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Abstract: The classical matrix theory is deficient to express the vagueness of the real life. The fuzzy
set theory has been successfully applied to bridge this gap. Much work has already been done on
a two-person zero sum matrix game with fuzzy goals. In continuation, this paper is dedicated to
define and study a multi-criteria two-person zero sum game with intuitionistic fuzzy goals. It is
shown that solving such games is equivalent to solving two crisp multi object linear programming
problems. Our work generalizes the previous study on a multi-criteria game with fuzzy goals by
adopting the approach of linear programming with intuitionistic fuzzy sets. Finally, an illustrative
numerical example is provided to elaborate the proposed approach.
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1. Introduction

Classically solving the two-person zero sum matrix game is proved to be equivalent to solving
two linear programming models. Much work has been done in this direction. Classical mathematics
programming has certain deficiencies in modeling all the essences of real life. See the work of
Chanas [1], Werners [2,3] and Zimmerman [4–6]. Even if some problem is modeled correctly, sometimes
the solution does not match the real-life intuition (see Werners [2]).

In the traditional game theory, each player has predominantly a well-defined quantitative utility
function over a set of the player decision space. Each person attempts to optimize the expected utility
and each is assumed to know the extensive game in full [7]. In many of such complex situations,
each player has a heuristic knowledge of the desires of the other players and a heuristic knowledge of
the control choices that they will make in order to meet their ends. Therefore, the uncertainty should
be considered in the game theory problems [8]. In the recent past, there have been attempts to extend
the results of crisp game theory to those conflict resolution problems that are fuzzy in nature, e.g.,
Sharifan et al. [9], Faizi et al. [10], and Sun et al. [11]. These developments have lead to the emergence
of a new area in the literature called fuzzy games. Chen et al. have presented a fuzzy differential game
theory to solve the n-player nonlinear differential game problems, which are not easily tackled by
the conventional methods [12]. Chekari et al. have worked on fuzzy Nash equilibrium to determine
a graded representation of Nash equilibriums in crisp and fuzzy games [13–17]. This interpretation
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shows the distribution of equilibriums in the matrix form of a game and handles uncertainties in
payoffs [18–20].

After the initiation of the fuzzy set theory by Zadeh [21], a new era has begun, modeling more
uncertainties and vagueness of real life, giving more appropriate solutions that are compatible with
human intuition, closer to real life [22]. The decision theory on the basis of mathematical programming
progressed very rapidly in the fuzzy environment. In the 1970s, Bellman and Zadeh [23] defined
the notions of fuzzy constraints, fuzzy decisions and fuzzy goals, which lead to the development of
mathematical programs with fuzzy objective functions, with fuzzy constraints (see Tanaka et al. [24]).
These fuzzy modeling tools are also successfully applied in making and solving a two-person zero
sum matrix game in different perspectives. See Campos [25], Sakawa and Nishizaki [26,27], Bector
and Chandra [28]. Many researchers worked in different ways, making a payoff matrix with triangular
fuzzy numbers (Vijay et al. [29], Li [30], interval value matrix games Li [31], Nayak and Pal [32] and
multiple payoff matrices Aggarwal and Khan [33]).

In many decision problems, the decision makers know not only the degree of membership,
but also the degree to which an object does not belong to a set. For this purpose, in 1986, Atanassov
introduced the concept of Intuitionistic Fuzzy Set (IFS), which is the extension of a fuzzy set [34,35].
Despite the IFS’s criticism, it has been successful in modeling more complex real phenomena that
cannot be modeled with fuzzy sets. Linear programming models and matrix games are also developed
in an intuitionistic fuzzy environment (see Aggarwal et al. [36], Angelov [37], Chakrabortty et al.
[38], Dubey et al. [39]). In 1997, Angelov [37] defined the optimization process by converting a
decision-making problem in an IFS environment into a crisp linear programming model with a score
function of IFS as an objective function. Later, in 2012, Aggarwal et al. [36] used the idea of Angelov to
develop linear programming with I-fuzzy (Intuitionistic fuzzy) goals and employed it into solving
two-person zero sum games with I-fuzzy goals. Recently, Razmi et al. [40] studied a multi-object
optimization problem in the IFS framework and devolved a common solution of maximizing the
degree of satisfaction and minimizing the degree of dissatisfaction.

Matrix games in the intuitionistic fuzzy domain are explored with various ideas. Often the
problems in real life lead to multi-object scenarios, which result in multiple payoff matrix games. In
literature, mostly single payoff matrix games are studied, and Aggarwal and Khan [33] worked with
multiple payoff matrices to achieve fuzzy goals, also said to be a multi-criteria two-person zero sum
matrix game with fuzzy goals. In this paper, our aim is to generalize their ideal by discussing I-fuzzy
goals with many payoff matrices. We generalize the notion of Pareto-Optimal Security Strategies
(POSS) and security level to I-fuzzy POSS and I-fuzzy security level, respectively, in order to study
I-fuzzy multi-criteria matrix games and prove that I-fuzzy POSS and I-fuzzy security level can be
obtained by solving a pair of I-fuzzy multi-criteria linear programming problems. The I-fuzzy goals
are taken in the same way as in [36].

