).

Table 2. Particular cases of CGPOWA operator.

No. W Formulation Remarks

1 (1, 0, · · · , 0)T f (Y1, Y2, . . . , Yn) = Y1 The maximum operator
2 (0, 0, · · · , 1)T f (Y1, Y2, . . . , Yn) = Yn The minimum operator

3 (1/n, 1/n, · · · , 1/n)T f (Y1, Y2, . . . , Yn) =

(
n
∑

i=1

1
n Yλ

i

)1/λ

The cloud generalized mean operator

4
w1 = α,

wn = 1− α,
wi = 0 (i 6= 1, n)

f (Y1, Y2, . . . , Yn) =
(

αY1
λ + (1− α)Yλ

n

)1/λ
Y1 = max

1≤i≤n
{Yi} , Yn = min

1≤i≤n
{Yi} .

It includes the maximum and
minimum aggregation operators

5
wi = 1/p

(k ≤ i ≤ k + p− 1), wi = 0
(i < k and i ≥ k + p)

Window− CGPOWA =

(
k+p−1

∑
i=k

1
p Yi

λ

)1/λ

Window-CGPOWA operator

6 w n
2
= w n

2 +1 = 1/2,
wi = 0

(i 6= n/2, n/2 + 1) f (Y1, Y2, . . . , Yn) =
(

1
2 Yn/2

λ + 1
2 Yλ

n/2+1

)1/λ

n is an even number, Yn
2

is the n/2th
largest of Yi(i = 1, 2, · · · , n); Yn

2 +1 is
the (n/2 + 1)th largest of

Yi(i = 1, 2, · · · , n)

7 w(n+1)/2 = 1/2,
wi = 0

(i 6= (n + 1)/2)
f (Y1, Y2, . . . , Yn) = Y(n+1)/2

n is an odd number, Yn+1
2

is the
(n + 1)/2th largest of
Yi(i = 1, 2, · · · , n)

5. An Approach for LGDM Based on the CGPOWA Operator

The LMCGDM problem is the process of finding the best alternative from all of the feasible
alternatives which can be evaluated according to a number of criteria values with linguistic information.
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In general, LMCGDM problem includes multiple experts (or the DMs), multiple decision criteria and
multiple alternatives.

To better understand the procedure for solving LMCGDM problem on the basis of a cloud
model, we develop a general framework for LMCGDM aggregation procedure (see, Figure 2) which
contains two stages: (i) individual aggregation, which is a MCDM process for each DM; and (ii) group
aggregation, which is a multiple experts decision-making process composed by multiple experts
and multiple alternatives. For individual aggregation, we need to determine the weights of criteria,
and then aggregate the criteria values of each alternative into one collective value by means of the
CGPOWA operator and consequently, we derive a collective decision matrix composed by the DMs
and alternatives; For group aggregation, we need to determine the weights of the DMs based on the
collective decision matrix, and further aggregate the collective values of each alternative into one result
by using the CGPOWA operator. Finally, we can assess the alternatives.
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Figure 2. General Framework of the CGPOWA Operator for an LMCGDM Procedure.

We develop a new algorithm for LMCGDM based on the improved generating cloud method
and CGPOWA operator with the weight information being completely unknown. The algorithm is
summarized in a simple algorithm through six steps. We first describe the algorithm inputs.

Input data of our new LMCGDM algorithm. Let A = {A1, · · · , Ai, · · · , Am} be the set of m
alternatives, C =

{
c1, · · · , cj, · · · , cn

}
be the set of n criteria, and D = {d1, · · · , dk, · · · , dt} be the set

of t DMs. Assume that the DM dk provides his/her preference value b̃(k)ij for the alternative Ai ∈ A

w. r. t. the criterion cj ∈ C, where b̃(k)ij takes the form of linguistic variable, and consequently we can

construct a decision matrix B̃k =
(

b̃(k)ij

)
m×n

for dk ∈ D. We summarize all input data below:

∏ =
{

A, C, D, B̃k
}

(17)
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Given the input data ∏ in (17), our objective is to determine the optimal alternative A∗ ∈ A. We
give a new LMCGDM approach below.

