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Abstract: Various distributed optimization methods have been developed for consensus
optimization problems in multi-agent networks. Most of these methods only use gradient or
subgradient information of the objective functions, which suffer from slow convergence rate.
Recently, a distributed Newton method whose appeal stems from the use of second-order information
and its fast convergence rate has been devised for the network utility maximization (NUM) problem.
This paper contributes to this method by adjusting it to a special kind of consensus optimization
problem in two different multi-agent networks. For networks with Hamilton path, the distributed
Newton method is modified by exploiting a novel matrix splitting techniques. For general connected
multi-agent networks, the algorithm is trimmed by combining the matrix splitting technique and
the spanning tree for this consensus optimization problems. The convergence analyses show that
both modified distributed Newton methods enable the nodes across the network to achieve a global
optimal solution in a distributed manner. Finally, the distributed Newton method is applied to
solve a problem which is motivated by the Kuramoto model of coupled nonlinear oscillators and the
numerical results illustrate the performance of the proposed algorithm.

Keywords: consensus optimization; distributed optimization; spanning tree; distributed Newton
methods; matrix decomposition

1. Introduction

A number of problems that arise in the context of wired and wireless networks can be posed
as the minimization of a sum of functions, when each component function is available only to a
specific agent [1]. Decentralized consensus optimization problems are an important class of these
problems [2]. To solve these problems, distributed methods—which only require the agents to
locally exchange information between each other—gain a growing interest with every passing day.
Nedic and Ozdaglar [3,4] proposed distributed subgradient methods and provided convergence
results and convergence rate estimates for this method. Some extensions [5,6] of this method were
subsequently proposed. Ram et al. [5] adjusted a distributed subgradient method to address
the problem of vertically and horizontally distributed regression in large peer-to-peer systems.
Lobel and Ozdaglar [6] studied the consensus optimization problem over a time-varying network
topolopy and proposed a distributed subgradient method that uses averaging algorithms for locally
sharing information among the agents. Moreover, Ram et al. [1] proposed a distributed stochastic
subgradient projection algorithm and explored the effects of stochastic subgradient errors on the
convergence of the algorithm. These methods only used gradient or subgradient information of
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the objective functions, which suffered from slow convergence rate. Apart from these gradient
or subgradient methods, Mota et al. [7] combined the centering alternating direction method of
multiplier (ADMM) [8] and node-coloring technique and proposed a distributed ADMM (D-ADMM)
algorithm for the consensus optimization problem. This method makes some improvements in
convergence rate over distributed subgradient methods. Compared with conventional centralized
methods, the distributed methods have faster computing efficiency and have been widely used in many
fields, such as image processing [9,10], computer vision [11], intelligent power grids [12,13], machine
learning [14,15], unrelated parallel machine scheduling problems [16], model predictive control (MPC)
problems [17], and resource allocation problems in multi-agent communication networks [18,19].

These distributed algorithms mentioned above are all first-order methods, since they only use
gradient or subgradient information of the objective function. To substitute for the distributed
gradient method for solving the unconstrained minimization problem mentioned by Nedic and
Ozdaglar [3], Mokhtari et al. [20] proposed a network Newton (NN)-K method based on the
second-order information, where K is the number of Taylor series terms of the Newton step. NN-K can
be implemented through the aggregation of information in K-hop neighborhoods in every iteration.
Consequently, the communication between the adjacent nodes will increase exponentially with the
augment of the number of iterations. To ensure the iterative results closer to the optimal value, a larger
K should be selected and it is time-consuming—especially for large-scale networks.

Another second-order method—the distributed Newton method—was proposed by Wei et al.
[21] to solve the network utility maximization (NUM) problem in a distributed manner. NUM can
be formulated as a convex optimization problem with equality constraints by introducing some slack
variables and the coefficient matrix of the equality constraints having full row rank. This distributed
Newton-type second-order algorithm achieves superlinear convergence rate in terms of primal
iterations, but it cannot solve consensus optimization problems in multi-agent networks. Tracing its
root, the coefficient matrix of the constraint does not have full row rank, and predetermined routes
cannot be given in the general optimization problem.