This paper is organized as follows: in Section 2, basic definitions and arithmetic operations of IFS
are given. In Section 3, a detailed review about a (crisp) two-person zero sum multi-criteria matrix
game and its generalization with fuzzy goals is given. In Section 4, we extend the work of [33] from a
two-person zero sum fuzzy multi-criteria matrix game to a two-person I-fuzzy multi-criteria matrix
game. Furthermore, the concepts of I-fuzzy POSS and I-fuzzy security level for such games in terms of
suitable membership and non-membership functions are presented. The main result of this paper is
also presented in this section, which states that solving such an I-fuzzy game is equivalent to solving
a pair of (crisp) multi-criteria linear programming problems. In Section 5, an illustrative numerical
example is given and a thorough comparison with existing models is presented. Some concluding
remarks are presented in the last section.

2. Preliminaries

This section provides some relevant basics of the IFS from [34,35], which will be used in the
following sections.
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Definition 1. Let X be a universal set. An IFS A in a given universal set X is a triplet given by (1):

A = {< x, µA(x), νA(x) > ; x ∈ X}, (1)

where the functions µA : X −→ [0, 1] and νA : X −→ [0, 1] define the degree of membership and the degree of
non-membership of an element x ∈ X to the set A, respectively, such that 0 ≤ µA(x) + νA(x) ≤ 1. If µA(x) +
νA(x) = 1; then, IFS A degenerates into a fuzzy set in X.

Definition 2. Let A and B be two IFSs in the set X. Then, union and intersection of A and B are defined
as follows:

A
⋃

B = {< x, max{µA(x), µB(x)}, min{νA(x), νB(x)} >; x ∈ X},
A
⋂

B = {< x, min{µA(x), µB(x)}, max{νA(x), νB(x)} >; x ∈ X}. (2)

Definition 3. Let A and B be two IFSs in the set X. Then, we say A ⊂ B iff µA(x) ≤ µB(x) and νA(x) ≥
νB(x) for all x ∈ X.

Definition 4. Let A and B be two IFSs in the set X. Then, A = B iff µA(x) = µB(x) and νA(x) = νB(x) for
all x ∈ X.

Definition 5. Let A be an IFS in the universal set X. Then, the score function of A is defined as Equation (3):

S(x) = µA(x)− νA(x), (3)

where x ∈ X.

3. Multi-Criteria Zero Sum Game

In this section, a review of (crisp) multi-criteria zero sum game of two persons model (given by
Fernandez et al. [41], while its generalized model with fuzzy goals was proposed by Aggarwal and
Khan in [33]) are presented.

Let Rn denote the n-dimensional Euclidean space and Rn
+ be its non-negative orthant.

Let Ar ∈ Rm×n, (r = 1, 2, ..., s) be matrices with real entries of order m × n , eT = (1, 1, ..., 1) be a
vector of ones whose dimension is specified as per the specific context. By a (crisp) multi-criteria zero
sum game of two persons G, we mean:

G = (Sm, Sn, Ar, (r = 1, 2, ..., s)), (4)

where Sm = {x ∈ Rm
+; eTx = 1} and Sn = {y ∈ Rn

+; eTy = 1} are convex polytops. In the terminology
of the matrix game theory, Sm and Sn are called strategy spaces for Player I and Player II, respectively,
and the matrix Ar, (r = 1, 2, ..., s) is called the payoff matrix corresponding to the rth criterion. It should
also be noted that Player I is taken as a maximizing player and Player II is taken as a minimizing
player, as per convention. Furthermore, for x ∈ Sm, y ∈ Sn, the expected payoff for Player I is defined
as a vector E(x, y) = xT Ay = [E1(x, y), E1(x, y), ..., Es(x, y)], where Er(x, y) = xT Ary, (r = 1, 2, ..., s).
Since the game is a zero-sum game, the expected payoff for Player II is −E(x, y). To define the solution
of a game, the following terminologies are used in the literature.

Definition 6. (Security level for Player I) The security level of Player I for a strategy x ∈ Sm corresponding to
rth payoff matrix is defined as:

νr(x) = min
y∈Sn

Er(x, y)

= min
1≤j≤n

xT Ar
j , (5)
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where Ar
j denotes the jth column of the matrix Ar. Thus, the security level for Player I is a vector of s−tuples,

defined by:
ν(x) = [ν1(x), ν2(x), ..., νs(x)]. (6)

Definition 7. (Security level for Player II) The security level of Player II for a strategy y ∈ Sn, corresponding
to rth payoff matrix is defined as:

ωr(y) = max
x∈Sm

Er(x, y)

= max
1≤i≤m

Ar
i y, (7)

where Ar
i denotes the ith row of the matrix Ar. Thus, the security level for Player I is a vector of s−tuples,

defined by:
ω(y) = [ω1(y), ω2(y), ..., ωs(y)].

Definition 8. (POSS for Player I) Let x∗ ∈ Sm be a strategy, then this strategy x∗ ∈ Sm is called POSS for
Player I if there is no x ∈ Sm such that:

ν(x) ≥ ν(x∗)

and:
ν(x) 6= ν(x∗).