An LMCGDM algorithm.
Step 1. Transform the linguistic information into clouds.
Transform the linguistic decision matrix B̃k =

(
b̃(k)ij

)
m×n

into a cloud decision matrix

R̂k =
(

r̂(k)ij

)
m×n

(k = 1, 2, · · · , t) by applying the improved generating cloud method developed in

Section 3.
Step 2. Determine the weights of criteria.
Calculate the cloud support degrees:

Sup
(

r̂k
sj, r̂k

qj

)
= 1−

2d
(

r̂k
sj , r̂k

qj

)
n
∑

q = 1
q 6= s

d
(

r̂k
sj , r̂k

qj

)
+

n
∑

s = 1
s 6= q

d
(

r̂k
qj , r̂k

sj

) , q = 1, 2, · · · , n (18)

which satisfy the support conditions (i)–(iii) in Definition 8. Here, the cloud distance measure is
expressed by Equation (10), and Sup

(
r̂k

sj, r̂k
qj

)
denotes the similarity between the sth largest cloud

preference value r̂k
sj and the qth largest cloud preference value r̂k

qj. We further calculate the weights of
criteria by means of Equation (15).

Step 3. Aggregate the criteria values of each alternative into a collective value.
Utilize Equation (14) to aggregate all cloud decision matrices R̂k =

(
r̂(k)ij

)
m×n

(k = 1, 2, · · · , t)

into a collective cloud decision matrix R =
(
rij
)

m×t.
Step 4. Calculate the weights of the DMs.
Calculate the cloud support degrees:

Sup
(

rhj, r f j

)
= 1− 2d(rhj , r f j)

n
∑

f = 1
f 6= h

d(rhj , r f j)+
n
∑

h = 1
h 6= f

d(r f j , rhj)
, f = 1, 2, · · · , t (19)

which satisfy the support conditions (i)–(iii) in Definition 8. Here, the cloud distance measure is
calculated by Equation (10). According to Equation (15), we can calculate the weights of the DMs.

Step 5. Aggregate the collective values of each alternative into one result.
Utilize Equation (14) to compute the collective overall preference value ri of the alternative Ai.
Step 6. Rank the alternatives and choose the best one(s).
According to the cloud possibility degree (11) and the ranking vector (13), we can rank the

collective overall preference values ri(i = 1, 2, · · · , m) in descending order and consequently select
the best one in the light of the collective overall preference values ri (i = 1, 2, · · · , m).

Remark 6. Compared with the traditional linguistic approaches (e.g., linguistic membership function model,
linguistic symbolic model, 2-tuple linguistic model) and the existing cloud aggregating method (e.g., [41]),
the attractive features of our approach are as follows.

(a) The three traditional LMCGDM approaches only use a uniform granular linguistic assessment scale, while
ours takes a multi-granular linguistic assessment scale of great psychological sense. In other words, when
assessing the alternatives, these three traditional approaches only regard the average level as the unique
criterion, which leads to the evaluations rough and one-sided. Our method, however, considers not only the
average level but also the fluctuation and stability of qualitative concepts by using En and He, respectively.
Such statements can also be examined by the numerical analysis in Section 6.2.

(b) In addition, the corresponding aggregation operators for the three traditional LMCGDM methods are
the linguistic power average (LPA) operator, triangular fuzzy weighted averaging (TFWA) operator
and 2-tuple weighted averaging (TWA) operator, respectively. Note that these operators have their own
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weaknesses when describing the randomness, while our aggregation operator can effectively reduce the
loss and distortion of information in aggregating process, and correspondingly improve the precision of
the results.

For instance, LPA and TWA operators cannot precisely depict the randomness because when converting the
linguistic variables into real numbers, they directly transform the random decision-making information into
the precise domain, therefore, partial linguistic information is lost. TFWA operator can describe the fuzziness
whereas it cannot describe the randomness.

(c) Compared with the cloud aggregating method (cf., [41]), our method provides a completely objective
weighting model by using the cloud support degree, while the weights in Wang et al. [41] are subjectively
given by the DMs which may result in different ranking results if the DMs provide different weight vectors.
In addition, the CGPOWA operator considers the relationships between the arguments provided by the
DMs, while the cloud aggregating operators in Wang et al. [41] do not.

(d) Our method presents a simple measure for comparing different clouds by the cloud possibility degree
Equation (11) and the ranking vector Equation (13), which requires no knowledge about the distribution of
cloud drops, this is different from the score function [41] which needs to know the distribution of cloud
drops. This is also an attractive feature because in most case the distribution of cloud drops is unknown
and it is rigid to acquire cloud drops.