The distributed Newton method addressed in this study aims to solve the problem of minimizing
a sum of strictly convex objective functions where the components of the objective are available at
different nodes of a network. This paper adds to the growing body of knowledge regarding distributed
second order methods. The contributions made by this paper are three-fold.

• Adjusting the distributed Newton algorithm for the NUM problem to a special kind of consensus
optimization problem in multi-agent networks with a Hamilton path. To overcome the obstacle,
computation of the dual step involves the global information of the Hessian matrix, and an
iterative scheme based on a novel matrix splitting technique is devised. Further, the convergence
of the distributed Newton algorithm is proved theoretically.

• A modified distributed Newton algorithm is proposed for consensus optimization problems
in connected multi-agent networks. The coefficient matrix has full row rank by constructing a
spanning tree of the connected network. Combined with the matrix splitting technique for NUM,
the distributed Newton method for multi-agent convex optimization is proposed and a theory is
presented to show the global convergence of the method.

• The effectiveness of the modified distributed Newton methods is demonstrated by a numerical
experiment. The experiment is based on the Kuramoto model of coupled nonlinear oscillators.
The proposed distributed Newton method can be applied to solve this model more efficiently
compared with two first-order methods

The rest of the paper is organized as follows: Section 2 provides some necessary preliminaries.
Section 3 formulates the general multi-agent strictly convex consensus optimization problem in
connected networks. Section 4 presents a distributed inexact Newton method in networks with a
Hamilton path. A solution algorithm to solve the problem in general connected networks is proposed
in Section 5. Section 6 presents the simulation results to demonstrate convergence properties of the
algorithms. Finally, conclusions and recommendations for future work are provided in Section 7.
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2. Preliminaries

Consider a connected network with P nodes and E edges modeled by a undirected graph
G = (V , E), where V = {1, 2, · · · , P} is the set of nodes and E ⊂ V × V is the set of edges.

Referring to Wei et al. [21], the NUM problem can be written as follows:

min f (x) = f1(x1) + f2(x2) + · · ·+ fP(xP)

s.t. Ax = c,
(1)

where fi(xi) is a strictly convex function, matrix A has full row rank, and c is a constant vector.
This problem can be solved by an exact Newton method,

xk+1 = xk + dk4xk, (2)

where4xk is the Newton direction given as the solution of the following system of linear equations[
∇2 f (xk) A′

A 0

] [
4xk

ωk

]
= −

[
∇ f (xk)

0

]
, (3)

where xk is the primal vector, ωk is the dual vector, ∇ f (xk) is the gradient vector, and ∇2 f (xk) is the
Hessian matrix. Moreover, ∇2 f (xk) is abbreviated as Hk for notational convenience.

Solving4xk and ωk in the preceding system yields

4xk = −H−1
k (∇ f (xk) + A′ωk), (4)

(AH−1
k A′)ωk = −AH−1

k ∇ f (xk). (5)

Since f (x) is a separable, strictly convex function, its Hessian matrix is a positive definite diagonal
matrix, and hence Equation (4) can be easily computed by a distributed iterative scheme. Wei et al. [21]
proposed a distributed Newton method for the NUM problem (1) by using a matrix splitting scheme
to compute the dual vector ωk in Equation (5) in a distributed manner. Let Ck be a diagonal matrix,
with diagonal entries

(Ck)ll = (AH−1
k A′)ll , (6)

Matrix Bk is given by
Bk = AH−1

k A′ − Ck. (7)

Let matrix B̄k be a diagonal matrix with diagonal entries

(B̄k)ii =
L

∑
j=1

(Bk)ij. (8)

By splitting the matrix AH−1
k A′ as the sum of Ck + B̄k and Bk − B̄k, the following theorem [21]

can be obtained.

