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Abstract: Crowdsourcing is an appealing and economic solution to software application testing
because of its ability to reach a large international audience. Meanwhile, crowdsourced testing
could have brought a lot of bug reports. Thus, in crowdsourced software testing, the inspection of
a large number of test reports is an enormous but essential software maintenance task. Therefore,
automatic prediction of the severity of crowdsourced test reports is important because of their high
numbers and large proportion of noise. Most existing approaches to this problem utilize supervised
machine learning techniques, which often require users to manually label a large number of training
data. However, Android test reports are not labeled with their severity level, and manual labeling
is time-consuming and labor-intensive. To address the above problems, we propose a Knowledge
Transfer Classification (KTC) approach based on text mining and machine learning methods to
predict the severity of test reports. Our approach obtains training data from bug repositories and uses
knowledge transfer to predict the severity of Android test reports. In addition, our approach uses an
Importance Degree Reduction (IDR) strategy based on rough set to extract characteristic keywords to
obtain more accurate reduction results. The results of several experiments indicate that our approach
is beneficial for predicting the severity of android test reports.

Keywords: crowdsourced testing; knowledge transfer; test report; importance degree reduction;
rough set

1. Introduction

Crowdsourcing techniques have recently gained broad popularity in the research domain of
software engineering [1]. One of the key advantages of crowdsourcing techniques is that they provide
engineers with information on the operations of real users, and those users provide data from tasks
performed on real, diverse software and hardware platforms. For example, crowdsourced testing
(e.g., GUI testing [2]) provides user experience results for a large population of widely varying users,
hardware, and operating systems and versions.

The Android bug tracker system [3] is a crowdsourced testing tool that manages test reports
collected from various sources, including development teams, testing teams, and end users, who are
regarded as crowdsourced workers. Then, the Android development team manually analyzes the
test reports and assigns a priority to each test report to represent how urgent it is from a business
perspective that the bug gets fixed. This test report priority is an important assessment that depends
on the severity of the test report, namely, the severity of impact of the bug on the successful execution
of the software system. Some test reports are labeled as severe test reports (i.e., “severe” in testing
parlance), whose associated bugs are found to be severe problems. Severe test reports generally have
a higher fix priority than non-severe test reports (i.e., “non-severe”), the subset of test reports that
are believed not to have any severe impact. In this way, crowdsourced workers help the centralized
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developers to reveal faults. However, the Android bug tracker system does not maintain severity
labels for test reports. Because of the large number of test reports generated in crowdsourced testing,
manually marking the severity of test reports can be a time-consuming and tedious task. Thus,
the ability to automatically classify the severity of large numbers of test reports would significantly
facilitate this process.

Several previous studies have been conducted to investigate the classification of issue reports for
open-source projects using supervised machine learning algorithms [4–7]. Feng et al. [8,9] proposed
test report prioritization methods for use in crowdsourced testing. They designed strategies for
dynamically selecting the riskiest and most diversified test reports for inspection in each iteration.
Wang et al. [10,11] proposed a cluster-based classification approach for effective classification of
crowdsourced reports that addresses the local bias problem. Unfortunately, the Android bug reports
do not have the severity labels for use as training data, and these approaches often require users to
manually label a large number of training data, which is both time-consuming and labor-intensive in
practice. Therefore, it is crucial to reduce the onerous burden of manual labeling while still being able
to achieve good performance.

In this paper, we propose a Knowledge Transfer Classification (KTC) approach based on text
mining and machine learning methods for predicting the severity of test reports generated in
crowdsourced testing. To address the lack of severity-labeled training data available for Android test
reports, our approach obtains labeled training data from bug repositories and uses knowledge transfer
to predict the severity of Android test reports. We apply natural language processing (NLP) techniques,
namely, tokenization, stop-word removal, and stemming [12], to extract keywords from the test reports.
These keywords are used to predict the severity of the test reports. Although consensus methods are
effective in practice, it cannot be denied that a level of noise still exists in the set of keyword labels.
In this study, an Importance Degree Reduction (IDR) strategy based on rough set is used to extract
characteristic keywords, reduce the noise in the integrated labels, and, consequently, enhance the
training data and model quality. Several experiments are designed and performed to demonstrate
that the presented approach can be used to effectively predict the severity of Android test reports.
We attempt to evaluate the performance of the proposed KTC method in a crowdsourced environment
based on the measures of accuracy, precision, and recall.

The main contributions of this paper are as follows:

• We propose a KTC approach based on text mining and machine learning methods to predict the
severity of test reports from crowdsourced testing. Our approach obtains labeled training data
from bug repositories and uses knowledge transfer to predict the severity of Android test reports.

• We use an IDR strategy based on rough set to extract characteristic keywords, reduce the noise in
the integrated labels, and, consequently, enhance the training data and model quality.

• We use two bug repository datasets (Eclipse, Mozilla) for knowledge transfer to predict the severity
of Android test reports. Several experiments demonstrate the prediction accuracy of our approach
in various cases.

The remainder of this paper is organized as follows: the design of our proposed approach is
discussed in Section 2, the experimental design and results are presented in Sections 3 and 4, related
studies are discussed in Section 5, the shortcomings of the IDR strategy are illustrated in Section 6, and
conclusions and plans for future studies are discussed in Section 7.