6. Illustrative Example

This section provides a numerical example to illustrate the application of the approach proposed
in Section 5 and makes a comparative study to examine the validity of our approach.

6.1. An Investment Selection Problem

Following [41], we assume that there is an investment company who wants to invest a sum
of money in another company. There are five possible alternatives for investing the money: a car
company A1, a food company A2, a computer company A3, an arms company A4, and a TV company
A5. The investment company will make a decision according to the following six criteria: financial risk
c1; technical risk c2; production risk c3; market risk c4; management risk c5; and environmental
risk c6. The five possible alternatives Ai(i = 1, · · · , 5) are evaluated by the linguistic term set
H = {h−3 = verypoor, h−2 = poor, h−1 = mediumpoor, h0 = fair, h1 = mediumgood,
h2 = good, h3 = verygood} used by three DMs dk(k = 1, 2, 3) for these six criteria. The linguistic
decision matrix is shown in Table 3.

Table 3. Linguistic Decision matrix B̃.

DMs Alternatives c1 c2 c3 c4 c5 c6

d1

A1 h−1 h0 h−2 h−2 h−3 h−1
A2 h−2 h−3 h1 h1 h−2 h0
A3 h2 h1 h2 h3 h0 h2
A4 h−1 h−2 h0 h1 h−2 h−1
A5 h−1 h−2 h0 h−2 h−1 h2

d2

A1 h0 h−2 h−1 h−1 h0 h−2
A2 h−1 h−2 h0 h−1 h2 h0
A3 h1 h3 h1 h3 h1 h2
A4 h−1 h−2 h1 h−1 h1 h0
A5 h3 h−3 h−2 h0 h−1 h−3

d3

A1 h1 h−1 h−2 h0 h−3 h−3
A2 h−2 h1 h−1 h1 h0 h0
A3 h2 h3 h1 h3 h1 h2
A4 h−2 h2 h−1 h0 h1 h−1
A5 h0 h−2 h0 h−2 h−1 h−3

To simplify the calculation, throughout the numerical analysis, we assume that ϕ(x) = x, λ = 2
in CGPOWA operator, and that the universe U = [0, 10] and He0 = 0.05 in the improved generating
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cloud method. Based on the approach developed in Section 5 and the given parameters, the order of
enterprises can be ranked by applying MATLAB or Lingo software package.

Procedures of LMCGDM based on the cloud model.
Step 1. Transform the linguistic decision matrix into the corresponding cloud decision matrix R̂

by using the new cloud generating method. (See Table 4)

Table 4. Cloud decision matrix R̂.

DMs and
Alternatives c1 c2 c3 c4 c5 c6

d1

A1 (4.05, 0.637, 0.08) (5.00, 0.394, 0.05) (3.09, 1.031, 0.13) (3.09, 1.031, 0.13) (0.00, 1.668, 0.21) (4.05, 0.637, 0.08)
A2 (3.09, 1.031, 0.13) (0.00, 1.668, 0.21) (5.96, 0.637, 0.08) (5.96, 0.637, 0.08) (3.09, 1.031, 0.13) (5.00, 0.394, 0.05)
A3 (6.93, 1.031, 0.13) (5.96, 0.637, 0.08) (6.93, 1.031, 0.13) (10.0, 1.668, 0.21) (5.00, 0.394, 0.05) (6.93, 1.031, 0.13)
A4 (4.05, 0.637, 0.08) (3.09, 1.031, 0.13) (5.00, 0.394, 0.05) (5.96, 0.637, 0.08) (3.09, 1.031, 0.13) (4.05, 0.637, 0.08)
A5 (4.05, 0.637, 0.08) (3.09, 1.031, 0.13) (5.00, 0.394, 0.05) (3.09, 1.031, 0.13) (4.05, 0.637, 0.08) (6.93, 1.031, 0.13)