Definition 9. (POSS for Player II) Let y∗ ∈ Sn be a strategy, then this strategy y∗ ∈ Sn is called POSS for
Player II if there is no y ∈ Sn such that:

ω(y) ≥ ω(y∗)

and:
ω(y) 6= ω(y∗).

If x∗ is a POSS for Player I, then his security level is given by ν∗ = ν(x∗) and the pair (x∗, ν∗) is a
solution for Player I. In the same way, if y∗ is a POSS for player II, then his security level is given by
ω∗ = ω(y∗) and the pair (y∗, ω∗) is the solution for Player II.

Fernandez et al. [41] showed that solving the game is equivalent to finding the efficient solutions
of a multi-object linear problem, as described in the theorems presented below.

Theorem 1. The strategy x∗ and the vector ν∗ are POSS and security level for Player I, respectively, iff the pair
(x∗, ν∗) is an efficient solution to the below multi-criteria programming problem;

(VP)1 max (ν1, ν2, ..., νs) subject to,

xT Ar
j ≥ νr, (r = 1, 2, ..., s, j = 1, 2, ..., n),

eTx = 1, (8)

x ≥ 0.

Theorem 2. The strategy y∗ and the vector ω∗ are POSS and security level for Player II, respectively, iff the
pair (y∗, ω∗) is an efficient solution to the below multi-criteria programming problem;

(VP)2 min (ω1, ω2, ..., ωs) subject to,

Ar
i y ≤ ωr, (r = 1, 2, ..., s, i = 1, 2, ..., m),

eTy = 1, (9)

y ≥ 0.
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Aggarwal and Khan [33] proposed the generalized version of this game with fuzzy goals as,

MOFG = (Sm, Sn, Ar, Vr
0 , pr

0,&; Wr
0 , qr

0,., (r = 1, 2, ..., s)), (10)

where Vr
0 , pr

0 and Wr
0 , qr

0 are the inspiration levels, tolerance levels of Player I and Player II, respectively,
and the inequalities & and . are fuzzy inequalities taken in the sense of Zimmermann [4]. They adopt
the model of Bector et al. [28] and showed that solving the game is equivalent to solving the crisp
multi-object linear problems (see [36] Theorem 3.5, Theorem 3.6).

4. The Proposed Multi-Criteria Matrix Game Model with I-Fuzzy Goals

The IFS theory deals with more vague situations. Much work [36–38,40,42] has already been done
to make and solve models of I-fuzzy linear programming and duality. Aggarwal et al. [36] defined
the I-fuzzy inequalities (IF) & and (IF) . in a pessimistic or optimistic approach of decision-making.
Following their lines, a multi-criteria multi-objective two-person zero sum matrix game with I-fuzzy
goals will be defined.

Let Sm and Sn be the strategies spaces of Player I and Player II, respectively, and Ar be the payoff
matrix of rth criteria as defined earlier. The Multi-Object Intuitionistic Fuzzy Game denoted as MOIFG is:

MOIFG = (Sm, Sn, Ar, Vr
0 , (IF) &; Wr

0 , (IF) ., (r = 1, 2, .., s)), (11)

where Vr
0 and Wr

0 are the levels of inspiration for Player I and Player II, respectively. The I-fuzzy
inequalities (IF) & and (IF) . are taken either in a pessimistic or optimistic approach. The problem
for Player I with rth payoff matrix Ar is to find out x ∈ Sm in such a way that:

xT Ary (IF) & Vr
0 : for all y ∈ Sn, (12)

that is equivalent to:
xT Ar

j (IF) & Vr
0 : (j = 1, 2, ..., n), (13)

where Ar
j denotes the jth column of Ar. Analogously, for Player II, the problem is to find out y ∈ Sn in

such a way that:
xT Ar

i y(IF) . Wr
0 : for all x ∈ Sm, (14)

which is equivalent to:
Ar

i y(IF) . Wr
0 : (i = 1, 2, ..., m), (15)

where Ar
i denotes the ith row of Ar.

To define the membership and non membership functions of IFS related to I-fuzzy inequalities,
certain tolerance levels are needed. Let pr

0, qr
0 be the tolerance levels pre-specified by Player I for

accepting or rejecting the inspiration level Vr
0 related to rth criteria and, similarly, kr

0, lr
0 be the tolerance

levels pre-specified by Player II for accepting or rejecting the inspiration level Wr
0 . Therefore,

MOIFG = (Sm, Sn, Ar, Vr
0 , pr

0, qr
0, (IF) &; Wr

0 , kr
0, lr

0, (IF) ., (r = 1, 2, .., s)). (16)

The membership functions and non-membership functions are defined in a similar way to [36]
for both Player I and Player II for the I-fuzzy inequities. From here on, only a pessimistic approach
is taken, and the case of optimistic approach is analogous. The membership and non-membership
functions for Player I related to xT Ar

j (IF) &pr
0,qr

0
Vr

0 .