2. Methodology

In this section, we present our method of using the knowledge gained from bug repositories to
predict the severity of Android bugs in detail.
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2.1. Overview

An Android bug report goes through several resolution statuses over its lifetime. When a bug
is first reported, the bug report is marked as Unconfirmed. When a triager has verified that the bug
is not duplicate and indeed a new bug, the status is set to New. Then, the triager assigns the bug
report to one proper developer, and the status is changed to Assigned. Then, the assigned developer
reproduces the bug, localizes it, and tries to fix it. When the bug has been solved, the bug report
is marked as Resolved. After that, if a tester is not satisfied with the solution, the bug should be
reopened with the status set to Reopen; if a tester has verified that the solution worked, the status is
changed to Verified. The final status of a bug report is Closed, which is set when no occurrence of
the bug is reported. The severe test reports generally have a higher fix priority than non-severe bug
reports, which the non-severe bug reports that are believed not to have any severe impact. Due to
the large number of bug reports, the ability to automatically classify the severity of large numbers of
test reports would significantly facilitate this process. Unfortunately, the Android bug tracker system
does not maintain severity labels for use as training data. Because of the large number of test reports
generated in crowdsourced testing, manually marking the severity of Android bug reports can be
a time-consuming and tedious task. In order to solve this problem, we extract and preprocess bug
reports from the bug report database to generate a training set, which has been artificially marked with
severity levels. We also mine the available unlabeled bug reports from the Android bug tracker [3] to
generate an evaluation set. The new bug reports are visualized as a text matrix. Each row of the matrix
represents one bug report, whereas each column of the matrix represents one word.

In the next step, we use the proposed KTC approach to predict the severity of the evaluation data
based on the training data, as shown in Figure 1. However, the number of bug reports is quite high.
And, because the reporters fill in the reports according to their understanding, it is not guaranteed that
the expression in these reports are entered correctly. This may generate some low quality bug reports
in the dataset. Moreover, because each word occurring in a document is treated as an additional
dimension, textual data can be of a very high dimensionality. To solve these two issues, the KTC
approach uses a rough-set-based method to reduce noise and unnecessary words in the data, thereby
reducing the dimensionality of the textual data and improving the prediction accuracy.

Figure 1. The framework for predicting the severity of test reports.



Symmetry 2017, 9, 161 4 of 18

2.2. Model Description

In this section, we present our KTC model in detail. Figure 2 shows the KTC workflow for
predicting the severity of test reports, which consists of six main steps: (1) tokenization; (2) stop-word
removal; (3) stemming; (4) IDR; (5) keyword vector modeling; and (6) classification result.

Figure 2. The workflow of the KTC Model to predict the severity of test reports.

(1). Tokenization: The process of tokenization consists of dividing a large textual string into a set
of tokens, where a single token corresponds to a single term. This step also includes filtering
out all meaningless symbols such as punctuation because these symbols do not contribute to the
classification task. Also, all capitalized characters are replaced with their lower-case versions.

(2). Stop-word removal: Human languages commonly use constructive terms such as conjunctions,
adverbs, prepositions and other language structures for the building of sentences. Terms such
as “the”, “in” and “that”, also known as stop words, carry little specific information in the
context of a bug report. Moreover, these terms appear frequently in bug report descriptions and
thus increase the dimensionality of the data, which could, in turn, cause the performance of
classification algorithms to decrease. This is sometimes referred to as the curse of dimensionality.
Therefore, all stop words are removed from the set of tokens, based on a list of known stop words.

(3). Stemming: The purpose of the stemming step is to reduce each term appearing in a description
to its most basic form. Each single term can be expressed in various forms while still carrying
the same specific information. For example, the terms “computerized”, “computerize”, and
“computation” all share the same morphological base: “computer”. A stemming algorithm such
as the Porter stemmer [12] transforms each term into its basic form.

Example: Since each term occurring in a document is treated as an additional dimension, textual
data can be of a very high dimensionality. The introduction of the preprocessing steps described above
partially overcomes this problem by reducing the number of terms to be considered. An example of
the effects of these preprocessing steps is shown in Table 1.

(4). IDR: Keywords extracted from test reports play an important role in the prediction of test
report severity. To summarize the information contained within the keywords, we count their
frequencies (i.e., numbers of occurrences) to estimate their degrees of importance. However, the
keywords are described in natural language by crowdsourced workers, who may have various
different backgrounds (i.e., expertise, reliability, performance, location). This can result in a large
number of keyword dimensions and considerable noise. In this study, an IDR strategy based
on rough set is used to extract characteristic keywords, reduce the noise in the integrated labels,
and, consequently, enhance the training data and model quality. The IDR strategy is described in
detail in the next section. In this way, a keyword dictionary is built.

(5). Keyword vector modeling: This step involves the construction of a keyword vector model
(KV). Based on the keyword dictionary, we construct a keyword vector for each test report,
tri = (ei1, ei2, . . . , eim), where m is the number of keywords in the keyword dictionary. We set eij = 1
if the ith test report contains the j-th keyword in the keyword dictionary and eij = 0 otherwise.
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(6). Classification results: A variety of classification algorithms have been proposed in the data
mining community. In this study, we apply the four most important of these algorithms
(Naïve Bayes (NB), K-Nearest Neighbour (KNN), Support Vector Machines (SVM), and Decision
Tree (J48)) to our problem to verify the accuracy of our approach.

Table 1. Effects of the preprocessing steps.

Summary Description Android Studio crashes upon launch on Linux

After stop-words removal Android Studio crashes launch Linux
After stemming android studio crash launch linux

2.3. Description of IDR Strategy

In this section, the definitions of keyword vectors and the degree of importance of a keyword are
given. The importance degree reduction algorithm is explained in detail.