d2

A1 (5.00, 0.394, 0.05) (3.09, 1.031, 0.13) (4.05, 0.637, 0.08) (4.05, 0.637, 0.08) (5.00, 0.394, 0.05) (3.09, 1.031, 0.13)
A2 (4.05, 0.637, 0.08) (3.09, 1.031, 0.13) (5.00, 0.394, 0.05) (4.05, 0.637, 0.08) (6.93, 1.031, 0.13) (5.00, 0.394, 0.05)
A3 (5.96, 0.637, 0.08) (10.0, 1.668, 0.21) (5.96, 0.637, 0.08) (10.0, 1.668, 0.21) (5.96, 0.637, 0.08) (6.93, 1.031, 0.13)
A4 (4.05, 0.637, 0.08) (3.09, 1.031, 0.13) (5.96, 0.637, 0.08) (4.05, 0.637, 0.08) (5.96, 0.637, 0.08) (5.00, 0.394, 0.05)
A5 (10.0, 1.668, 0.21) (0.00, 1.668, 0.21) (3.09, 1.031, 0.13) (5.00, 0.394, 0.05) (4.05, 0.637, 0.08) (0.00, 1.668, 0.21)

d3

A1 (5.96, 0.637, 0.08) (4.05, 0.637, 0.08) (3.09, 1.031, 0.13) (5.00, 0.394, 0.05) (0.00, 1.668, 0.21) (0.00, 1.668, 0.21)
A2 (3.09, 1.031, 0.13) (5.96, 0.637, 0.08) (4.05, 0.637, 0.08) (5.96, 0.637, 0.08) (5.00, 0.394, 0.05) (5.00, 0.394, 0.05)
A3 (6.93, 1.031, 0.13) (10.0, 1.668, 0.21) (5.96, 0.637, 0.08) (10.0, 1.668, 0.21) (5.96, 0.637, 0.08) (6.93, 1.031, 0.13)
A4 (3.09, 1.031, 0.13) (6.93, 1.031, 0.13) (4.05, 0.637, 0.08) (5.00, 0.394, 0.05) (5.96, 0.637, 0.08) (4.05, 0.637, 0.08)
A5 (5.00, 0.394, 0.05) (3.09, 1.031, 0.13) (5.00, 0.394, 0.05) (3.09, 1.031, 0.13) (4.05, 0.637, 0.08) (0.00, 1.668, 0.21)

Step 2. Calculate the weights of criteria by means of Equation (15). (See Table 5)

Table 5. The weights of criteria.

DMs Alternatives c1 c2 c3 c4 c5 c6

d1

A1 0.172 0.164 0.171 0.171 0.150 0.172
A2 0.170 0.154 0.168 0.168 0.170 0.171
A3 0.175 0.166 0.175 0.150 0.160 0.175
A4 0.173 0.166 0.166 0.157 0.166 0.173
A5 0.173 0.167 0.167 0.167 0.173 0.153

d2

A1 0.165 0.163 0.172 0.172 0.165 0.163
A2 0.172 0.160 0.172 0.172 0.153 0.172
A3 0.172 0.157 0.172 0.157 0.172 0.169
A4 0.170 0.160 0.165 0.170 0.165 0.171
A5 0.154 0.166 0.172 0.170 0.172 0.166

d3

A1 0.164 0.171 0.171 0.169 0.162 0.162
A2 0.155 0.167 0.164 0.167 0.173 0.173
A3 0.172 0.159 0.169 0.159 0.169 0.172
A4 0.162 0.158 0.172 0.171 0.165 0.172
A5 0.168 0.171 0.168 0.171 0.171 0.151

Step 3. Aggregate the criteria values of each alternative into a collective value by using
Equation (14). (See Table 6)

Table 6. Collective cloud decision matrix R.

Alternatives DM (d1) DM (d2) DM (d3)

A1 (3.61, 0.701, 0.09) (4.12, 0.636, 0.09) (3.81, 0.638, 0.08)
A2 (4.41, 0.678, 0.09) (4.81, 0.752, 0.09) (4.97, 0.598, 0.08)
A3 (7.07, 1.195, 0.15) (7.61, 1.337, 0.17) (7.77, 1.356, 0.17)
A4 (4.31, 0.680, 0.09) (4.80, 0.635, 0.08) (4.99, 0.777, 0.10)
A5 (4.51, 0.833, 0.11) (4.91, 1.387, 0.17) (3.80, 0.639, 0.08)



Symmetry 2017, 9, 156 18 of 25

Step 4. Calculate the weights of the DMs by means of Equation (15). (See Table 7)

Table 7. The weights of the DMs.