Theorem 1. For a given k > 0, let Ck, Bk, B̄k be the matrices defined in Equations (6)–(8). Let ω0 be an
arbitrary initial vector. We can obtain the sequence {ωt} by the following iteration

ωt+1 = (Ck + B̄k)
−1(B̄k − Bk)ω

t + (Ck + B̄k)
−1(−AH−1

k ∇ f (xk)). (9)

Then, the spectral radius of the matrix (Ck + B̄k)
−1(B̄k − Bk) is strictly bounded above by 1 and the sequence

{ωt} converges to the solution of Equation (5) as t→ ∞.
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Note that the predetermined routes and full row rank coefficient matrix are necessary when
running the distributed Newton method for the NUM problem according to Reference [21].
Unfortunately, this property is usually not met in the general multi-agents consensus optimization
problems.

3. Problem Formulation

For the multi-agents consensus optimization problems proposed in this paper, only agent p has
access to its private cost function fp and can communicate with its neighbors using the network
infrastructure. This situation can be illustrated in Figure 1; i.e., node 2 can communicate with its
adjacent nodes 1, 3, 6, and 7. Node i has its own objective function fi, and all nodes cooperate in
minimizing the aggregate cost function f (x)

min
x

f (x) = f1(x) + f2(x) + · · ·+ fP(x)

s.t. x ∈ Rn,
(10)

where x ∈ Rn is the global optimization variable. This problem is also known as the consensus
optimization problem and its optimal solution is donated as x∗.

Figure 1. Network with P = 11 nodes.

A common technique to decouple problem (10) is to assign copies of the global variable x to
each node and then constrain all copies to be equal. Denoting the copy held by node p with xp ∈ Rn,
problem (10) is written equivalently as

min f1(x1) + f2(x2) + · · ·+ fP(xP)

s.t. xi = xj, {i, j} ∈ E .
(11)

Problem (11) is no longer coupled by the common variable in all fp, but instead by the new
equations xi = xj, for all pairs of edges in the network {i, j} ∈ E . These equations enforce all
copies to be equal while the network is connected. Note that they can be written more compactly as
(BT ⊗

In)x = 0, where B ∈ RP×E is the node arc-incidence matrix of the graph, In is the identity matrix
in Rn, and

⊗
is the Kronecker product, x = (x1, x2, · · · , xP) ∈ (Rn)P is the optimization variable.

Each column of B is associated with an edge (i, j) ∈ E and has 1 and -1 in the ith and jth entry,
respectively; the remaining entries are zeros. Problem (11) can be rewritten as

min f (x) = ∑
p=P
p=1 fp(xp)

s.t. Ax = 0,
(12)
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where A is the coefficient matrix taking values A = BT ⊗
In. In this paper we assume that the local

costs fp are twice differentiable and strongly convex.

4. Distributed Newton Method For Multi-Agent Consensus Optimization Problems in Networks
with a Hamilton Path

For some networks with particular topology structures (e.g., a Hamilton path), we can use special
techniques to solve the proposed consensus optimization problem. In this section, a novel matrix
splitting technique is devised for multi-agent consensus optimization problems in networks with a
Hamilton path, which travels every node in the network just once. For simplicity, we renumber these
nodes from 1 to P (P = 11) along this path as depicted in Figure 2. We know that every dual variable
corresponds to one link, so ωi (i = 1, 2, · · · , P − 1) can be used to denote the dual variable ωi,i+1,
which is stored in node i. In Figure 2, node 0 is the copy of node 1 and it is actually non-existent. We
add the definition of ω0 = 0 and ωP = 0 for the sake of analysis.

Figure 2. A Hamilton path of network with P = 11 nodes.

From Figure 2, the coefficient matrix A in problem (12) is a dual-diagonal matrix given by

A =



I −I 0 0 0 0 0
0 I −I 0 · · · 0 0 0
0 0 I −I 0 0 0

...
. . .

...
0 0 0 0 . . . I −I 0
0 0 0 0 0 I −I


, (13)

where I is an identity matrix of dimension n.
Let Mk be a diagonal matrix with diagonal entries

(Mk)pp = (AH−1
k A′)pp = Q−1

p + Q−1
p+1, (14)

where Qp = (Hk)pp = ∂2 f (xk)

∂x2
p

is the diagonal block of the Hessian matrix. Matrix Nk is given by

Nk = AH−1
k A′ −Mk, (15)

By splitting matrix AH−1
k A′ as the sum of Mk and Nk, a Jacobian iteration can be used to compute

the dual vector ωk in (5) in a distributed manner.
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Theorem 2. For a given k > 0, let Mk and Nk be the matrices defined in (14) and (15) and ω0 be an arbitrary
initial vector. The sequence {ωt} can be obtained by the iteration

ωt+1 = −M−1
k Nkωt −M−1

k AH−1
k ∇ f (xk). (16)

Then, the spectral radius of the matrix M−1
k Nk is strictly bounded above by 1 and the sequence {ωt} converges

to the solution of (5) as t→ ∞.