The membership function: µr
j (xT Ar

j ) =


1, xT Ar

j ≥ Vr
0 ,

1−
Vr

0−xT Ar
j

pr
0

, Vr
0 − pr

0 ≤ xT Ar
j < Vr

0 ,

0, xT Ar
j < Vr

0 − pr
0.

(17)
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The non-membership function: νr
j (xT Ar

j ) =


1, xT Ar

j ≤ Vr
0 − pr

0,

1−
xT Ar

j+pr
0−Vr

0
qr

0
, Vr

0 − pr
0 < xT Ar

j ≤ Vr
0 − pr

0 + qr
0,

0, xT Ar
j > Vr

0 − pr
0 + qr

0.
(18)

Similarly, for Player II, the membership and non-membership functions associated with
Ar

i y(IF) .kr
0,lr

0
Wr

0 .

The membership function: µr
i (Ar

i y) =


1, Ar

i y ≤Wr
0 ,

1 + Wr
0−Ar

i y
kr

0
, Wr

0 < Ar
i y ≤Wr

0 + kr
0,

0, Ar
i y > Wr

0 + kr
0,

(19)

The non-membership function: νr
i (Ar

i y) =


1, Ar

i y ≥Wr
0 + kr

0,

1 + Ar
i y−Wr

0−kr
0

lr
0

, Wr
0 + kr

0 − lr
0 ≤ Ar

i y < Wr
0 + kr

0,

0, Ar
i y < Wr

0 + kr
0 − lr

0.
(20)

To properly express the solution of this game, some definitions are needed.

Definition 10. Let x ∈ Sm be a strategy, then the I-fuzzy security level of satisfaction for Player I corresponding
to rth payoff matrix is defined by:

αr(x) = min
1≤j≤n

(µr
j (xT Ar

j ), Vr
j (xT Ar

j )), (21)

i.e.,

αr(x) =
(

min
1≤j≤n

µr
j (xT Ar

j ), max
1≤j≤n

Vr
j (xT Ar

j )

)
.

Thus, an I-fuzzy security level of satisfaction for Player I is a vector of s−tuples, defined by:

α(x) = [α1(x), α2(x), ..., αs(x)].

Definition 11. Let y ∈ Sn be a strategy, and then the I-fuzzy security level of satisfaction for Player II
corresponding to rth payoff matrix is defined by:

βr(y) = min
1≤i≤m

(µr
i (Ar

i y), Vr
i (Ar

i y)), (22)

i.e.,

βr(y) =
(

min
1≤i≤m

µr
i (Ar

i y), max
1≤i≤m

Vr
i (Ar

i y)
)

.

Thus, an I-fuzzy security level of satisfaction for Player II is a vector of s−tuples, defined by:

β(y) = [β1(y), β2(y), ..., βs(y)].

Definition 12. Let x∗ ∈ Sm be a strategy; then, this strategy is called an I-fuzzy POSS for Player I if there is
no x ∈ Sm such that:

α(x) ≥ α(x∗) and α(x) 6= α(x∗), (23)

i.e.,
[α1(x), α2(x), ..., αs(x)] ≥ [α1(x∗), α2(x∗), ..., αs(x∗)]

and:
[α1(x), α2(x), ..., αs(x)] 6= [α1(x∗), α2(x∗), ..., αs(x∗)].
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Definition 13. Let y∗ ∈ Sn be a strategy; then, this strategy is called an I-fuzzy POSS for Player II if there is
no y ∈ Sn such that:

β(y) ≥ β(y∗) and β(y) 6= β(y∗), (24)

i.e.,
[β1(y), β2(y), ..., βs(y)] ≥ [β1(y∗), β2(y∗), ..., βs(y∗)]

and:
[β1(y), β2(y), ..., βs(y)] 6= [β1(y∗), β2(y∗), ..., βs(y∗)].

The level of security for Player I is given by α(x∗) = α∗ if x∗ is an I-fuzzy POSS for Player
I. Similarly, the level of security for Player II is given by β∗ = β(y∗). If y∗ is an I-fuzzy POSS for
Player II, the pair (x∗, α∗) is then understood as a solution of the given two-person zero sum game for
Player I. The pair (y∗, β∗) is interpreted in the same way as a solution of the given game multi-criteria
intuitionistic fuzzy matrix for Player II.

Our aim is to prove the equivalence between solving MOIFG (16) and solving the following two
(crisp) multi-object linear programming problems named CMPI (Crisp Model Player I) and CMPII
(Crisp Model Player II) for Player I and Player II, respectively.