Alternatives DM (d1) DM (d2) DM (d3)

A1 0.330 0.307 0.363
A2 0.332 0.344 0.323
A3 0.289 0.364 0.346
A4 0.321 0.350 0.329
A5 0.361 0.298 0.341

Step 5. Utilize Equation (14) to compute the collective overall preference value ri of the alternative Ai.

r1 : Y1(3.85, 0.656, 0.08), r2 : Y2(4.73, 0.679, 0.09), r3 : Y3(7.52, 1.309, 0.16),
r4 : Y4(4.72, 0.702, 0.09), r5 : Y5(4.41, 1.037, 0.13).

Step 6. Rank the alternatives and choose the best one(s).
From Step 5, we can get the positive ideal cloud Y∗ = Y(7.52, 0.656, 0.08). Then, the ranking vector

is derived by Equations (11) and (13): V = (0.1836, 0.2006, 0.2216, 0.2003, 0.1939)T . And consequently,
the rank of the clouds is: r3 > r4 > r2 > r5 > r1. The ranking order in the light of the overall collective
preference values ri (i = 1, 2, 3, 4, 5) is:

A3 � A4 � A2 � A5 � A1.

Thus, the best investment alterative is the computer company A3, which is in accordance with the
result of Wang et al. [41]. However, compared with the cloud aggregating method, our approach has
the following features:

(1) As for the weighting method, we provide an objective weighting model based on the cloud
support degree, while the weights in Wang et al. [41] are subjectively given by the DMs.

For example, Wang et al. [41] supposed that the weights of the DMs and criteria are respectively
given by λ = (0.35, 0.4, 0.25)T and W = (0.12, 0.15, 0.18, 0.25, 0.2, 0.1)T , which completely rely on
the subjective preferences and knowledge of the DMs. Thus, the ranking results obtained by
Wang et al. [41] are not stable because there may exist different ranking results if the DMs provide
different weight vectors (See Table 8). However, our method does not require the DMs to provide
weighting information and the weights are derived based on the objective data and the cloud support
degree Equation (15), and then the ranking results generally remain unchanged (See Table 9).

Table 8. Ranking results for different weights of the DMs and weights of criteria.

The Weight Vector λ of the DMs The Weight Vector W of Criteria Ranking Results

(0.1, 0.6, 0.3)T (0.12, 0.15, 0.18, 0.25, 0.2, 0.1)T A3 � A4 � A2 � A5 � A1

(0.35, 0.4, 0.25)T (0.12, 0.25, 0.18, 0.1, 0.15, 0.2)T A3 � A4 � A5 � A2 � A1

(0.35, 0.4, 0.25)T (0.12, 0.15, 0.18, 0.1, 0.2, 0.25)T A3 � A5 � A4 � A2 � A1

(0.35, 0.4, 0.25)T (0.4, 0.2, 0.1, 0.1, 0.1, 0.1)T A3 � A4 � A5 � A1 � A2

(0.35, 0.4, 0.25)T (0.2, 0.4, 0.1, 0.1, 0.1, 0.1)T A3 � A4 � A1 � A5 � A2

(0.35, 0.4, 0.25)T (0.2, 0.1, 0.1, 0.1, 0.1, 0.4)T A3 � A5 � A2 � A4 � A1

Table 9. Comparison with different parameter λ.

Aggregation Operators Ranking Vector Ranking Results

CGPOWA (λ = 1) (0.1769, 0.1962, 0.2468, 0.1977, 0.1824)T . A3 � A4 � A2 � A5 � A1
CGPOWA (λ = 2) (0.1836, 0.2003, 0.2216, 0.2006, 0.1939)T . A3 � A4 � A2 � A5 � A1
CGPOWA (λ = 3) (0.1872, 0.2021, 0.2052, 0.2034, 0.2020)T . A3 � A4 � A2 � A5 � A1
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(2) Our method considers the relationship between arguments given by the DMs, while
Wang et al. [41] neglect it.

For instance, CWAA and CWGA operators provided by Wang et al. [41] do not consider
the relationship between the arguments, while the CGPOWA operator we derived considers the
relationship among input arguments by allowing values being aggregated to support and reinforce
each other via cloud support degrees. Here, cloud support degrees of the arguments can be calculated
by applying Equations (18) and (19).

