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1. Introduction

In 1965, Zadeh [1] introduced concepts and operations with respect to fuzzy sets, and many authors
contributed to the development of fuzzy set theory and applications. Later, Zadeh proposed the fuzzy
number [2–4] and put forward the theory of the fuzzy numerical function together with Chang [5].
These theories and those associated with optimization theory have been extensively studied in some
fields, such as economics, engineering, the stock market, greenhouse gas emissions and management
science [6–14].

In order to solve complex optimization problems in real life, various optimization algorithms have
been presented in [9,10,15–23]. Jia et al. [9] presented a new algorithm for solving the optimization
problem based on the stock exchange. Afterwards, in [10,15,16], a multiple genetic algorithm and
multi-objective differential evolution were used to solve multiple optimization problems efficiently.
Moreover, Wah et al. [17] applied a genetic algorithm to optimize flow rectification efficiency of the
diffuser element based on the valveless diaphragm micropump application. Precup et al. [18] applied
the grey wolf optimizer algorithm to deal with the fuzzy optimization problem. In [19], in order to
solve the meta-heuristics optimization problem quickly, a bio-inspired optimization algorithm based
on fuzzy logic was proposed. Peraza et al. [20] presented a new algorithm that can solve the complex
optimization problems based on uncertainty management. They [22] introduced a fuzzy harmony
search algorithm with fuzzy logic and this algorithm was utilized to solve the fuzzy optimization
problem. Amador et al. [23], presented a new optimization algorithm based on the fuzzy logic system.

It is well known that convexity plays a key role in fuzzy optimization theory. Therefore, the properties
of convexity of fuzzy function and related problems are attached a wide range of research [24–30].
Subdifferentials are very important tools in convex fuzzy optimization theory. Based on a variety of
different backgrounds, the derivative and differential of fuzzy function have been widely discussed.
Goetschel et al. [31,32] defined the derivative of fuzzy function, which is a generalized derivative of the
set-valued function. Afterwards, Buckley et al. [33,34] defined the derivatives of fuzzy function using
left- and right-hand functions of its α-level sets and established sufficient conditions for the existence of
fuzzy derivatives. Subsequently, Wang et al. [29] proposed the new concepts of directional derivative,
differential and subdifferential of fuzzy function from Rm to E1, and discussed the characterizations of
directional derivative and differential of fuzzy function by using the directional derivative and the
differential of two crisp functions that are determined.
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In this paper, we investigate several characterizations of directional derivative of fuzzy function
about the direction d, based on a partial order and introduce the concept of the subdifferential of
fuzzy function.

2. Preliminaries

We denote by KC the family of all bounded closed intervals in R, that is,

KC = {[aL, aR]|aL, aR ∈ R and aL ≤ aR}.

Given two intervals A = [aL, aR] and B = [bL, bR], the distance between A and B is defined by

H(A, B) = max{|aL − bL|, |aR − bR|}.

Then, (KC, H) is a complete metric space [35].

Definition 1. In reference [27], suppose that E1 = {u|u : R→ [0, 1]} satisfies the following conditions:

(1) u is normal, that is, there exists x0 ∈ R such that u(x0) = 1;
(2) u is upper semicontinuous;
(3) u is convex, that is,

u(λx + (1− λ)y) ≥ min{u(x), u(y)}

for all x, y ∈ R, λ ∈ [0, 1];
(4) [u]0 = {x ∈ R|u(x) > 0} is compact, where A denotes the closure of A.

Any u ∈ E1, is called a fuzzy number. The α-level set of fuzzy number u is a closed and bounded
interval [uL(α), uR(α)], where uL(α) denotes the left-hand end point of [u]α and uR(α) denotes the
right-hand end point of [u]α [36].

For u, v ∈ E1, k ∈ R, the addition and scalar multiplication are defined by,

(u + v)(x) = sup
s+t=x

min{u(s), v(t)},

(ku)(x) =

{
u(k−1x), k 6= 0,
0, k = 0.

It is well known that for u, v ∈ E1, k ∈ R, then u + v, ku ∈ E1, [u + v]α = [u]α + [v]α and
[ku]α = k[u]α.