In our study, the condition attribute set C is the set of all keywords, B (B ⊆ C) is a subset of the
condition set. The decision attribute set D is the set of bug reports’ severity. REDC(D) represents
the collection of all relative reduce of C with respect to D. The core of C (CORED(C)) is defined as⋂

B∈REDD(C) B [13]. The value set V represents the frequencies with which keywords are contained
in the test reports. So the problem of keywords reduction is changed into the problem of decision
table reduction [14].

Definition 1. For a decision system KV = (U, C ∪ D, V, f), where U is the finite set of objects, the condition
attribute set C is the set of all keywords, B (B ⊆ C) is a subset of the condition set. The decision attribute set D is
the set of bug reports’ severity. The value set V represents the frequencies with which keywords are contained in
the test reports. f represents the information function. For any B ⊆ C, the indiscernibility relation, denoted by
IND(B), is defined as follows [14,15]:

IND(B) =
{
(x, y) ∈ U2

∣∣∣∀a ∈ B a(x) = a(y)
}

where a(x) denotes the value of feature a of object x. If (x, y) ∈ IND(B), x, and y are said to be indiscernible
with respect to B. The equivalence classes of the B-indiscernibility relation are denoted by [x]B. For any concept
X ⊆ U and attribute set B ⊆ C, X could be approximated by the lower approximation and upper approximation.

Definition 2. The lower approximation of X is the set of objects of U that are surely in X, defined as:

B(X) = {x ∈ U|[x]B ⊆ X}.

The upper approximation of X is the set of objects of U that are possibly in X, defined as:

B(X) = {x ∈ U|[x]B ∩ X 6= ∅}.

Definition 3. C-positive region of D is the set of all objects from the universe U which can be classified with
certainty into classes of U/D employing attributes from B (B ⊆ C), that is:

POSB(D) = ∪X∈U
D

B(X).
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Definition 4. The quantitative γ measure can be extended to indicate the quality of a probabilistic classification.
A straightforward transformation of the γ measure is denoted as follows:

γ(α, β)(D) =

∣∣∣POS(a,β)(D)
∣∣∣

|U| .

Definition 5. For a decision system KV = {U, C ∪ D, V, f}, B (B ⊆ C) is a subset of the condition set and
a (a /∈ C, but a /∈ B) is any condition attribute. The degree of importance of a relative to the decision set D is
as follows:

sig(a, B, D) = γB∪{a}(D)− γB =

∣∣∣POSB∪{a}(D)|−|POSB(D)
∣∣∣

|U|

Algorithm 1. Importance Degree Reduction (IDR) Algorithm

Input: KV = {U, C ∪ D, V, f }
Output: The reduction set B ((B ⊆ C) ∧ (B ∈ REDC(D))) of KV

Step 1: Calculate the core C relative to the D: CORED(C);
Step 2: Let B = CORED(C);

a) If POSIND(B)(D) = POSIND(C)(D)

Go to step 5;
b) End if;

Step 3: For ∀ aj ∈ C − B

a) Calculate sig(a, B, D) = γB∪{a}(D)− γB;

b) Let am = arg max
ai∈(C−B)

sig(ai, B, D);

c) Let B = B ∪ {am};

Step 4: If POSB∪{a}(D) = POSB(D)

a) Yes, go to step 5;
b) Else, go to step 3;

Step 5: Return B ∈ REDC(D);

The algorithm of IDR is shown in Algorithm 1. In Step 1, we calculate the core C relative to the D.
In Step 2, let B (B ⊆ C), which is a subset of the condition set equal to CORED(C), if the positive region
of decision attribute set D under the condition attribute set B is equal to the positive region of decision
attribute set D under the condition attribute set B, output the reduction set B. In Step 3 and Step 4, the
new attribute is added based on the core of the decision table. For each time of finding the attribute,
the attribute which has the highest importance degree is always is chosen, until the C does not change.

3. Experimental Design

The experimental design for predicting the severity of Android bug reports is described in
this section.

3.1. Experimental Setup

For the experiment, we randomly selected 600 Android test reports from the Android bug tracker
system [3] as evaluation data, as shown in Table 2. In addition, we manually labeled the severity of
the Android test report according to the rules defined for the bug repositories. To ensure that the
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classifier is not affected by the distribution of the bugs according to their severities, we make sure
that we select just as many reports in the training and evaluation set for each severity. To validate the
proposed approach, we used bug reports from bug repositories for two major open-source projects,
namely Mozilla and Eclipse, as training data, as shown in Table 3.

Android test reports [3]: The Android bug tracker system is a crowdsourced testing tool that
manages a large number of test reports collected from various sources, including development teams,
testing teams, and end users, who are regarded as crowdsourced workers. In the context of software
maintenance, high severity typically corresponds to fatal errors and crashes, whereas the no-severity
status is mostly assigned to cosmetic issues. However, Android test reports do not have severity
labels in the current Android bug tracker system. We randomly selected 600 Android test reports
and manually labeled their severity according to the rules defined for the bug repositories, as shown
in Table 2.

Table 2. The evaluation data of android test reports.