6.2. Comparative Analysis

To validate the feasibility of our method, a comparative study is conducted by applying three
traditional LMCGDM methods, i.e., linguistic symbolic model, linguistic membership function model,
2-tuple linguistic model. The corresponding aggregation operators for the three traditional LMCGDM
methods are respectively the LPA operator, TFWA operator and TWA operator. This comparative
analysis is based on the same illustrative example given in Section 6.1. The weights of the DMs and
criteria are respectively taken from Tables 4 and 6 so as to make it easy to compare these results with
the case of our method.

• Linguistic symbolic model

First, aggregate all linguistic decision matrices B̃(k) =
(

b̃(k)ij

)
5×6

into a collective linguistic decision

matrix B =
(
bij
)

5×6 by applying LPA operator (See Table 10).

Table 10. Collective linguistic decision matrix B.

Alternatives c1 c2 c3 c4 c5 c6

A1 h0 h−1 h−1.736 h−1 h−2.208 h−2
A2 h−1.736 h−1.388 h0 h0.276 h0 h0
A3 h1.736 h2.472 h1.264 h3 h0.736 h2
A4 h−1.264 h−0.944 h0 h0 h0.208 h−0.736
A5 h0.529 h−2.264 h−0.528 h−0.736 h−1 h−1.68

Second, utilize LPA operator to derive the overall collective preference values.

t1 : h−1.328, t2 : h−0.453, t3 : h1.868, t4 : h−0.455, t5 : h−0.948.

Finally, rank the order of the five alternatives: A3 � A2 � A4 � A5 � A1.

• Linguistic membership function model

First, transform linguistic variables into triangular fuzzy numbers by the method of Iraj et al. [47]:

h3 : (9, 10, 10), h2 : (7, 9, 10), h1 : (5, 7, 9), h0 : (3, 5, 7), h−1 : (1, 3, 5), h−2 : (0, 1, 3), h−3 : (0, 0, 1).

Second, utilize TFWA operator to derive the individual overall evaluation value Tk
i :

T1
1 = (0.67, 1.84, 3.64), T2

1 = (1.39, 3.14, 5.14), T3
1 = (1.50, 2.72, 4.42),

T1
2 = (2.45, 3.83, 5.68) T2

2 = (2.61, 4.46, 6.26) T3
2 = (2.90, 4.60, 6.60),

T1
3 = (6.40, 8.15, 9.25), T2

3 = (6.80, 8.40, 9.50) T3
3 = (7.04, 8.64, 9.62),

T1
4 = (2.01, 3.66, 5.66), T2

4 = (2.57, 4.42, 6.42), T3
4 = (3.08, 4.96, 6.81),

T1
5 = (1.56, 3.16, 5.06), T2

5 = (2.03, 3.23, 4.74), T3
5 = (1.10, 2.50, 4.40).



Symmetry 2017, 9, 156 20 of 25

Third, use TFWA operator to determine the overall collective evaluation value
.
Ti:

.
T1 = (1.17, 2.58, 4.44),

.
T2 = (2.63, 4.27, 6.14),

.
T3 = (6.72, 8.37, 9.44),

.
T4 = (2.50, 4.23, 6.25),

.
T5 = (1.63, 3.02, 4.77).

Finally, rank the order of the five alternatives via the method of comparing triangular fuzzy
numbers (Chang & Wang, [48]): A3 � A2 � A4 � A5 � A1.

• 2-tuple linguistic model

First, utilize TWA operator to derive the individual overall evaluation value:

S1
1 = (−2, 0.32), S1

2 = (−1, 0.34), S1
3 = (2,−0.3), S1

4 = (−1, 0.33), S1
5 = (−1, 0.08),

S2
1 = (−1, 0.07), S2

2 = (0,−0.27), S2
3 = (2,−0.1), S2

4 = (0,−0.29), S2
5 = (−1, 0.05),

S3
1 = (−1,−0.29), S3

2 = (0,−0.02), S3
3 = (2, 0.02), S3

4 = (0, 0.02), S3
5 = (−1,−0.3).

Second, apply TWA operator to get the overall collective evaluation values
.
Si:

.
S1 = (−1,−0.283),

.
S2 = (0,−0.344),

.
S3 = (2,−0.14),

.
S4 = (0,−0.356),

.
S1 = (−1,−0.027).