For x = (x1, x2, ..., xm), y = (y1, y2, ..., ym) ∈ Rm, it is said that x ≥ y if and only if xi ≥ yi
(i = 1, 2, ..., m). It is said that x > y if and only if x ≥ y and x 6= y.

Definition 2. In reference [29], for u, v ∈ E1, then,

(1) u � v if and only if [u]α = [uL(α), uR(α)] ≤ [v]α = [uL(α), uR(α)] for each α ∈ [0, 1], where
[u]α ≤ [v]α if and only if uL(α) ≤ vL(α) and uR(α) ≤ vR(α).

(2) u ≺ v if and only if u � v and there exists α0 ∈ [0, 1] such that uL(α0) < vL(α0) or uR(α0) < vR(α0).
(3) if either u � v or v � u, then u and v are comparable. Otherwise, u and v are non-comparable.

Definition 3. In reference [37], if any u, v ∈ E1, there exists w ∈ E1 such that u = v + w, then the standard
Hukuhara difference (H-difference) of u and v is defined by u−̃v = w.

Definition 4. In reference [37], (Fuzzy function) let D be a convex set of R and F : D → E1 be a fuzzy
function. The α-level set of F at x ∈ D, which is a closed and bounded interval, can be denoted by [F(x)]α =

[FL(x, α), FR(x, α)]. Thus, F can be understood by the two functions FL(x, α) and FR(x, α), which are functions
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from D× [0, 1] to the set of real numbers R, FL(x, α) is a bounded increasing function of α and FR(x, α) is a
bounded decreasing function of α. Moreover, FL(x, α) ≤ FR(x, α) for each α ∈ [0, 1].

Definition 5. [35] For u, v ∈ E1, the d∞-distance is defined by the Hausdorff metric as,

d∞(u, v) = sup
α∈[0,1]

H([u]α, [v]α)

= sup
α∈[0,1]

max{|uL(α)− vL(α)|, |uR(α)− vR(α)|}.

Definition 6. Let X = (a, b) and let F : X → E1 be a fuzzy function and {Fn(x)} : X → E1, n ∈ N be
a sequence of fuzzy function. If, for any ε > 0, there exists a positive integer M = M(ε) ∈ N such that,

D(Fn(x), F(x)) < ε

for any x ∈ X, all n ≥ M. Then the sequence {Fn(x)} is convergent to F(x).

Definition 7. In reference [34], let F : X → E1 be a fuzzy function. Assume that the partial derivatives
of FL(x, α), FR(x, α) with respect to x ∈ R for each α ∈ [0, 1] exist. The partial derivatives of FL(x, α) and
FR(x, α) are denoted by F

′
L(x, α) and F

′
R(x, α), respectively. Let Γ(x, α) = [F

′
L(x, α), F

′
R(x, α)] for x ∈ R,

α ∈ [0, 1]. Γ(x, α) defines the α-level set of fuzzy interval for x ∈ R. Then F is S-differentiable and is written as,

[
dF(x)

dx
]α = Γ(x, α) = [F

′
L(x, α), F

′
R(x, α)]

for x ∈ R, α ∈ [0, 1].

3. Directional Derivative of the Fuzzy Function

Inspired by [29], we discuss some relations among the gradient and directional derivative of fuzzy
function. Moreover, several characterizations of the directional derivative of fuzzy function about the
direction d are investigated, based on the partial order �.

Definition 8. In reference [36], (Gradient of a fuzzy function) let D be a convex set of Rm and F : D → E1 be
a fuzzy function. For x ∈ D and ∂

∂xi
(i = 1, 2, ..., m) stand for the partial differentiation with respect to the ith

variable xi. For each α ∈ [0, 1], FL(x, α) and FR(x, α) have continuous partial derivatives so that ∂FL(x,α)
∂xi

and
∂FR(x,α)

∂xi
are continuous about x. Define

[
∂F(x)

∂xi
]α = [

∂FL(x, α)

∂xi
,

∂FR(x, α)

∂xi
] (1)

for each i = 1, 2, ..., m, α ∈ [0, 1]. If for each i = 1, 2, ..., m, (1) defines the α-level set of fuzzy number, then F is

S-differential at x. The gradient of the fuzzy function F(x) at x, denoted by
∼
∇ F (x), is defined as:

∼
∇ F (x) =

(
∂F (x)

∂x1
,

∂F (x)
∂x2

, ...,
∂F (x)
∂xm

)
.