Proof of Theorem 2. The proof is described in Appendix A.

There are many ways to split the matrix AH−1
k A′, Jacobian iteration is selected in our method

due to two reasons. Firstly, considering the special structure of the matrices A and H−1
k , the spectral

radius of Jacobian matrix can be guaranteed strictly bounded above by 1 and thus the sequence {ωk}
converges as k→ ∞. Secondly, the matrix Mk is diagonal, which guarantees that the dual variable is
updated without global information.

Next, a distributed computation procedure to calculate the dual vector will be developed by
rewriting the iteration (16).

Theorem 3. The dual iteration (16) can be written as

ωt+1
i = (Q−1

i + Q−1
i+1)

−1
(Q−1

i ωt
i−1 + Q−1

i+1ωt
i+1 + ai) i = 1, 2, · · · , P− 1, (17)

where ai = Q−1
i+1∇i+1 f (xk)−Q−1

i ∇i f (xk), ω0 = 0 and ωP = 0.

Proof of Theorem 3. The proof is described in Appendix B.

From this theorem, each link variable ωi is updated using its private result, Qi, ∇i f (xk), and the
information from its neighbors; i.e., ωt

i−1, Qi+1, ∇i+1 f (xk), ωt
i+1. The adjacent nodes’ information is

obtained directly through the information exchange. Therefore, the dual variable can be obtained in a
distributed manner.

Once the dual variables are computed, the primal Newton direction can be obtained according
to (4) as: 

4xk
1

4xk
2

4xk
3

...
4xk

n

 =


−Q−1

1 (∇1 f (xk) + ωk
1)

−Q−1
2 (∇2 f (xk) + ωk

2 −ωk
1)

−Q−1
3 (∇3 f (xk) + ωk

3 −ωk
2)

...
−Q−1

n (∇n f (xk)−ωk
n−1)

 . (18)

From this equation system, the primal Newton direction is computed only using the local
information Qi, ∇i f (xk), ωk

i , and ωk
i−1; hence, the calculation of Newton direction is decentralized.

For the consensus optimization problem (10), we convert it to a separable optimization problem
with equality constraints (11) and introduce Equations (4) and (5) to solve it. However, the computation
of the dual variable ωk at a given primal solution xk cannot be implemented in a distributed manner,

since the evaluation of the matrix inverse (AH−1
k A′)

−1
requires global information. We provide

a decentralized computation of ωk using Jacobian iteration. Then, the primal Newton direction is
expressed in (18). Now we present the details of the algorithm.

Algorithm 1 is distributed and local. Node i receives xk
j from its neighbors and computes the

values of ai, bi. Step 2 and Step 3 are dual iterations. Node i generates ωt+1
i by using ωt

i−1 and ωt
i+1

from its neighbors and sends the estimates to them. We find that the values of ai, bi are not changed at
a given primal solution xk. Hence, they are calculated only once before the iteration of dual variable.
Lastly, Algorithm 1 computes the Newton direction4xk

p and updates the primal variable xk+1
p based
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on the previous result xk
p and sends them to their neighbors. If some stopping criterion is met, the

algorithm stops and produces the result within the desired accuracy.
Algorithm 1 is proposed based on networks with a Hamilton path. In the next section, a distributed

inexact Newton algorithm is proposed for multi-agent consensus optimization problems in any
connected network.

Algorithm 1. Distributed Inexact Newton Method in Networks with a Hamilton Path

Step 0: Initialization: Initialize primal variables x0 and dual variables ω0, set the number of iterations
k = 0.
Step 1: For each node i,

If i 6= P, calculate ai and bi = (Q−1
i + Q−1

i+1)
−1

;
If i = P, continue.
End for.