Third, rank the order of the five alternatives: A3 � A2 � A4 � A5 � A1.
Table 11 shows the ranking results with three different aggregation operators (i.e., LPA, TFWA,

TWA). Comparing Table 11 with Table 9, we find that the respective ranking results of the three
operators are all the same, but the ranking result is different when the CGPOWA operator is applied.
The difference lies in the ranking order of A2 and A4.

Table 11. Comparison with different models.

Aggregation Operators Ranking Results

LPA A3 � A2 � A4 � A5 � A1
TFWA A3 � A2 � A4 � A5 � A1
TWA A3 � A2 � A4 � A5 � A1

The above difference can be explained by the following fact: when the alternatives are assessed,
these three traditional methods only regard the average level as the unique criterion, which leads to
the evaluations rough and one-sided. Notice that the average level of A2 is higher than the case of
A4, and then the ranking order of these three traditional methods becomes A2 � A4. Our method,
however, considers not only the average level but also the fluctuation and stability of qualitative
concepts by using En and He, respectively. In other words, the three traditional methods only use
a uniform granular linguistic assessment scale, while our method takes a multi-granular linguistic
assessment scale of great psychological sense. This causes the average level of A2 to be lower than the
case of A4, namely, Ex2 < Ex4. In addition, we derive that En2 > En4 and He2 > He4 in this example.
Therefore, according to Equation (13), we can conclude that the ranking result becomes A4 � A2 in
our method.

7. Conclusions

LMCDM problems are widespread in various fields such as economics, management, medical
care, social sciences, engineering, and military applications. However, traditional aggregation
methods are not robust enough to convert qualitative concepts to quantitative information in LMCDM
problems. Among the existing aggregation operators, linguistic power aggregation operators and cloud
aggregation operators have the most merits, but they have their own weaknesses. If combined together,
the two types of operators can overcome their own weaknesses, that is, the characters of two types of
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operators are mutually complementary. This paper developed a new class of aggregation operator
which successfully unified the advantages of the existing linguistic power aggregation operators and
cloud aggregation operators, and simultaneously overcame their limitations. First, we presented
an improved method to transform linguistic variables into clouds, which corrects the weaknesses
of the classical generating cloud method. Based on this method, we developed some new cloud
algorithms such as the cloud possibility degree and cloud support degree, which can be used for
cloud comparison and the weight determination, respectively. Furthermore, a new CGPOWA operator
was developed, which considers the decision arguments and their relationships and characterizes the
fuzziness and randomness of linguistic terms. By studying the properties of CGPOWA operator we
found that it is commutative, idempotent, bounded. Moreover, CGPOWA operator can degenerate
into many different operators, including CGPA operator, CPOWA operator, CPOWGA operator,
CPWQA operator, CWAA and CWGA operators, the maximum operator and the minimum operator.
In particular, based on the new generating cloud method and CGPOWA operator, a new approach for
LGDM was developed. In the end, to show the effectiveness and the good performance of our approach
in practice, we provided an example of investment selection and made a comparative analysis.

In further research, it would be very interesting to extend our analysis to the case of more
sophisticated situation such as introducing the behavior theory of the DMs in the context of CGOWPA
operator. Nevertheless, we leave that point to future research, since our methodology cannot be
applied to that extended framework, which will result in more sophisticated calculation and which we
cannot tackle here.
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Appendix A

Proof of Proposition 1.

From Definition 6, it is easy to verify that conclusions (i) and (ii) hold. (iii) From Definition 6,
we have:

d(Y1, Y3) =

∣∣∣∣(1− 3
√

En2
1+He2

1
Ex1
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√
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)Ex3
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)Ex2 − (1− 3
√

En2
3+He2

3
Ex3

)Ex3

∣∣∣∣
≤
∣∣∣∣(1− 3

√
En2

1+He2
1

Ex1
)Ex1 − (1− 3

√
En2

2+He2
2

Ex2
)Ex2

∣∣∣∣+ ∣∣∣∣(1− 3
√

En2
2+He2

2
Ex2

)Ex2 − (1− 3
√

En2
3+He2

3
Ex3

)Ex3

∣∣∣∣
= d(Y1, Y2) + d(Y2, Y3).

Similarly, we can obtain that:

d(Y1, Y3) ≤ d(Y1, Y2) + d(Y2, Y3).