Remark 1. For the gradient of fuzzy function, we use the symbol
∼
∇, whereas for the gradient of a real valued

function, we use the symbol ∇.

Definition 9. In reference [38], let D be a convex set of Rm and F : D → E1 be a fuzzy function.

(1) F is convex on D if
F(λx1 + (1− λ)x2) � λF(x1) + (1− λ)F(x2) (2)
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for any x1, x2 ∈ D and each λ ∈ [0, 1].
(2) F is strictly convex on D if

F(λx1 + (1− λ)x2) ≺ λF(x1) + (1− λ)F(x2) (3)

for any x1, x2 ∈ D with x1 6= x2 and each λ ∈ (0, 1).

Theorem 1. In reference [36], let D be a convex set of Rm and F : D → E1 be a fuzzy function, F is convex
on D, if and only if for each α ∈ [0, 1], FL(x, α) and FR(x, α) are convex on D, that is, for each λ ∈ [0, 1], x1,
x2 ∈ D, and each α ∈ [0, 1],

FL((λx1 + (1− λ)x2), α) ≤ λFL(x1, α) + (1− λ)FL(x2, α) (4)

and
FR((λx1 + (1− λ)x2), α) ≤ λFR(x1, α) + (1− λ)FR(x2, α). (5)

Theorem 2. Let D be a convex set of Rm and F : D → E1 be a S-differentiable fuzzy function. Then F is
a convex fuzzy function on D if and only if, for any x1, x2 ∈ D with (x1 > x2) such that

∼
∇ F(x2)

T (x1 − x2) � F (x1) −̃F (x2) . (6)

Proof. F is a convex fuzzy function on D. According to Definition 9, we obtain that:

F(λx1 + (1− λ)x2) � λF(x1) + (1− λ)F(x2) (7)

for any x1, x2 ∈ D with x1 > x2, and each λ ∈ [0, 1]. By Theorem 1, for each λ ∈ [0, 1] we have that

FL((λx1 + (1− λ)x2), α) ≤ λFL(x1, α) + (1− λ)FL(x2, α) (8)

and
FR((λx1 + (1− λ)x2), α) ≤ λFR(x1, α) + (1− λ)FR(x2, α). (9)

Now combining (8) and (9) imply that

FL (x2 + λ (x1 − x2), α)− FL(x2, α)

λ
≤ FL (x1, α)− FL(x2, α) (10)

and
FR (x2 + λ (x1 − x2), α)− FR(x2, α)

λ
≤ FR (x1, α)− FR(x2, α). (11)

Taking limits for λ→ 0+, we get

∇FL(x2, α)T(x1 − x2) ≤ FL(x1, α)− FL(x2, α)

and
∇FR(x2, α)T(x1 − x2) ≤ FR(x1, α)− FR(x2, α).

That is,
∼
∇ F(x2)

T (x1 − x2) � F (x1) −̃F (x2) . (12)

Conversely, since F is a S-differentiable fuzzy function, and there exist x, y ∈ D with x > y
such that

∼
∇ F(y)T (x− y) � F (x) −̃F (y) .
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For any x1, x2 ∈ D and each λ ∈ [0, 1]. Suppose that x = x1 and y = (1 − λ)x1 + λx2.
It follows that

∼
∇ F(y)T (x1 − y) � F (x1) −̃F (y) . (13)

That is,
∇FL(y, α)T(x1 − y) ≤ FL(x1, α)− FL(y, α) (14)

and
∇FR(y, α)T(x1 − y) ≤ FR(x1, α)− FR(y, α). (15)

Let x = x2 and y = (1− λ)x1 + λx2, we get

∼
∇ F(y)T (x2 − y) � F (x2) −̃F (y) . (16)

That is,
∇FL(y, α)T(x2 − y) ≤ FL(x2, α)− FL(y, α) (17)

and
∇FR(y, α)T(x2 − y) ≤ FR(x2, α)− FR(y, α). (18)

Now combining (14)× (1− λ) and (17)× λ, we have

∇FL(y, α)T((1− λ)x1 + λx2 − y) ≤ (1− λ)FL(x1, α) + λFL(x2, α)− FL(y, α). (19)

Similarly,

∇FR(y, α)T((1− λ)x1 + λx2 − y) ≤ (1− λ)FR(x1, α) + λFR(x2, α)− FR(y, α). (20)

The equations (19) and (20) imply

F(λx1 + (1− λ)x2) � λF(x1) + (1− λ)F(x2).