Project Non-Severe Bugs Severe Bugs

Android 289 311

The Eclipse and Mozilla bug repository datasets are obtained from Bugzilla bug-tracking system,
which is a famous bug management platform. Clear guidelines exist regarding how to assign the
severity of a bug. And, the severity of bug reports, which are manual labeled by the professional triager.
Although, the triager may label the wrong severity of bug reports, due to the large number of bug
reports. After the life-cycle of a bug report in Bugzilla bug-tracking system, the triager could change
the true severity status of bug reports according to the developers’ comments. In order to ensure the
severity status of bug reports are stable, we select the bug reports, which are submitted during the
period of 1997–2008. The bug reports we studied originated from bug repositories in which the severity
statuses are designated as trivial, minor, normal, major, critical, and blocker. Bugzilla also allows users to
request features using the reporting mechanism in the form of a report with a “severity” enhancement.
These reports are not considered in this study since they technically do not represent real bug reports.
In our approach, we treat bugs with trivial and minor severities as non-severe, whereas reports with
major, critical, and blocker severities are considered to represent severe bugs. Herraiz et al. [16] proposed
a similar grouping of severities. In our study, the normal severity status is deliberately not considered.
One reason for this is that such bugs represent a gray zone and hence might confuse the classifier.
However, a more important reason is that in the cases we investigated, the “normal” severity was the
default option for selecting the severity when reporting a bug, and we suspected that many reporters
simply did not bother to consciously assess the bug severity. A manual sampling of the bug reports
confirmed this suspicion. The training data obtained from the bug repositories is shown in Table 3.

Table 3. The training data obtained from the bug repositories.

Project Product-Component Non-Severe Bugs Severe Bugs

Eclipse

Platform-UI 1173 2982
JDT-UI 1216 1436

JDT-Text 712 515
Platform-SWT 521 2565

Mozilla

Core-Layout 960 2747
Firefox-General 2142 6378

Firefox-Bookmarks 511 656
Thunderbird-General 313 1268

Mozilla: (http://bugzilla.mozilla.org) Mozilla is an open-source software project that hosts several
popular products, such as Firefox and Thunderbird. The copy of the bug database that we obtained

http://bugzilla.mozilla.org
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contains all reports submitted during the period of 1997–2008, corresponding to approximately
400,000 reported bugs.

Eclipse: (http://bugs.eclipse.org/bugs) Eclipse is an open-source integrated development
environment that is widely used in both open-source and industrial settings. The corresponding
bug database contains over 200,000 bug reports submitted during the period of 2001–2008. Eclipse is
a technical application used by developers themselves, so we expect the bug reports to be quite detailed
and of “good” quality.

Our approach was implemented in the JAVA programming language for JDK 1.7 and executed
on a machine with the following configuration: Intel® Pentium® CPU G645 processor @ 2.90 GHz,
6 G of RAM, running Windows 7. We used four classifiers, namely, Naïve Bayes (NB), K-Nearest
Neighbor (KNN), Decision Tree (J48), and Support Vector Machines (SVM), as implemented in the
Weka toolkit [17].

3.2. Evaluation Metrics

We now define the measures of correct classifications and misclassifications for the
natural-language model. A true positive (TP) is a verified severe test report that is correctly classified
by the model. A false positive (FP) is a verified non-severe test report that is incorrectly classified as
a severe test report. A false negative (FN) is a verified severe test report that is incorrectly classified
as a non-severe test report. A true negative (TN) is a verified non-severe test report that is correctly
classified as a non-severe test report.

In information retrieval, natural language processing and classification problem, Precision is
a measure of result relevancy, while Recall is a measure of how many truly relevant results are
returned. Both Precision and Recall are therefore based on an understanding and measure of relevance.
These quantities are also related to the F-measure, which is defined as the harmonic mean of Precision
and Recall. When the results with high Recall but low Precision return many results, most of its predicted
labels are incorrect when compared to the training labels. The results with high Precision but low
Recall are just the opposite, returning very few results, but most of its predicted labels are correct
when compared to the training labels. The results with high Precision and high Recall will return many
results, with all results labeled correctly.

Accuracy: The accuracy of the model is the number of correct classifications divided by the total
number of classifications. We define accuracy more formally as:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100%.

Precision: The precision is the percentage of bug reports predicted to be severe that are correctly
predicted. We thus consider the precision for each severity status separately. More formally, we define
the precision as follows:

Precision =
TP

TP + FP
× 100%.

Recall: The recall is the percentage of all severe bug reports that are correctly predicted to be
severe. Here, we also consider the recall for each precision separately. More formally, we define the
recall as follows:

Recall =
TP

TP + FN
× 100%.

F-measure: Usually, the precision and recall scores are not discussed in isolation. Instead,
either the values of one measure are compared for a fixed value of the other measure, or both are
combined into a single measure, such as the F-measure, which is the weighted harmonic mean of
precision and recall. The F-measure has the property that if either the precision or the recall is low, the

http://bugs.eclipse.org/bugs
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F-measure also decreases. In this case study, we define the F-measure such that recall and precision are
equally weighted:

F-measure =
2× Precision× Recall
(Precision + Recall)

× 100%.

4. Experimental Results

In this section, the experimental results are discussed in relation to the specific research question.
RQ1: Can the IDR improve the accuracy of predicting the severity of android test reports?

In the first experiment, we compare the accuracy for each of selected components from Eclipse
and Mozilla to predict the severity of android bug reports, as shown in Table 4. In this table here, we
highlighted the best results in bold. The Project column and Product + Component column show the
products and components, which we selected from the projects to predict the severity of android bug
reports; and the other columns show the accuracy of predicting the severity of android test reports by
the four classifiers and the four classifiers with our approach.