Therefore,

d(Y1, Y3) =
1
2

{
d(Y1, Y3) + d(Y1, Y3)

}
≤ 1

2

{
d(Y1, Y2) + d(Y2, Y3) + d(Y1, Y2) + d(Y2, Y3)

}
= 1

2

{
d(Y1, Y2) + d(Y2, Y3)

}
+ 1

2

{
d(Y2, Y3) + d(Y2, Y3)

}
= d(Y1, Y2) + d(Y2, Y3).
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Notice that if Ex1 ≥ Ex2, En1 ≤ En2 and He1 ≤ He2, then the positive ideal cloud will become
Y∗ =Y(Ex1, En1, He1). According to Definition 6, we derive d(Y∗, Y1) = 0. In addition, then, based
on Equation (11), the possibility degree matrix can be obtained as follows:[

0.5 1.0
0.0 0.5

]
.

According to Equation (13), we can get the ranking vector v = (0.75, 0.25)T . Thus, we have:

Y1 ≥ Y2.
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Proof of Proposition 4.

(i) (Idempotency). If Yi = Y = (Ex, En, He) for i = 1, 2, · · · , n, then according to Equation (11), we
have: (

n

∑
i=1

wi(Exi)
λ

) 1
λ

=

(
(Ex)λ

n

∑
i=1

wi

) 1
λ

= Ex,

√
n

∑
i=1

wi

(
(Exi)

λ−1Eni

)2
×
(

n

∑
i=1

wi(Exi)
λ

) 1
λ−1

= (Ex)λ−1En× (Ex)1−λ = En,

√
n

∑
i=1

wi

(
(Exi)

λ−1Hei

)2
×
(

n

∑
i=1

wi(Exi)
λ

) 1
λ−1

= (Ex)λ−1He× (Ex)1−λ = He.

Hence,
f (Y1, Y2, . . . , Yn) = (Ex, En, He).

(ii) (Commutativity). Assume that
(

Ỹ1, Ỹ2, . . . , Ỹn

)
is any permutation of (Y1, Y2, . . . , Yn), then

for each Ỹi, there exists one and only one Yj such that Ỹi = Yj, and vice versa. Therefore, from

Equation (11), we have: f (Y1, Y2, . . . , Yn) = f
(

Ỹ1, Ỹ2, . . . , Ỹn

)
.

(iii) (Boundedness). Note that if P(Yi ≥ Y1) = 1, according to Proposition 2, we have:

Exi ≥ Ex1,Eni ≤ En1,Hei ≤ He1.

So, (
n

∑
i=1

wi(Exi)
λ

) 1
λ

≥
(

n

∑
i=1

wi(Ex1)
λ

) 1
λ

= Ex1,

√
n

∑
i=1

wi

(
(Exi)

λ−1Eni

)2
×
(

n

∑
i=1

wi(Exi)
λ

) 1
λ−1

≤ (Exn)
λ−1En1 × (Exn)

1−λ = En1,

√
n

∑
i=1

wi

(
(Exi)

λ−1Hei

)2
×
(

n

∑
i=1

wi(Exi)
λ

) 1
λ−1

≤ (Exn)
λ−1He1 × (Exn)

1−λ = He1.

Then,
P(Y ≥ Y1) = 1

By the same token, if P(Yn ≥ Yi) = 1(i = 1, 2, · · · , n), we then can obtain:

P(Yn ≥ Y) = 1.
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Appendix B

Proof of the Family of CGPOWA Operator (See Table 1)

Considering that it is not easy to find the result of the cloud power weighted quadratic average
(CPWQA) operator (cf. No.6 in Table 1), without loss of generality, we only need to prove the operator
of No.6 in Table 1. Other operators can be derived via the similar proof.
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Proof of No.6 in Table 1.

If ϕ(x) = x, then CGPOWA operator will degenerate into CGPA operator. According to Theorem 2,
we derive that:
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By the same token, if   1n iP Y Y  ( 1, 2, , )i n  , we then can obtain: 

  1 .nP Y Y  □  

Appendix B 

Proof of the Family of CGPOWA Operator (See Table 1) 

Considering that it is not easy to find the result of the cloud power weighted quadratic average 
(CPWQA) operator (cf. No.6 in Table 1), without loss of generality, we only need to prove the 
operator of No.6 in Table 1. Other operators can be derived via the similar proof. □ 

Proof of No.6 in Table 1. 

If  x x  , then CGPOWA operator will degenerate into CGPA operator. According to 
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