Therefore, F is a convex fuzzy function on D.

Theorem 3. Let D be a convex set of Rm and F : D → E1 be a S-differentiable fuzzy function. Then F is
a strictly convex fuzzy function on D if and only if, for any x1, x2 ∈ D with (x1 > x2) such that

∼
∇ F(x2)

T (x1 − x2) ≺ F (x1) −̃F (x2) . (21)

Proof. The proof is similar to the proof of Theorem 2.

Theorem 4. In reference [39], let D be a convex set of Rm and f : D → (−∞,+∞] be a convex real
valued function. For x ∈ D, let d ∈ Rm such that x + λd ∈ D for any λ > 0 and sufficiently small. If
h(λ) : (0,+∞)→ (−∞,+∞] is defined by

h(λ) =
f (x + λd)− f (x)

λ
,

then h(λ) is a nondecreasing function. Moreover, if f is differential at x, then

lim
λ→0+

h(λ) = lim
λ→0+

f (x + λd)− f (x)
λ

= ∇ f (x)Td.

Definition 10. In reference [36], (directional derivative of a fuzzy function) Let D be a convex set of Rm and
F : D → E1 be a fuzzy function. For x ∈ D, let d ∈ Rm such that x + λd for any λ > 0 and sufficiently small.
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The directional derivative of F at x along the vector d (if it exists) is a fuzzy number denoted by F
′
(x, d) whose

α-level set is defined as: [
F
′
(x, d)

]α
=
[

F
′
L ((x, d) , α) , F

′
R ((x, d) , α)

]
,

where

F
′
L ((x, d) , α) = lim

λ→0+

FL (x + λd, α)− FL(x, α)

λ

and

F
′
R ((x, d) , α) = lim

λ→0+

FR(x + λd, α)− FR(x, α)

λ
.

Theorem 5. Let D be a convex set of Rm and F : D → E1 be a convex and S-differentiable fuzzy function.
For x ∈ D, let d ∈ Rm, d = (d1, d2, ..., dm), di > 0, i = 1, 2, ..., m, for m ∈ N. The directional derivative of F
at x along the vector d is a fuzzy number denoted by F

′
(x, d). Then

F
′
(x, d) � F(x + d)−̃F(x).

Proof. Since F : D → E1 is a convex and S-differentiable fuzzy function. From Theorem 2, for x ∈ D,
d ∈ Rm, we obtain

∇̃F(x)Td � F(x + d)−̃F(x). (22)

That is,
∇FL(x, α)Td ≤ FL(x + d, α)−FL(x, α) (23)

and
∇FR(x, α)Td ≤ FR(x + d, α)−FR(x, α). (24)

Since F is a convex fuzzy function. From Definition 10 and Theorem 4, we conclude that

F′L((x, d), α) = lim
λ→0+

FL(x + λd, α)− FL(x, α)

λ
= ∇FL(x, α)Td (25)

and

F′R((x, d), α) = lim
λ→0+

FR(x + λd, α)− FR(x, α)

λ
= ∇FR(x, α)Td (26)

Now combining (23), (24), (25) and (26), we have

F′L((x, d), α) = ∇FL(x, α)Td ≤ FL(x + d, α)−FL(x, α) (27)

and
F′R((x, d), α) = ∇FR(x, α)Td ≤ FR(x + d, α)−FR(x, α). (28)

The Equations (27) and (28) imply F
′
(x, d) � F(x + d)−̃F(x).

Theorem 6. Let D be a convex set of Rm and F : D → E1 be a S-differentiable fuzzy function. For x ∈ D,
let d ∈ Rm such that x + λd ∈ D for any λ > 0 and sufficiently small. The directional derivative of F at
x along the vector d is a fuzzy number denoted by F

′
(x, d). Then F′(x, d) is a strictly positive homogeneous

fuzzy function.