Table 4 shows the accuracy of using the Mozilla and Eclipse components to predict the severity of
android bug reports. For example, for the UI component of the JDT product from the Eclipse project,
the accuracy of NB classification to predict the severity of android test reports is 0.632, and the accuracy
of NB classification with our approach (IDR + NB) to predict the severity of android test reports is 0.683.
In addition, the average accuracy of NB classification for Eclipse to predict the severity of android test
reports is 0.725, and the average accuracy of NB classification with our approach (IDR + NB) for Eclipse
to predict the severity of android test reports is 0.758.

From these results, we indeed notice that for most of predicting the severity of android bug
reports, the classifier with our approach is more accurate than the standard classifier. Also, the average
accuracy of standard classifiers with our approach is higher than the standard classifier to predict the
accuracy of android bug reports. In addition, in this table we can see that the NB classification with
our approach (IDR + NB) has the highest accuracy of using Eclipse and Mozilla to predict the severity
of android test reports. The classifiers based on SVM and KNN with our approach have an accuracy
nearly as good as the NB classifier with our approach. Furthermore, we see that the J48 classifier is
a less accurate approach.

We use two bug repository datasets (Eclipse, Mozilla) for knowledge transfer to predict the severity
of Android test reports. However, the different expressions of the test reports with natural language
and the different reliability of the crowdsourced worker, which may have caused the noise in the
prediction of the severity of test reports. In this case, the number of high-quality bug reports for training
is rather low and thus we are dealing with an insufficiently trained classifier, resulting naturally in
poor accuracy. In order to solve this problem, our approach uses IDR strategy based on rough set
for the extraction of characteristic keywords to reduce the noise. Firstly, we apply natural language
processing (NLP) techniques to get feature keywords from the bug reports. And, we use a bunch
of feature keywords to represent the bug reports and the severity of bug reports. Secondly, we use
the feature keywords to build a decision information table. Finally, we use an IDR approach to the
decision information table for keywords reduction. And, we could remove the redundant keywords
and get the classification rules under without affecting the classification ability. This result shows that
the NB classification with our approach (IDR + NB) is suitable for using two bug repository datasets
(Eclipse, Mozilla) for knowledge transfer to predict the severity of Android test reports.
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Table 4. The accuracy of predicting the severity with different project.

Project Product + Component NB IDR + NB SVM IDR + SVM KNN IDR + KNN J48 IDR + J48

Eclipse

JDT_Text 0.717 0.713 0.68 0.698 0.62 0.634 0.684 0.654
JDT_UI 0.632 0.683 0.641 0.667 0.605 0.625 0.627 0.657

Platform_Swt 0.785 0.825 0.831 0.827 0.834 0.834 0.738 0.734
Platform_UI 0.708 0.721 0.717 0.724 0.731 0.748 0.633 0.627
Eclipse_Avg. 0.725 0.758 0.721 0.739 0.632 0.647 0.643 0.66

Mozilla

Core_Layout 0.711 0.764 0.741 0.761 0.736 0.725 0.749 0.749
Firefox_Bookmarks 0.708 0.738 0.562 0.678 0.631 0.697 0.684 0.695

Firefox_General 0.745 0.749 0.748 0.743 0.756 0.672 0.769 0.794
Thunderbird_General 0.774 0.794 0.802 0.812 0.786 0.826 0.602 0.683

Mozilla_Avg. 0.723 0.748 0.715 0.739 0.712 0.720 0.686 0.699

All_Avg. 0.715 0.735 0.716 0.731 0.721 0.734 0.659 0.663

RQ2: what is the performance of our approach (IDR)?
In Figures 3 and 4, we compare the precision and recall for each of selected components from

Eclipse and Mozilla to predict the severity of Android bug reports. The vertical axis represents the
precision and recall of predicting the severity of Android bug reports by the four classifiers and the
four classifiers with our approach (IDR). The horizontal axis represents the results of classifiers (Basic)
and the four classifiers with our approach (IDR), respectively.

As we see in Figures 3 and 4, the precision and recall of using the Mozilla and Eclipse components
to predict the severity of android bug reports are similar, where we note that both the four classifiers
and the four classifiers with our approach vary between the values 0.58–0.85. For example, for
component Layout of Core product, in Figure 4a, the precision and recall of NB classification to predict
the severity of android test reports is 0.801 and 0.755, respectively; and the precision and recall of NB
classification with our approach (IDR + NB) to predict the severity of android test reports is 0.812 and
0.763. In addition, the F-measure of NB classification for Eclipse to predict the severity of android test
reports is 0.777, and the F-measure of NB classification with our approach (IDR + NB) for Eclipse to
predict the severity of Android bug reports is 0.787. The average F-measure of NB, SVM, KNN, J48
classifiers to predict the severity of Android bug reports is 0.712, 0.661, 0.621, 0.654, respectively. And,
the average F-measure of the four classifiers with our approach is 0.725, 0.674, 0.648, 0.671, respectively.

From these results, we indeed notice that the classifier with our approach is more effective than
the standard classifier for the most cases. Meanwhile, the average performance of the four classifiers
with our approach are all higher than the four classifiers. The results show that our approach could
reduce the noise in the bug reports, and, consequently, enhance the training data and model quality.

The general way of calculating the accuracy is by calculating the percentage of bug reports
from the evaluation set that are correctly classified. Similarly, Precision and Recall are widely used as
evaluation measures.

