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Abstract: Our principal goal is to study the prescribed curvature problem in a manifold with
density. In particular, we consider the Euclidean 3-space R3 with a positive density function eφ,
where φ = −x2 − y2, (x, y, z) ∈ R3 and construct all the helicoidal surfaces in the space by solving
the second-order non-linear ordinary differential equation with the weighted Gaussian curvature and
the mean curvature functions. As a result, we give a classification of weighted minimal helicoidal
surfaces as well as examples of helicoidal surfaces with some weighted Gaussian curvature and mean
curvature functions in the space.
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1. Introduction

Differential geometers have been of interest in studying surfaces of constant mean curvature
and constant Gaussian curvature in space forms for a long time. As a generalization of surfaces
with constant Gaussian curvature or mean curvature, Kenmotsu [1], who generalized an old result
of Delaunay [2], constructed surfaces of revolution with the mean curvature as a smooth function.
A helicoidal surface in the Euclidean 3-space R3 is defined as the orbit of a plane curve under a
helicoidal motion. As for helicoidal surfaces in R3, the surfaces with prescribed mean or Gaussian
curvature have been studied by Baikoussis and Koufogiorgos [3]. On the other hand, Beneki et al. [4]
and Ji and Hou [5–7] extended it in a Minkowski space. Recently, in [8], Yoon et al. also constructed
helicoidal surfaces in a Heisenberg group for such a case.

A density on a Riemannian manifold is a positive function Φ, weighting both volume and surface
area. In terms of the underlying Riemannian volume dV0 and area dA0, the weighted volume and
area are given by dV = ΦdV0 and dA = ΦdA0, respectively. Manifolds with densities (called also a
weighted manifold) arise naturally in geometry as quotients of other Riemannian manifolds, in physics
as spaces with different media, in probability as the famous Gauss space G3 with Φ = cea2r2

for a, c ∈ R
and r2 = x2 + y2 + z2. Also, it was instrumental in Perelman’s proof of the Poincare conjecture [9].

By using the first variation of the weighted area, the mean curvature Hφ of a surface in the
Euclidean 3-space R3 with density Φ = eφ can be defined. It is given by

Hφ = H − 1
2
〈N,5φ〉, (1)

where H and N are the mean curvature and the unit normal vector of a surface and5φ is the gradient
of φ, which is called the weighted mean curvature or the φ-mean curvature of a surface. The weighted
mean curvature Hφ of a surface in R3 with density eφ was introduced by Gromov [10] and it is a natural
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generalization of the mean curvature H of a surface. A surface with Hφ = 0 is called a weighted
minimal surface or a φ-minimal surface in R3.

Another curvature for a surface in the Euclidean 3-space is the Gaussian curvature. In [11],
authors introduced a generalized Gaussian curvature of a surface in a manifold with density eφ and it
is defined by

Gφ = G− ∆φ, (2)

where G is the Riemannain Gaussian curvature of a surface and ∆ is the Laplacian operator, which is
called the weighted Gaussian curvature or the φ-Gaussian curvature of a surface. Also, they obtained
a generalization of the Gauss–Bonnet formula for a smooth disc in a smooth surface with density eφ.

For more details about manifolds with density and some relative topics, we refer readers
to [12–17], etc. In particular, Hieu and Hoang [13] studied ruled surfaces and translation surfaces in
R3 with density ez and they classified the weighted minimal ruled surfaces and translation surfaces.
Lopez [15] considered a linear density eax+by+cz, a, b, c ∈ R, and he classified the weighted minimal
translation surfaces and cyclic surfaces in a Euclidean 3-space R3. Also, Belarbi and Belkhelfa [18]
investigated the properties of the weighted minimal graphs in R3 with a linear density.

In this article, we focus on a class of helicoidal surfaces in the Euclidean 3-space R3 with density
eφ, where φ(p) = −x2 − y2, p = (x, y, z) ∈ R3. In particular, we construct all helicoidal surfaces in the
space, in terms of the weighted Gaussian curvature and mean curvature, as smooth functions.