Step 2: Set ωt
0 = ωt

P = [0, 0, · · · , 0]′ ∈ Rn−1.
For each node i,
If i = P, continue; Otherwise, calculate

ωt+1
i = bi(Q−1

i ωt
i−1 + Q−1

i+1ωt
i+1 + ai).

Send ωt+1
i to Ni.

End for.
Step 3: If some stopping criterion is met for ωt, continue; otherwise, set t = t + 1 and go back to Step 2.
Step 4: For each node i

Calculate Newton direction4xk
i

Update the primal variable xk+1
i = xk

i +4xk
i and send it to Ni.

End for.
Step 5: If some stopping criterion is met, stop; otherwise, set t = 0, k = k + 1 and go back to Step 1.

5. Distributed Newton Method for Multi-agent Problems in General Connected Networks

This distributed Newton method is proposed for multi-agent consensus optimization problems in
general connected networks. Before giving this method, a theorem is firstly introduced.

Theorem 4. In reference [22], each connected graph has at least one spanning tree.

Thus, we can find at least one spanning tree in a connected graph. Now we select an arbitrary
node as the root of the tree. We call the nodes connecting to root the first-level nodes, and the nodes
which connected to ith-level nodes is called (i + 1)th-level nodes. All nodes are renumbered according
to these levels. The dual variable ωi,j corresponds to a link between node i and node j. In order to
ensure that the coefficient matrix A has full row rank, we eliminate the links between nodes belonging
to the same level. Without loss of generality, we choose node 6 to be the root of the tree, as shown in
Figure 3. In order to facilitate the analysis, all nodes in Figure 3 are renumbered according to the rule
of top-to-bottom and left-to-right as depicted in Figure 4. Figure 5 is the dual graph of the spanning
tree. From this figure, we have the observation that the dual graph is no longer a tree and there are
many circuits.
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The coefficient matrix A of Figure 4 is a lower triangular matrix given by

A =



I −I 0 0 0 0 0
I 0 −I 0 · · · 0 0 0
I 0 0 −I 0 0 0

...
. . .

...
0 0 0 I . . . 0 −I 0
0 0 0 0 0 I −I


, (19)

where Al,l+1 = −I and Al,i = I if the link {l + 1, i} ∈ E .
Iteration Equation (9) in Theorem 1 can be used to compute the dual sequence {ωt}, since the

matrix A has full row rank and the objective function is strictly convex. The matrix A in this problem
has different forms with it in NUM, and therefore predetermined routes are not needed when we
rewrite Equation (9).

Figure 3. Spanning tree of network with 11 nodes in Figure 1.

Figure 4. Spanning tree after renumbering.
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Figure 5. Dual graph for the network in Figure 3.

Theorem 5. For each primal iteration k, the dual iteration (9) can be written as

ωt+1
i,j = −aij[ ∑

s∈Ni/j
sign (s, j)Q−1

i ωt
i,s + ∑

s∈Nj/i
sign (s, i)Q−1

j ωt
j,s − bijω

t
i,j + cij], (20)

whereNi/j is defined as the set of nodes connected to node i, excluding node j; sign (r, s) = 1 if r, s belongs to the
same level and sign (r, s) = −1; otherwise, aij = (DiQ−1

i + DjQ−1
j )
−1

, bij = (Di − 1)Q−1
i + (Dj − 1)Q−1

j

and cij = Q−1
i ∇i f (xk)−Q−1

j ∇j f (xk).

Proof of Theorem 5. The proof is described in Appendix C.

From this theorem, each dual component ωt+1
i,j is updated using its private result ωt

i,j and the

adjacent nodes’ information; i.e., ωt
i,p, ωt

j,p, Di, Dj, Q−1
i , Q−1

j , ∇i f (xk), ∇j f (xk). Therefore, the dual
variable can be computed in a distributed manner. Next, we obtain the primal Newton direction in a
distributed way.