Models: Let α denote the minimal degree of acceptance and β denote the maximal degree of
rejection of the I-fuzzy constraint of Player I. Similarly, let γ denote the minimal degree of acceptance
and ξ denote the maximal degree of I-fuzzy constraints of Player II. Then, consider:

CMPI max (α1 − β1, α2 − β2..., αs − βs) subject to,

(1− αr)pr
0 + xT Ar

j ≥ Vr
0 (r = 1, 2, ..., s j = 1, 2, ..., n),

(1− βr)qr
0 − xT Ar

j ≤ pr
0 −Vr

0 (r = 1, 2, ..., s j = 1, 2, ..., n), (25)

x ∈ Sm,

αr ≥ βr ≥ 0, αr + βr ≤ 1; (r = 1, 2, ..., s),

CMPII max (γ1 − ξ1, γ2 − ξ2..., γs − ξs) subject to,

Ar
i y− (1− γr)kr

0 ≤Wr
0 (r = 1, 2, ..., s i = 1, 2, ..., m),

Ar
i y + (1− ξr)kr

0 ≤Wr
0 + lr

0 (r = 1, 2, ..., s s = 1, 2, ..., m), (26)

y ∈ Sn,

γr ≥ ξr ≥ 0, γr + ξr ≤ 1; (r = 1, 2, ..., s),

where Aj and Ai denote the jth column and the ith row of A, respectively.
Usually, in multi-criteria linear programming, the problems’ global solutions are rare, and, most

of the time, we have Pareto-optimal solutions, also known as efficient solutions; for details, one can
see Steuer [43].
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Theorem 3. The strategy x∗ and the vector α∗ are I-fuzzy POSS and I-fuzzy security level of satisfaction for
Player I, respectively, iff the pair (x∗, α∗) is an efficient solution to the multi-criteria programming problem
below

(CMPI)max (α1 − β1, α2 − β2..., αs − βs)

subject to

(1− αr)pr
0 + xT Ar

j ≥ Vr
0 (r = 1, 2, ..., s j = 1, 2, ..., n),

1− βr)qr
0 − xT Ar

j ≤ pr
0 −Vr

0 (r = 1, 2, ..., s j = 1, 2, ..., n),

x ∈ Sm,

αr ≥ βr ≥ 0, αr + βr ≤ 1; r = 1, 2, ..., s.

Proof. Suppose that x∗ is an I-fuzzy POSS for Player I; then, by definition, there is no x ∈ Sm such
that:

α(x∗) 6= α(x), α(x∗) ≤ α(x).

Thus, for all x ∈ Sm either (α1(x∗), α2(x∗), ..., αs(x∗)) = (α1(x∗), α2(x∗), ..., αs(x∗)), or there is
some index p, 1 ≤ p ≤ s relative to x, such that αp(x) < αp(x∗).

That is, for each x ∈ Sm, either min1≤j≤n(µ
r
j (xT Ar

j ), νr
j (xT Ar

j )) = min1≤j≤n(µ
r
j ((x∗)T Ar

j ),

νr
j ((x∗)T Ar

j ), (r = 1, 2, ..., s), or there is some index p, 1 ≤ p ≤ s, such that min1≤j≤n(µ
p
j (xT Ar

j ),

ν
p
j (xT Ar

j )) ≤min1≤j≤n(µ
p
j ((x∗)T Ar

j ), ν
p
j ((x∗)T Ar

j ), (r = 1, 2, ..., s).
Therefore, by the definition of efficient solution, x∗ is an efficient solution of the multi-criteria

I-fuzzy programming problem

max
x∈Sm

( min
1≤j≤n

(µr
j (xT A1

j ), νr
j (xT A1

j )), min
1≤j≤n

(µr
j (xT A2

j ), νr
j (xT A2

j )), ..., min
1≤j≤n

(µr
j (xT As

j ), νr
j (xT As

j ))).

Now, using the representations of the various membership functions µr
j (xT Ar

j ) and

non-membership functions νr
j (xT Ar

j ) given in Equations (17) and (18), respectively, we get:

(CMPI)max (α1 − β1, α2 − β2..., αs − βs)

subject to

(1− αr)pr
0 + xT Ar

j ≥ Vr
0 (r = 1, 2, ..., s j = 1, 2, ..., n),

(1− βr)qr
0 − xT Ar

j ≤ pr
0 −Vr

0 (r = 1, 2, ..., s j = 1, 2, ..., n),

x ∈ Sm,

αr ≥ βr ≥ 0, αr + βr ≤ 1; r = 1, 2, ..., s.

Conversely, assuming, on the contrary, that the efficient solution (x∗, α∗) of CMFPI is not an
I-fuzzy POSS for Player I, then, there is some x ∈ Sm, such that:

α(x∗) ≤ α(x), α(x∗) 6= α(x).

Now, by definitions of αr(x), µr
j (xT Ar

j ), and νr
j (xT Ar

j ) presented in Equations (17), (18) and (21),
respectively, for (r = 1, 2, ..., s; j = 1, 2, ..., n), (x, α(x)) is feasible to CMPI. Thus, Equation (1)
contradicts the assumption that (x∗, α∗) is an efficient solution of CMPI.
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Theorem 4. The strategy y∗ and the vector β∗ are I-fuzzy POSS and I-fuzzy security level of satisfaction
for Player II, respectively, iff the pair (x∗, β∗) is an efficient solution to the multi-criteria programming
problem below:

(CMPII)max (γ1 − ξ1, γ2 − ξ2..., γs − ξs)

subject to

Ar
i y− (1− γr)kr

0 ≤Wr
0 (r = 1, 2, ..., s i = 1, 2, ..., m),

Ar
i y + (1− ξr)kr

0 ≤Wr
0 + lr

0 (r = 1, 2, ..., s i = 1, 2, ..., m),

y ∈ Sn,

γr ≥ ξr ≥ 0, γr + ξr ≤ 1; r = 1, 2, ..., s.