2. Preliminaries

We consider a regular plane curve γ(u) = (g(u), 0, f (u)) with g(u) > 0 in the xz-plane which is
defined on a open interval I ⊂ R. A surface M in the Euclidean 3-space R3 defined by

X(u, v) =

cos v − sin v 0
sin v cos v 0

0 0 1


g(u)

0
f (u)

+ h

0
0
v

 , (3)

where h is a constant, is said to be the helicoidal surface with axis Oz, a pitch h and the profile curve γ.
That is, M can be parametrized by

X(u, v) = (g(u) cos v, g(u) sin v, f (u) + hv).

We assume, without loss of generality, γ(u) = (u, 0, f (u)) is the profile curve in the xz-plane
defined on any open interval I of positive real numbers. Then, the helicoidal surface M in R3 is
given by

X(u, v) = (u cos v, u sin v, f (u) + hv), (4)

where f is a smooth function defined on I.
By a direct computation, the Gaussian curvature G and the mean curvature H of the surface are

given by

G =
1

D2

[
u3 f ′(u) f ′′(u)− h2

]
,

H =
1

2D
3
2

[
(u2 + h2)u f ′′(u) + u2 f ′3(u) + (u2 + 2h2) f ′(u)

]
,

where D = (1 + f ′2(u))u2 + h2 > 0. On the other hand, the unit normal vector N of the surface is

N =
1√
D

(
h sin v− u f ′(u) cos v,−u f ′(u) sin v− h cos v, u

)
.
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Suppose that M is the surface in R3 with density eφ, where φ = −x2 − y2. Then, in this case, the
weighted mean curvature Hφ and the weighted Gaussian curvature Gφ can be expressed as

Hφ =
1

2D
3
2

[
(u2 + h2)u f ′′(u) + (u2 − 2u4) f ′3(u) + (u2 + 2h2 − 2u4 − 2h2u2) f ′(u)

]
(5)

and
Gφ =

1
D2

(
u3 f ′(u) f ′′(u)− h2

)
− 4, (6)

respectively.

3. Main Theorems and Examples

In this section, we construct helicoidal surfaces with prescribed weighted Gaussian curvature and
weighted mean curvature in the Euclidean 3-space R3 with density e−x2−y2

, where (x, y, z) ∈ R3.

3.1. The Solution of Equation (5)

Equation (5) is a second-order nonlinear ordinary differential equation. To solve it, we put

A =
f ′(u)√

D
. (7)

Then, Equation (5) can be expressed in the form:

Hφ = uA′ + (2− 2u2)A,

equivalently,

A′ +
(

2
u
− 2u

)
A =

1
u

Hφ. (8)

It is a first-order linear ordinary differential equation with respect to A and its general solution is
given by

A =
eu2

u2

(∫
ue−u2

Hφdu + c1

)
, (9)

where c1 ∈ R. On the other hand, Equations (7) and (9) imply[
u2 − e2u2

(∫
ue−u2

Hφdu + c1

)2
]

f ′2(u) =
u2 + h2

u2 e2u2
(∫

ue−u2
Hφdu + c1

)2
. (10)

Since

u2 − e2u2
(∫

ue−u2
Hφdu + c1

)2
=

1
D
(u4 + u2h2) > 0,

thus the general solution of Equation (10) becomes

f (u) = ±
∫ eu2√

u2 + h2(
∫

ue−u2
Hφdu + c1)

u
(

u2 − e2u2(
∫

ue−u2 Hφdu + c1)2
) 1

2
du + c2, (11)

where c2 is constant.
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Conversely, let h be a given non-zero real constant and Hφ(u) be a real-valued smooth function
defined on an open interval I ⊂ (0,+∞). Then, for any u0 ∈ I, there exist an open subinterval I′ of u0