Recall the definition of matrix A; i.e., Ali = I and Al j = −I if {i, j} ∈ E , i < j, and Alp = 0
otherwise. Therefore, we have

(A′ωk)l = ∑
p∈Nl ,p>l

ωl,p − ∑
p∈Nl ,p<l

ωl,p. (21)

Thus, the Newton direction can be given by

(4xk)l = −Q−1
l (∇l f (xk) + ∑

p∈Nl ,p>l
ωl,p − ∑

p∈Nl ,p<l
ωl,p). (22)

From this equation, the primal Newton direction is computed using only the local information
Ql , ∇l f (xk) and the dual information ωk

l,p which is connected with node l. Hence, the calculation of
Newton direction is decentralized.

For the consensus optimization problem (10), we have proposed a distributed inexact Newton
method in the previous subsection. In order to get rid of the dependence on the network topology,
we propose the following distributed Newton algorithm using a novel matrix splitting technique
(Algorithm 2).
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Algorithm 2. Distributed Inexact Newton Method for Arbitrary Connected Network

Step 0: Initialization: Initialize primal variables x0 and dual variables ω0, set the number of iterations
k = 0.
Step 1: For each link {i, j} ∈ E ,

Calculate aij, bij, and cij.
End for.

Step 2: For each link {i, j} ∈ E ,
Calculate ωt+1

i,j by Equation (20) and send the result to nodes i and j.
End for.

Step 3: If some stopping criterion is met for ωt, continue; otherwise, set t = t + 1 and go back to Step 2.
Step 4: For each node i,

Calculate Newton direction4xk
i by Equation (22);

Update the primal variable xk+1
i = xk

i +4xk
i .

Send xt+1
i to Ni.

End for.
Step 5: If some stopping criterion is met, stop; otherwise, set t = 0, k = k + 1, and go back to Step 1.

Algorithm 2 is also distributed and local. Step 2 and 3 are dual iterations. An immediate
consequence of Theorem 6 is that the dual iteration is distributed. We find that the values of ai,j, bi,j, ci,j
are not changed at a given primal solution xk. Hence, they are calculated only once before the dual
iteration. Lastly, Algorithm 2 computes the Newton direction4xk

i and updates the primal variable
xk+1

i based only on the previous result xk
i and the dual components of the nodes connected node i.

Algorithm 1 and Algorithm 2 are distributed, and they are second-order methods. We will
demonstrate the effectiveness of the proposed distributed inexact Newton methods by applying them
to the convex programming.

6. Numerical Experiments

In this section, we demonstrate the effectiveness of the proposed distributed Newton methods by
applying them to solve a problem which is motivated by the Kuramoto model of coupled nonlinear
oscillators [23]. This problem is selected in numerical experiments for two reasons. On one hand,
the objective function of this problem is strict convex and separable, which are consistent with the
requirement of the special consensus optimization problem. On the other hand, compared with
least square problem, the Kuramoto model is more universal and representative. Our simulations
were based on random network topology. The codes were written in MATLAB. All numerical
experiments were run in MATLAB 7.10.0 on a laptop with Pentium(R) Dual-Core E5500 2.80GHz CPU
and 2GB of RAM.

The problem can be reformulated on the form

min
x

∑P
i=1 1−

√
1− x2

i

s.t. xi = xj, ∀i 6= j.

The problem instances of this problem were generated in the following manner. The number of
nodes was 100. We terminated all algorithms whenever reaching an absolute error |xk − xk−1| = 10−4

or the iteration number exceeded 103. In addition to the decentralized incremental algorithm, we also
compared the proposed distributed Newton method with the distributed subgradient algorithm.

Figures 6 and 7 show the convergence curves of the three methods under test with P = 100.
The curves shown in these figures are the corresponding absolute error and objective function value
of the running average iterates of the three methods. The step size of the decentralized incremental
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algorithm is set to αk = 0.01, and that of the distributed subgradient method is αk = 1
k+1 . From

Figure 6, we observe that the proposed distributed Newton method and the distributed subgradient
method exhibit comparable convergence behavior; both methods converge to a reasonable value
within 10 iterations and outperform the decentralized incremental algorithm. For the decentralized
incremental method, the convergence speed slows down when the iteration number becomes
large. From Figure 7, we decrease the absolute value and see that the proposed Newton method
performs better than the distributed subgradient algorithm. One should note that the distributed
subgradient method is more computationally expensive than the proposed distributed Newton method,
since in each iteration the former requires the computation of the projection of the iteration value.