Proof. The proof can be easily done in the same fashion as the proof of Theorem 4.5.

The next step is to determine the relationship between duality (CMPI) and (CMPII), in I-fuzzy
logic. For this, first turn the two problems in their scalar counter parts using a weighted sum approach
with the same weight. In the same vein, consider the weights λr ≥ 0, ∑s

r=1 λr = 1, (r = 1, 2, ..., s), which
are associated with the objective function of (CMPI) and (CMPII), and obtain the scalar counter
entirety as (CMPI)1 and (CMPII)2, respectively, as follows:

(CMPI)1max
s

∑
r=1

λr(αr − βr)

subject to

(1− αr)pr
0 + xT Ar

j ≥ Vr
0 (r = 1, 2, ..., s j = 1, 2, ..., n),

(1− βr)qr
0 − xT Ar

j ≤ pr
0 −Vr

0 (r = 1, 2, ..., s j = 1, 2, ..., n), (27)
s

∑
r=1

λr = 1, 0 ≤ λr ≤ 1, x ∈ Sm,

αr ≥ βr ≥ 0, αr + βr ≤ 1, ; r = 1, 2, ..., s,

and:

(CMPII)2max
s

∑
r=1

λr(γr − ξr)

subject to

Ar
i y− (1− γr)kr

0 ≤Wr
0 (r = 1, 2, ..., s i = 1, 2, ..., m),

Ar
i y + (1− ξr)kr

0 ≤Wr
0 + lr

0 (r = 1, 2, ..., s i = 1, 2, ..., m), (28)
s

∑
r=1

λr = 1, 0 ≤ λr ≤ 1, y ∈ Sn,

γr ≥ ξr ≥ 0, γr + ξr ≤ 1; r = 1, 2, ..., s.

The following theorem will establish a weak duality between (CMPII)1 and (CMPII)2 in the
I-fuzzy sense.

Theorem 5. Let (x, α− β = (α1 − β1, α2 − β2, ..., αs − βs), λ = (λ1, λ2, ..., λs)) and (y, γ− ξ = (γ1 −
ξ1, γ2 − ξ2, ..., γs − ξs), λ = (λ1, λ2, ..., λs)) be feasible for (CMPII)1 and (CMPII)2, respectively. Then,

s

∑
r=1

λr(αr − 1)pr
0 +

s

∑
r=1

λr(γr − 1)kr
0 ≤

s

∑
r=1

λr(Wr
0 −Vr

0 )
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s

∑
r=1

λr(1− βr)qr
0 +

s

∑
r=1

λr(1− ξr)kr
0 ≤

s

∑
r=1

λr(pr
0 −Vr

0 + Wr
0 + lr

0).

Proof. The proof can be easily done in the same fashion as the proof of [36] Theorem 1.

Figure 1 presents a flowchart of the proposed approach, i.e., application of intuitionistic-fuzzy
goals in multi-criteria matrix games. In the following steps, for each player, the following are
determined: strategy space, inspiration levels, the tolerance levels, an intuitionistic fuzzy security level
of satisfaction, intuitionistic fuzzy Pareto-optimal security strategy, the level of security, a minimal
degree of acceptance and maximal degree of rejection. The final results are obtained by solving a
multi-object linear programming problem for each player separately.

Figure 1. The flowchart of the proposed approach.

The computational complexity of the proposed approach is equivalent to the computational
complexity of multi-criteria linear programming problems. The worst case complexity of
multi-objective optimization problems has been shown to be NP-hard (non-deterministic
polynomial-time hard). However, linear programming shows the theoretical (but far from practical)
polynomial solvability of multi-criteria linear programming, and the possibility of computing
non-dominated extreme points in multi-criteria linear programming with polynomial delay [44].

5. Illustrative Example

To illustrate our multi-criteria model and show its resourcefulness, the same example is solved
as taken by Cook [45], Nishizaki and Sakwaw [26] and Aggarwal and Imran [33]. The choice of
this example will lead us to making a comprehensive comparison with the existing models. The
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Matlab (R2012a, 7.14.0.739, MathWorks, Natick, Massachusetts, United States) is used to acquire the
numerical results.