(I′ ⊂ I) and an open interval J of R containing

c′1 = −
(∫

ue−u2
Hφdu

)
(u0)

such that the function

F(u, c1) = u2 − e2u2
(∫

ue−u2
Hφdu + c1

)2
> 0

for any (u, c1) ∈ I′ × J. In fact, because F(u0, c′1) = u2
0 > 0, by the continuity of F, it is positive in a

subset of I′ × J ⊂ R2. Therefore, for any (u, c1) ∈ I′ × J, c2 ∈ R, h ∈ R and any given smooth function
Hφ, we can define the two-parameter family of curves

γ(u, Hφ, h, c1, c2) =

u, 0, ±
∫ eu2√

u2 + h2(
∫

ue−u2
Hφdu + c1)

u
(

u2 − e2u2(
∫

ue−u2 Hφdu + c1)2
) 1

2
du + c2

 .

Applying the one-parameter subgroup Φh
t on these curves, we can obtain a two-parameter family

of helicoidal surfaces with the weighted mean curvature Hφ.

Theorem 1. Let γ(u) = (u, 0, f (u)) be a profile curve of the helicoidal surface Equation (4) in the Euclidean
3-space with density e−x2−y2

of which the weighted mean curvature at the point (u, 0, f (u)) is given by Hφ(u).
Then, for some constants c1, c2 and h, there exists the two-parameter family of helicoidal surfaces generated by
plane curves

γ(u, Hφ(u), h, c1, c2) =

u, 0, ±
∫ eu2√

u2 + h2(
∫

ue−u2
Hφdu + c1)

u
(

u2 − e2u2(
∫

ue−u2 Hφdu + c1)2
) 1

2
du + c2

 .

Conversely, let Hφ(u) be a smooth function. Then, we can construct the two-parameter family of curves
γ(u, Hφ(u), c1, c2) and so it is the two-parameter family of helicoidal surfaces with the weighted mean curvature
Hφ(u) and a pitch h.

Corollary 1. Let M be a weighted minimal helicoidal surface in the Euclidean 3-space with density e−x2−y2
.

Then, M is an open part of either a helicoid or a surface parameterized by

X(u, v) = (u cos v, u sin v, f (u) + hv) ,

where

f (u) = ±
∫ c1eu2√

u2 + h2

u
√

u2 − c2
1e2u2

du + c2 (12)

for some constants c1 and c2.

Proof. If f is a constant function, it is a trivial solution for Hφ = 0. It follows that a helicoidal surface
is a helicoid. Otherwise, we can easily compute Equation (11), in such case f is given by (12).

Example 1. We consider a helicoidal surface with the constant weighted mean curvature

Hφ(u) = −2
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and the pitch h = 1 in the Euclidean 3-space with density e−x2−y2
. Then, by Equation (11), we can calculate the

profile curve γ(u); from this, the parametrization of the surface is given by (see Figure 1)

X(u, v) =
(

u cos v, u sin v,
1
2

ln
(

2u2 + 2
√

u4 − 1
)
− 1

2
tan−1

(
1√

u4 − 1

)
+ v
)

.

Example 2. Consider a helicoidal surface with the weighted mean curvature

Hφ(u) =
1√
2u

(1− 2u2)

and the pitch h = 1 in the Euclidean 3-space with density e−x2−y2
. By a direct computation with the help of

Equation (11), we can compute the profile curve γ(u), which implies that the parametrization of the surface is
expressed in the form (see Figure 2):

X(u, v) =
(

u cos v, u sin v,
√

u2 + 1− tan−1
(

1√
u2 + 1

)
+ v
)

.

Figure 1. A helicoidal surface with Hφ(u) = −2.