(a)

(b)

Figure 6. Absolute error along iterations for network with 100 nodes (1). (a) Absolute error;
(b) Objective function value.

(a)

(b)

Figure 7. Absolute error along iterations for network with 100 nodes (2). (1). (a) Absolute error;
(b) Objective function value.

7. Conclusions

This paper adjusted the distributed Newton methods for the NUM problem to solve the
consensus optimization problem in different multi-agent networks. Firstly, a distributed inexact
Newton method for consensus optimization problem in networks with a Hamilton path was devised.
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This method achieves the decomposition of a Hessian matrix by exploiting matrix splitting techniques.
The convergence analysis of this method followed. Secondly, a distributed Newton algorithm for
consensus optimization problems in general multi-agent networks was proposed by combining the
matrix splitting technique for NUM and the spanning tree of the network. Meanwhile, the convergence
analysis showed that the proposed algorithms enable the nodes across the network to achieve a
global optimal solution in a distributed manner. Lastly, the proposed distributed inexact Newton
method was applied to solving a problem which is motivated by the Kuramoto model of coupled
nonlinear oscillators. The numerical experiment showed that the proposed algorithm converged with
less iterations compared with the distributed projected subgradient method and the decentralized
incremental approach. Moreover, the number of iterations of the proposed algorithm has a small
change with the increase of the nodes’ number.

When constructing the spanning tree of an arbitrary connected network, the links between nodes
belonging to the same level are eliminated in order to ensure that the coefficient matrix A has full
row rank. In other words, a large number of network resources have not been effectively utilized.
Consequently, the efficiency of the distributed inexact Newton algorithm can be further improved.
In addition, the number of primal iterations is only considered in numerical experiments and compared
with other two algorithms. We will take the number of dual iterations into consideration in future work.
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Appendix A

Proof of Theorem 2. Since each fp is a strictly convex function, both the Hessian matrix Hk and its
inverse H−1

k are positive definite and block-diagonal for all k. In addition, the matrix A has full row
rank as shown in (13). Therefore, the product AH−1

k A′ is real and symmetric.
We now prove that matrix Mk + Nk is a positive definite matrix. Let matrix Ck be given by

Ck = Mk + Nk, and

Ck =



Q−1
1 + Q−1

2 −Q−1
2 0 0 0

−Q−1
2 Q−1

2 + Q−1
3 −Q−1

3 · · · 0 0
0 −Q−1

3 Q−1
3 + Q−1

4 0 0
...

. . .
0 0 0 · · · Q−1

P−2 + Q−1
P−1 −Q−1

P−1
0 0 0 · · · −Q−1

P−1 Q−1
P−1 + Q−1

P


.

For any nonzero vector v = [v′1, v′2 · · · v′P−1]
′, it can be obtained that

(Ckv, v) = ((Q−1
1 + Q−1

2 )v1 −Q−1
2 v2, v1) + (−Q−1

2 v1 + (Q−1
2 + Q−1

3 )v2

−Q−1
3 v3, v2) + (−Q−1

3 v4 + (Q−1
3 + Q−1

4 )v3 −Q−1
4 v4, v3)

+ · · ·+ (−Q−1
P−1vP−2 + (Q−1

P−1 + Q−1
P )vP−1, vP−1)

= (Q−1
1 v1, v1) + (Q−1

2 (v1 − v2), (v1 − v2)) + (Q−1
3 (v2 − v3), (v2 − v3))

+ · · ·+ (Q−1
P−1(vP−2 − vP−1), (vP−2 − vP−1)) + (Q−1

P vP−1, vP−1).

Since the matrices Qp, their inverse Q−1
p and Q−1

p + Q−1
q , are all positive definite, we have (Ckv, v) > 0

combining the nonnegativity of the vector v. Thus, the matrix Mk + Nk is positive definite. Evidenced
by the same token, the matrix Mk − Nk is also a positive definite matrix.
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From the analysis given above, the matrices Mk + Nk and Mk − Nk are positive definite. Then,
the spectral radius ρ(M−1

k Nk) < 1 [24]. Hence, Jacobian iteration guarantees the convergence of
sequence {ωt} generated by iteration (16) to the solution of (5).