Example 1. Consider the following payoff matrices

A1 =

 2 5 1
−1 −2 6
0 3 −1

 , A2 =

 −3 7 2
0 −2 0
3 −1 6

 , A3 =

 8 2 3
−5 6 0
−3 1 6

 ,

described as the cost matrix, the time matrix and the productivity matrix, respectively. For Player I,
the parameters are chosen as follows: V1

0 = 6, V2
0 = 7, V3

0 = −5, p1
0 = 8, p2

0 = 10, p3
0 = 13, q1

0 = 1,
q2

0 = 4 and q3
0 = 10. Therefore, the multi-criteria problem for Player I is Max(α1 − β1, α2 − β2, α3 − β3)

subject to:
2x1 − x2 − 8α1 ≥ −2

5x1 − 2x2 + 3x3 − 8α1 ≥ −2

x1 + 6x2 − x3 − 8α1 ≥ −2

−3x1 + 3x3 − 10α2 ≥ −3

7x1 − 2x2 − x3 − 10α2 ≥ −3

2x1 + 6x3 − 10α2 ≥ −3

8x1 − 5x2 − 3x3 − 13α3 ≥ −18

2x1 + 6x2 + x3 − 13α3 ≥ −18

3x1 + 6x3 − 13α3 ≥ −18

−2x1 + x2 − β1 ≤ 1

−5x1 + 2x2 − 3x3 − β1 ≤ 1

−x1 − 6x2 + x3 − β1 ≤ 1

3x1 − 3x3 − 4β2 ≤ −1

−7x1 + 2x2 + x3 − 4β2 ≤ −1

−2x1 − 6x3 − 4β2 ≤ −1

−8x1 + 5x2 + 3x3 − 10β3 ≤ 8

−2x1 − 6x2 − x3 − 10β3 ≤ 8

−3x1 − 6x3 − 10β3 ≤ 8

αr ≥ βr ≥ 0, αr + βr ≤ 1

x ∈ S3.

Table 1 shows the acquired results that looks promising as max(α1, α2, α3) ≥ 0.88 in all of the solutions.

Table 1. I-fuzzy Pareto-optimal security strategies (POSS) and securities for Player I.

# 1 2 3 4 5 6
x1 0.330458768 0.328177309 0.326990679 0.331013375 0.329643138 0.32678683
x2 0.003067144 0.005351084 0.006804512 0.002408675 0.003936089 0.007106936
x3 0.666474094 0.666471604 0.666204822 0.666577952 0.666420764 0.666106235
α1 0.186152005 0.18253803 0.212667119 0.135107449 0.190664067 0.212773933
α2 0.263940075 0.40147779 0.160051536 0.400629476 0.307761745 0.277666181
α3 0.990850397 0.981218877 0.950636349 0.999575878 0.987843841 0.886780913
β1 0.000154645 0.03633369 0.0000135 0.0374 0.001713378 0.0000102
β2 0.000340823 0.0000183 0.000795207 0.0000582 0.000686912 0.000344612
β3 0.002762645 .0000751 0.013691788 0.000154497 0.003703514 0.045478111
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For Player II, the following parameters are chosen: W1
0 = 10, W2

0 = 17, W3
0 = 5, k1

0 = 8, k2
0 = 10,

k3
0 = 13, l1

0 = 6, l2
0 = 4 and l3

0 = 7. Therefore, the multi-criteria problem for Player II is:

Max (γ1 − ξ1, γ2 − ξ2..., γs − ξs)

subject to:

2y1 + 5y2 + y3 + 8γ1 ≤ 18

−y1 − 2y2 + 6y3 + 8γ1 ≤ 18

3y2 − y3 + 8γ1 ≤ 18

−3y1 + 7y2 + 2y3 + 10γ2 ≤ 27

−2y2 + 10γ2 ≤ 27

3y1 − y2 + 6y3 + 10γ2 ≤ 27

8y1 + 2y2 + 3y3 + 13γ3 ≤ 8

−5y1 + 6y2 + 13γ3 ≤ 8

−3y1 + y2 + 6y3 + 13γ3 ≤ 8

2y1 + 5y2 + y3 − 8ξ1 ≤ 8

−y1 − 2y2 + 6y3 − 8ξ1 ≤ 8

3y2 − y3 − 8ξ1 ≤ 8

−3y1 + 7y2 + 2y3 − 10ξ2 ≤ 11

−2y2 − 10ξ2 ≤ 11

3y1 − y2 + 6y3 − 10ξ2 ≤ 11

8y1 + 2y2 + 3y3 − 13ξ3 ≤ −11

−5y1 + 6y2 − 13ξ3 ≤ −11

−3y1 + y2 + 6y3 − 13ξ3 ≤ −11

γr ≥ ξr ≥ 0, γr + ξr ≤ 1

y ∈ S3.

Solving the above model yields a good payoff for Player II as max(γ1, γ2, γ3) ≥ 0.9, shown in Table 2.

Table 2. I-fuzzy POSS and securities levels for Player II.