Figure 2. A helicoidal surface with Hφ(u) = 1√
2u
(1− 2u2).
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3.2. The Solution of Equation (6)

To solve the second-order nonlinear ordinary differential Equation (6), we put

B =
u2 f ′2(u) + h2

D
. (13)

Then, the weighted Gaussian curvature Gφ can be rewritten as:

Gφ =
1

2u
B′ − 4,

that is,
B′ = 2uGφ + 8u. (14)

The solution of the last equation is

B = 4u2 +
∫

2uGφdu + c1 (15)

for some constant c1. Combining Equations (13) and (15), one gets

u2
(

1− 4u2 −
∫

2uGφdu− c1

)
f ′2(u) = (u2 + h2)

(
4u2 +

∫
2uGφdu + c1

)
− h2. (16)

Since

1− 4u2 −
∫

2uGφdu− c1 =
u2

D
> 0,

the general solution of Equation (16) is given by

f (u) = ±
∫ 1

u

[
(u2 + h2)

(
4u2 +

∫
2uGφdu + c1

)
− h2

1− 4u2 −
∫

2uGφdu− c1

] 1
2

du + c2, (17)

where c2 ∈ R.
Conversely, let h be a given real number and Gφ be a smooth function defined on an open interval

I ⊂ (0,+∞). Let

F(u, c1) = 1− 4u2 −
∫

2uGφdu− c1

be a function defined on I ×R ⊂ R2. For any u0 ∈ I, denote

c′1 = −
(

4u2 +
∫

2uGφdu
)
(u0).

Thus, we can find an open subinterval I′ ⊂ I containing u0 and an open interval J of R containing
c′1 such that the function F(u, c1) is positive for any (u, c1) ∈ I′ × J. In fact, because F(u0, c′1) = 1,
by the continuity of F, it is positive in a subset of I′ × J ⊂ R2. Theeqrefore, for any (u, c1) ∈ I′ × J,
h ∈ R, c2 ∈ R and given the smooth function Gφ, we can define the two-parameter family of curves

γ(u, Gφ, h, c1, c2) =

u, 0,±
∫ 1

u

[
(u2 + h2)

(
4u2 +

∫
2uGφdu + c1

)
− h2

1− 4u2 −
∫

2uGφdu− c1

] 1
2

du + c2

 .

Consequently, we get a two-parameter family of helicoidal surfaces with the weighted Gaussian
curvature Gφ(u), u ∈ I′ and we have the following theorem.
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Theorem 2. Let γ(u) = (u, 0, f (u)) be a profile curve of the helicoidal surface (4) in the Euclidean 3-space
with density e−x2−y2

of which the weighted Gaussian curvature at the point (u, 0, f (u)) is given by Gφ(u).
Then, for some constants c1, c2 and h, there exists the two-parameter family of the helicoidal surface generated by
plane curves

γ(u, Gφ, h, c1, c2) =

u, 0,±
∫ 1

u

[
(u2 + h2)

(
4u2 +

∫
2uGφdu + c1

)
− h2

1− 4u2 −
∫

2uGφdu− c1

] 1
2

du + c2

 .

Conversely, let Gφ(u) be a smooth function. Then, for any u0 ∈ I, we can construct the two-parameter
family of curves γ(u, Gφ(u), h, c1, c2), u ∈ I′ ⊂ I and so it is the two-parameter family of helicoidal surfaces
with the weighted Gaussian curvature Gφ(u), u ∈ I′.

Example 3. We consider a helicoidal surface in the Euclidean 3-space with density e−x2−y2
with a negative

weighted Gaussian curvature

Gφ(u) = −
1

(2u2 + 1)2 − 4.

In such a case, an integration of Equation (17) implies f (u) = u for h = 1, c1 = 0 and c2 = 0. It follows
that the helicoidal surface is parametrized by (see Figure 3)

X(u, v) = (u cos v, u sin v, u + v).

Example 4. Consider a helicoidal surface in the Euclidean 3-space with density e−x2−y2
with a weighted

Gaussian curvature

Gφ(u) =
2u2 − 1

(u4 − u2 − 1)2 − 4.

Then, from Equation (17), we have f (u) = sin−1 u for h = 1, c1 = 0 and c2 = 0 and, in this case, a
parametrization of the helicoidal surface is given by (see Figure 4)

X(u, v) = (u cos v, u sin v, sin−1 u + v).

Figure 3. A helicoidal surface with Gφ(u) = − 1
(2u2+1)2 − 4.
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Figure 4. A helicoidal surface with Gφ(u) = 2u2−1
(u4−u2−1)2 − 4.
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