However, these measures are not fit when dealing with data that has an unbalanced category
distribution because of the dominating effect of the major category. Furthermore, most classifiers also
produce probability estimations of their classifications. These estimations also contain interesting
evaluation information but unfortunately are ignored when using the standard Accuracy, Precision,
and Recall approaches [18].
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Figure 3. The performance of predicting bug severity with the Eclipse project.

Figure 4. The performance of predicting the severity with Mozilla project.

The Receiver Operating Characteristic (ROC) was used as an evaluation method as this is a better
way for not only evaluating classifier accuracy, but also for easier comparison of different classification
algorithms [19]. However, comparing curves visually can be a cumbersome activity, especially when
the curves are close together. Therefore, the area beneath the ROC curve is calculated which serves
as a single number expressing the accuracy. If the Area Under Curve (AUC) is close to 0.5 then
the classifier is practically random, whereas a number close to 1.0 means that the classifier makes



Symmetry 2017, 9, 161 12 of 18

practically perfect predictions. This number allows more rational discussions when comparing the
accuracy of different classifiers [20].

The same conclusions can also be drawn from the other selected cases based on an analysis of
the Area Under Curve measures in Table 5. In this table here, we highlighted the best results in bold.
From these results, we indeed notice that the NB classifier with our approach (IDR + NB) is the most
accurate to predict the severity of android test reports.

Table 5. The area under curve (AUC) of predicting severity with different projects.

Project Product + Component NB IDR +NB SVM IDR + SVM KNN IDR + KNN J48 IDR + J48

Eclipse

JDT_Text 0.781 0.775 0.756 0.759 0.69 0.713 0.707 0.738
JDT_UI 0.686 0.793 0.69 0.711 0.634 0.664 0.651 0.625

Platform_Swt 0.732 0.744 0.74 0.767 0.597 0.606 0.542 0.631
Platform_UI 0.702 0.721 0.701 0.717 0.607 0.603 0.674 0.645
Eclipse_Avg. 0.725 0.758 0.722 0.739 0.632 0.647 0.643 0.66

Mozilla

Core_Layout 0.774 0.792 0.72 0.736 0.675 0.759 0.749 0.759
Firefox_Bookmarks 0.772 0.783 0.593 0.695 0.695 0.724 0.74 0.721

Firefox_General 0.787 0.775 0.684 0.782 0.703 0.763 0.763 0.773
Thunderbird_General 0.762 0.778 0.73 0.725 0.635 0.647 0.596 0.621

Mozilla_Avg. 0.75 0.77 0.702 0.737 0.655 0.685 0.678 0.689

All_Avg. 0.737 0.764 0.712 0.738 0.643 0.666 0.661 0.674

In addition, Table 5 shows that the AUC values of IDR + NB using Eclipse components to predict
the severity of android test reports is 0.758, 0.739, 0.647, and 0.66, respectively. And, the AUC for all
Eclipse components are approximately 0.701. The AUC values of IDR + NB using Mozilla components
to predict the severity of android test reports is 0.778, 0.725, 0.647, 0.621, respectively. We notice an
improvement with the Mozilla components where we observe an AUC of approximately 0.72. In this
case, this means that our approach performs around 22% better than if we would randomly guess the
severity of each bug.

Therefore, we conclude that our approach efficiently obtains training data from bug repositories
and uses knowledge transfer to predict the severity of Android test reports, which is based on the
provided information, particularly the one-line summary using the NB classifier with our approach
(IDR + NB). The accuracy of the approach is reasonable, yet it depends on the case.