Appendix B

Proof of Theorem 3. It can be obtained by the definition of matrix Nk in (15)

−Nkωt =



0 Q−1
2 0

Q−1
2 0 Q−1

3
Q−1

3 0
. . . . . . . . .

0 Q−1
P−1

Q−1
P−1 0





ωt
1

ωt
2

ωt
3

...
ωt

P−2
ωt

P−1


=



Q−1
2 ωt

2
Q−1

2 ωt
1 + Q−1

3 ωt
3

Q−1
3 ωt

2 + Q−1
4 ωt

4
...

Q−1
P−2ωt

P−3 + Q−1
P−1ωt

P−1
Q−1

P−1ωt
P−2


. (A1)

The following equation can be obtained by the definition of A in (13)

−AH−1
k ∇ f (xk) = −


Q−1

1 −Q−1
2

Q−1
2 −Q−1

3
. . . . . .

Q−1
P−1 Q−1

P



∇1 f (xk)

∇2 f (xk)
...

∇P f (xk)



=


Q−1

2 ∇2 f (xk)−Q−1
1 ∇1 f (xk)

Q−1
3 ∇3 f (xk)−Q−1

2 ∇2 f (xk)
...

Q−1
P−1∇P−1 f (xk)−Q−1

P ∇P f (xk)

 . (A2)

Substituting these two equations and the definition of Mk in (14) into the original Jacobian iteration
(16), we have

ωt+1
1

ωt+1
2

ωt+1
3
...

ωt+1
P−1

 =


(Q−1

1 + Q−1
2 )(Q−1

2 ωt
2 + Q−1

2 ∇2 f (xk)−Q−1
1 ∇1 f (xk))

(Q−1
2 + Q−1

3 )(Q−1
2 ωt

1 + Q−1
3 ωt

3 + Q−1
3 ∇3 f (xk)−Q−1

2 ∇2 f (xk))

(Q−1
3 + Q−1

4 )(Q−1
3 ωt

2 + Q−1
4 ωt

4 + Q−1
4 ∇4 f (xk)−Q−1

3 ∇3 f (xk))
...

(Q−1
P−1 + Q−1

P )(Q−1
P−1ωt

P−2 + Q−1
P−1∇P−1 f (xk)−Q−1

P ∇P f (xk))

 . (A3)

Finally, let ai = Q−1
i+1∇i+1 f (xk)−Q−1

i ∇i f (xk), and we obtain the iteration (17).

Appendix C

Proof of Theorem 5. Without loss of generality, we assume that ωi,j is the lth component of the dual
vector ω; i.e., ωi,j = ωl . Recalling the definition of coefficient matrices A and Bk, we can obtain that:
(Bk)l,p = Q−1

i if ωp = ωi,s is connected to node i. In addition, node s and node j belong to the same
level; (Bk)l,p = −Q−1

i if ωp = ωi,s is connected to node i and node s and node j belong to different
levels. Then, we have

(Bkωt)l = ∑
s∈Ni/j

sign (s, j)Q−1
i ωt

i,s + ∑
s∈Nj/i

sign (s, i)Q−1
j ωt

j,s. (A4)

Using the definition of coefficient matrix A one more time, we have this fact: there are Di matrix
Q−1

i and Dj matrix Q−1
j in the lth row of the matrix AH−1

k A′. Combining the definition of B̄k in (8),
we obtain

(B̄kωt)l = [(Di − 1)Q−1
i + (Dj − 1)Q−1

j ]ωt
i,j. (A5)
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From the preceding relation and the definition of matrix Ck in (6), we have

(Ck + B̄k)l = Q−1
i + Q−1

j + [(Di − 1)Q−1
i + (Dj − 1)Q−1

j ] = DiQ−1
i + DjQ−1

j . (A6)

Finally, we obtain the desired distributed iteration (20) when substituting Equations (A4)–(A6)
into (9).
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