# 1 2 3 4 5 6
y1 0.208396956 0.147116772 0.077061037 0.122099413 0.137881486 0.317982986
y2 0.468619872 0.50322759 0.527975471 0.512031939 0.501345421 0.431959882
y3 0.322983166 0.349655633 0.394963479 0.365868639 0.360773083 0.250057132
γ1 0.972875407 0.906662826 0.140586213 0.400312721 0.310226077 0.998287523
γ2 0.736265443 0.708827346 0.96036924 0.956430645 0.974640435 0.547342286
γ3 0.647858021 0.673578085 0.70315437 0.684380799 0.677435326 0.603149025
ξ1 0.002326489 0.009271841 0.001231738 0.00174913 0.001736754 0.000188018
ξ2 0.014342864 0.011291209 0.001163753 0.00456181 0.000373398 0.443368563
ξ3 0.351815861 0.325604484 0.296726416 0.315289635 0.322547636 0.39676953

5.1. Comparison with Existing Models

In [26], Nishizaki and Sakwaw presented their model to solve a two-person zero sum game with
fuzzy goals. Their approach was to aggregate membership functions related to payoff’s matrices
by taking the minimum. Altogether, their solution achieved aggregated fuzzy goals and critical
information about the individual fuzzy goal is missing. The results after applying their model to
Example 1 are as follows.
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The solution model of Aggarwal and Khan [33] is much better, as it explicitly deals with the
individual fuzzy goal related to the different criteria; in addition, their results are far better. Their
solutions to Example 1 are presented in Tables 3 and 4 for Player I and Player II respectively.

Table 3. Aggarwal and Khan [33] for Player I.

# x∗∗1 x∗∗2 x∗∗3 α∗∗
1 α∗∗

2 α∗∗
3

1 0.875 0.125 0.0 0.4531 0.0375 0.5769
2 0.8098 0.125 0.0651 0.4368 0.0766 0.5719
3 0.7446 0.125 0.1303 0.4205 0.1157 0.5668
4 0.6794 0.125 0.1955 0.4042 0.1548 0.5618
5 0.6142 0.125 0.2607 0.3879 0.1939 0.5568
6 0.5491 0.125 0.3258 0.3716 0.2330 0.5518

Table 4. Aggarwal and Khan [33] for Player II.

# y∗∗
1 y∗∗

2 y∗∗
3 γ∗∗

1 γ∗∗
2 γ∗∗

3
1 0.625 0.0 0.375 0.5468 0.2875 0.1442
2 0.6299 0.0249 0.3451 0.5337 0.3064 0.1442
3 0.6349 0.0498 0.3152 0.5207 0.3253 0.1442
4 0.6399 0.0747 0.2853 0.5076 0.3442 0.1442
5 0.6449 0.0996 0.2554 0.4945 0.3632 0.1442
6 0.6499 0.1245 0.2255 0.4814 0.3821 0.1442

The proposed model takes the fuzzy goals as a sub case, the advantages of our model and its
superiority over the exiting models are summarized as follows.

• From Table 5, the disadvantages of Nishizaki and Sakwaw’s model are apparent, and it does
not give information about fuzzy goals and strategies regarding the individual criteria, whereas
the inspection of Tables 1–2 will reveal the strategies optimized for all the three criteria: cost,
time and productivity.

• In addition, there are some other lapses in the Nishizaki and Sakwaw’s model, like the slight
error in the linear programming model for Player II explained in [28,33], and our model produces
much better strategies with higher securities as max(α1, α2, α3) ≥ 0.88 > λ = 0.33088 and
max(γ1, γ2, γ3) ≥ 0.9 > 1− σ = 0.4196.

• Aggarwal and Khan’s model of solving zero sum game is more promising and quite better than
Nishizaki and Sakwaw’s model. However, comparing the results of Tables 1–3 and 5 will reveal
the clear superiority of the proposed model.

• For Player I, max(α1, α2, α3) ≥ 0.88, whereas max(α∗∗1 , α∗∗2 , α∗∗3 ) < 0.58 for all the strategies in
Aggarwal and Khan’s model.
• For Player II, max(γ1, γ2, γ3) ≥ 0.9, but in Aggarwal and Khan’s model max(γ∗∗1 , γ∗∗2 , γ∗∗3 ) <

0.55 for all the strategies.

Table 5. Nishizaki and Sakwaw [26].

Player I

x∗1 x∗2 x∗3 λ

0.3860 0.1250 0.48897 0.33088

Player II

y∗1 y∗2 y∗3 σ

0.25595 0.3469 0.3972 0.5804
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6. Conclusions

In this paper, a new game with I-fuzzy goals named MOIFG has been constructed for solving
multi-criteria programming problems, which is different from MOFG that was studied by Aggarwal
and Khan [33]. For the solution of such games, certain definitions of I-fuzzy POSS and I-fuzzy security
level are also defined. We have also extended the results (see [33] Theorem 3.5, Theorem 3.6) by
showing that solving MOIFG is equivalent to solving a pair of multi-criteria linear programming
problems. Furthermore, a duality result is obtained that helps us to study a two-person zero sum
multi-criteria game having I-fuzzy goals by taking motivation from Aggarwal et al. [36]. Although
we have derived these results only for a pessimistic approach, for an optimistic approach, these are
analogous. In addition, it is clear that the proposed models in this paper are a generalization of those
developed by Aggarwal et al. [36]. It has been shown that the models of the multi-criteria two-person
zero sum game with intuitionistic fuzzy goals can be used for the intuitionistic fuzzy matrix game.
Finally, by illustrating a numerical example, it is shown that the solution with our approach is much
better than those of Aggarwal and Khan [33]. It would be interesting to extend this approach for
other types of games with different extensions of fuzzy parameters and goals using other concepts of
solutions and other types of membership functions.
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