5. Related Work

5.1. Automatic Bug Classification in Software Engineering

Issue reports are valuable resources during software maintenance activities. Automated support
for issue report classification can facilitate understanding, resource allocation, and planning.
Menzies and Marcus [21] proposed a new approach for extracting general conclusions from PITS
data based on text mining and machine learning methods, which are low cost, automatic, and
rapid. They designed and built a tool named SEVERIS (SEVERity Issue assessment) to automatically
review issue reports and alert when a proposed severity is anomalous. The way SEVRIS is built
provides the probabilities that the assessment is correct. These probabilities can be used to guide
decision making in this process. Tian et al. [5] proposed a framework named DRONE (PreDicting
PRiority via Multi-Faceted FactOrs ANalysEs) to predict the priority levels of bug reports in Bugzilla.
They consider multiple factors including: temporal, textual, author, related-report, severity, and
product. These features are then fed to a classification engine named GRAY (ThresholdinG and Linear
Regression to ClAssifY Imbalanced Data) built by combining linear regression with a thresholding
approach to address the issue with imbalanced data and to assign priority labels to bug reports.
Wang et al. [6] proposed an approach using both natural language information and execution
information in the detection of duplicate bug reports. They basic idea is as follows. First, based
on information retrieval, we calculate two similarities between the new bug report and each existing
bug report using natural language information and execution information, respectively. Second, we
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use some heuristics to determine the suggested list using the preceding similarities. Zanetti et al. [22]
proposed a method of classifying valid bug reports based on nine measures quantifying the social
embeddedness of bug reporters in the collaboration network. Zhou et al. [7] proposed a hybrid
approach of combining text mining and data mining techniques of bug report data to identify corrective
bug reports. This way could reduce the noise of misclassification (i.e., filtering bug reports that
are not corrective) and support better performance of bug prediction. Their work is essentially
a multi-stage classification approach—a particular kind of ensemble learning techniques—composed
by a set of specific learning algorithms with the aim of outperforming the constituent individual
ones. Wang et al. [23] proposed a hybrid approach by combining both text mining and data mining
techniques of bug report data to automate the prediction process. The first stage leverages text
mining techniques to analyze the summary parts of bug reports and classifies them into three levels
of probability. The extracted features and some other structured features of bug reports are then fed
into the machine learner in the second stage. Data grafting techniques are employed to bridge the
two stages. Mao et al. [24] proposed a content-based recommendation technique to automatically
match tasks and developers. The approach learns particular interests from registration history and
mines winner history to favor appropriate developers. Yu et al. [25] used neural networks to predict
the priority of bug reports. Their technique also employs a reused data set from similar systems to
accelerate the evolutionary training phase. Antoniol et al. also applied text mining techniques to the
descriptions of reported bugs to predict whether a report represented a real bug or a feature request [26].
They used techniques such as decision trees and logistic regression as well as a Naïve Bayes classifier
for this purpose. Menzies et al. predicted bug severity based on a rule learning technique that also
used the textual descriptions of reported bugs [27]. Their approach was applied to five projects
supplied by NASA’s Independent Verification and Validation Facility. Hooimeijer et al. [28] established
a predictive model for identifying high-quality bug reports. In their model, they consider a bug report
to be of high quality when the bug is repairable within a given timeframe. This predictive model can
effectively differentiate between high-quality and low-quality bug reports by extracting descriptive
information regarding the bug report, product, operating system, and report submitter. When there
are a large number of redundant bug reports in a repository, redundant bug reports can overburden
developers (primarily potential fix developers), delay project schedules, and increase project costs.
Runeson et al. [29] proposed a redundancy detection method based on information retrieval technology.
This method treats each bug report as a document, and returns a batch of reports that are similar to
the current report by calculating the similarity between the current report and the existing reports.
Sun et al. [30] proposed a new approach to detecting duplicate bug reports by building a discriminative
model that answers the question “Are two bug reports duplicates of each other”? The model would
report a score on the probability of A and B being duplicates. This score is then used to retrieve similar
bug reports from a bug report repository for user inspection. We have investigated the utility of our
approach on 3 sizable bug repositories from 3 large open-source applications including OpenOffice,
Firefox, and Eclipse. Subsequently, Sun et al. [31] proposed a multi-feature information retrieval
model that can continue to match the most similar features of reports between which a similarity has
been detected, thereby effectively identifying redundant reports by obtaining additional information
from them.

5.2. Crowdsourced Software Testing

Crowdsourcing techniques are widely used in industrial software testing and have gained
popularity in usability testing, localization testing, GUI testing, user-experience testing, and
stress & performance testing. Mao et al. conducted a comprehensive survey on crowdsourced
software engineering [1]. Chen and Kim [32] applied crowdsourced testing to test case generation.
They investigated the object mutation and constraint solving issues underlying existing test generation
tools, and based on their findings, they developed a puzzle-based automatic testing environment.
Musson et al. [33] proposed an approach in which crowd workers were used to measure the real-world
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performance of software products. The approach was demonstrated for a case study of the Lync
communication tool at Microsoft. In Ref. [34], a deterministic automaton is presented with the
purpose of automatic detection of hesitation, which qualifies it to be applied in different computational
platforms, including tablets and smartphones. Besides, it does not require obstructive sensors because
user’s movements are gathered and processed by means of traditional interfaces. Adams et al. [35]
proposed MoTIF for the detection and reproduction of context-related crashes in mobile apps after
their deployment in the wild. All of the studies listed above used crowdsourced testing to solve
various problems in traditional software testing activities. By contrast, the intent of our approach
is to solve a newly encountered problem in crowdsourced testing. Liu et al. [36] investigated both
methodological differences and empirical contrasts between crowdsourced usability testing and
traditional face-to-face usability testing. To solve the oracle problem, Pastore et al. [37] applied the
crowdsourcing technique to generate test inputs depending on a test oracle that required human
input in one form or another. Dolstra et al. [2] used virtual machines to run the system under test
to enable crowd workers to perform expensive and semi-automatic GUI testing tasks. By means
of crowdsourced testing, Nebeling et al. [38] conducted an experiment to evaluate the usability of
web sites and web-based services, and the results showed that crowdsourced testing is an effective
method of validating web interfaces. Feng et al. [8] proposed a novel test report prioritization method,
DivRisk, to reduce the cost of inspection in crowdsourced testing. The keywords are extracted
from test reports by using NLP techniques. These keywords construct a keyword vector model
KV. They calculate the risk vector RV based on KV to predict failure risk of tests. We construct the
distance matrix DM based on KV to design the diversity strategy for prioritization. The risk strategy
and the diversity strategy are combined to a hybrid strategy, DivRisk, to fulfill effective test report
prioritization. Three crowdsourced testing projects from industry have been used to evaluate the
effectiveness of test report prioritization methods. The results of empirical study encourage us to use
DivRisk for test report prioritization in practice, especially for mobile application testing. They also
provide guidelines to extend our prioritization methods to deal with test reports written in other
languages. In their subsequent article, Feng et al. [39] proposed a novel technique for prioritizing
test reports for inspection by software developers in which image-understanding techniques are used
in combination with traditional text-based techniques, specifically for the crowdsourced testing of
mobile applications. They proposed prioritization approaches based on text descriptions, screenshot
images, and a combination of both sources of information. Wang et al. [10] proposed a cluster-based
classification approach for effectively classifying crowdsourced reports when plentiful training data
are available. However, sufficient training data often are not available. Subsequently, Wang et al. [11]
proposed an approach called Local-based Active Classification (LOAF) to address the two main
challenges facing the automation of crowdsourced test report classification, i.e., the local bias problem
and the lack of labeled historical data.

The purpose of our work is to classify test reports generated via crowdsourced testing, which
differs from the focus of the aforementioned studies in two ways. First, Android bug reports are
not tagged with their degree of severity and thus require manual effort to label, leading to a heavy
workload. In this sense, classifying these reports is a more valuable task but also poses more challenges.
Second, in the aforementioned studies, the classification and the verification of the classification results
were both performed based on the same project. By contrast, our approach involves obtaining training
data from various other bug repositories and using knowledge transfer to predict the severity of
Android test reports. In other words, the bug reports from the other bug repositories are used as the
training data, and the Android test reports are used as the evaluation data. Our proposed approach can
effectively reduce the burden of manual labeling while still being able to achieve good performance.

6. Threats to Validity

In this part, we discuss some potential threats to the validity of our experiment based on the
guidelines proposed in [40].
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• Conclusion Validity: Since we use the bug reports submitted by the community both as training
data, it is not guaranteed that the severities in these reports are entered correctly. Users fill in the
reports according to their understanding and therefore assess severities corresponding to their
experience, which does not necessarily correspond with the guidelines. We explicitly omitted
the bugs reported with severity “normal” since this category corresponded to the default option
when submitting a bug and thus likely to be unreliable [20]. In addition, we manually labeled
their severity according to the rules defined for the bug repositories. Then, we use the majority
vote to ensure the severity of Android bug reports. Finally, we selected the Android bug reports
to relabel because the labeling results of Android bug reports are vary widely. The tools we used
to process the data might contain errors. We implemented our approach using the widely used
open-source data mining tool WEKA (http://www.cs.waikato.ac.nz/ml/weka/).

• Internal Validity: Our approach relies heavily on the presence of a causal relationship between the
contents of the fields in the bug report and the severity of the bug. There is empirical evidence that
this causal relationship indeed holds [4]. We only use the short summary descriptions of the test
report to build our classifiers, without including other features of bug reports (e.g., the product of
the bug report). However, we will consider adding the others’ features to investigate the influence
of these features on model performance.

• Construct Validity: We have trained our classifier for each component, assuming that special
terminology used for each component will result in a better prediction. However, bug reporters
have confirmed that providing the “component” field in a bug report is notoriously difficult [21],
hence we risk that the users interpreted these categories in different ways than intended.
We alleviated the risk by selecting those components with a significant number of bug reports.
In addition, we use standard metrics used in classification and prediction, namely: precision,
recall, and F-measure. These measures have been used before by Menzies and Marcus to
evaluate SEVERIS [27].

• External Validity: In this study, we focused on the bug reports of two software projects: Eclipse
and Mozilla. Like in other empirical studies, the results obtained from our presented approach
are therefore not guaranteed to hold with other software projects. However, we selected the
cases to represent worthwhile points in the universe of software projects, representing sufficiently
different characteristics to warrant comparison. For instance, Eclipse was selected because its user
base exists mostly of developers hence it is likely to have “good” bug reports. Our experimental
evaluation data consisted of randomly selected test reports from the Android bug tracker system.
We cannot assume a priori that the results of our study can be generalized beyond the environment
in which it was conducted. However, the diverse nature of the projects and the size of the datasets
somewhat reduce this risk.

7. Conclusions and the Further Work

A critical item of a bug report is the so-called “severity”, and consequently tool support for the
person reporting the bug in the form of a recommender or verification system is desirable. In this paper,
we propose a Knowledge Transfer Classification (KTC) approach based on text mining and machine
learning methods. Our approach obtains training data from bug repositories and uses knowledge
transfer to predict the severity of Android test reports. Keywords are extracted from the test reports
using NLP techniques. Thus, KV may contain a large number of keyword dimensions and considerable
noise. To solve this problem, we propose an Importance Degree Reduction (IDR) strategy based
on rough set for the extraction of characteristic keywords to obtain more accurate reduction results.
Experimental results indicate that the proposed KTC method can be used to accurately predict the
severity of Android test reports.

This paper compares four well-known document classification algorithms (namely, Naïve Bayes
(NB), K-Nearest Neighbor (KNN), Decision Tree (J48), and Support Vector Machines (SVM)) to find
out which particular algorithm is best suited for classifying Android bug reports in either a “severe”

http://www.cs.waikato.ac.nz/ml/weka/
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or a “non-severe” category. We found out that for the cases under investigation, the average accuracy
of predicting the Android bug reports severity by classifiers is 0.715, 0.716, 0.721, 0.659, respectively.
However, the average accuracy of predicting the Android bug reports severity by classifiers with our
approach (IDR) is 0.735, 0.731, 0.734, 0.663, respectively. The results shown that our approach (IDR)
could be beneficial for predicting the severity of Android bug reports. Therefore, the NB classifier with
our approach (IDR + NB) is the most suitable for predicting Android bug report severity.

Future work is aimed at including additional sources of data to support our predictions.
Information from the (longer) description will be more thoroughly preprocessed so that it can be used
for the predictions. Also, we will investigate other cases, where fewer bug reports get submitted but
where the bug reports get reviewed consciously. Meanwhile, we may use topic model to label the
severity of Android bug reports.
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