Proof. Since the directional derivative of F at x along the vector d is a fuzzy number denoted by
F
′
(x, d). By Definition 10, we have,

F
′
L ((x, d) , α) = lim

λ→0+

FL (x + λd, α)− FL(x, α)

λ
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and

F
′
R ((x, d) , α) = lim

λ→0+

FR (x + λd, α)− FR(x, α)

λ
.

For any t > 0 and let τ = tλ, we obtain

F
′
L((x, td), α) = lim

λ→0+
FL(x+λtd,α)−FL(x,α)

λ

= lim
τ→0+

[FL(x+τd,α)−FL(x,α)]t
τ

= tF
′
L ((x, d) , α)

(29)

and
F
′
R((x, td), α) = lim

λ→0+
FR(x+λtd,α)−FR(x,α)

λ

= lim
τ→0+

[FR(x+τd,α)−FR(x,α)]t
τ

= tF
′
R ((x, d) , α) .

(30)

Now combining (29) and (30), we have that[
F
′
(x, td)

]α
= [F

′
L((x, td), α), F

′
R((x, td), α)]

= t[F
′
L((x, d), α), F

′
R((x, d), α)]

= t[F
′
(x, d]α.

Therefore, F
′
(x, d) is a strictly positive homogeneous fuzzy function.

Theorem 7. Let D be a convex set of Rm and F : D → E1 be a convex and S-differential fuzzy function.
For x ∈ D, let d ∈ Rm such that x + λd ∈ D for any λ > 0 sufficiently small. The directional derivative of F
at x along the vector d is a fuzzy number denoted by F

′
(x, d). Then F′(x, d) is a convex fuzzy function about

the direction d.

Proof. For any λ1, λ2 ∈ (0, 1), any d1, d2 ∈ Rm, let λ1 = 1− λ2. By Definition 10 and Theorem 1, we
get that

F
′
L((x, λ1d1 + λ2d2), α) = lim

λ→0+

FL(x+λ(λ1d1+λ2d2),α)−FL(x,α)
λ

= lim
λ→0+

FL(λ1(x+λd1)+λ2(x+λd2),α)−FL(x,α)
λ

≤ lim
λ→0+

λ1[FL(x+λd1,α)−FL(x,α)]
λ + lim

λ→0+

λ2[FL(x+λd2,α)−FL(x,α)]
λ

= λ1F
′
L
((

x, d1) , α
)
+ λ2F

′
L
((

x, d2) , α
)

(31)

and

F
′
R((x, λ1d1 + λ2d2), α) = lim

λ→0+

FR(x+λ(λ1d1+λ2d2),α)−FR(x,α)
λ

= lim
λ→0+

FR(λ1(x+λd1)+λ2(x+λd2),α)−FR(x,α)
λ

≤ lim
λ→0+

λ1[FR(x+λd1,α)−FR(x,α)]
λ + lim

λ→0+

λ2[FR(x+λd2,α)−FR(x,α)]
λ

= λ1F
′
R
((

x, d1) , α
)
+ λ2F

′
R
((

x, d2) , α
)

.

(32)

Hence, by Theorem 1, F′(x, d) is a convex fuzzy function about the direction d.

Theorem 8. Let D be a convex set of Rm and F : D → E1 be a convex and S-differential fuzzy function.
For x ∈ D, let d ∈ Rm such that x + λd ∈ D for any λ > 0 sufficiently small. The directional derivative of F
at x along the vector d is a fuzzy number denoted by F

′
(x, d). Then F′(x, d) is subadditive about the direction d.
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Proof. F is a S-differential fuzzy function on D, and the directional derivative of F at x along the
vector d is a fuzzy number denoted by F

′
(x, d). For arbitrary d1, d2 ∈ Rm. By Theorem 7, we have that

F′(x,
1
2

d1 +
1
2

d2) � 1
2

F′(x, d1) +
1
2

F′(x, d2). (33)

By Theorem 6, we obtain that

F′(x,
1
2

d1 +
1
2

d2) =
1
2

F′(x, d1 + d2). (34)

Now combining (33) and (34), it follows that

F′(x, d1 + d2) � F′(x, d1) + F′(x, d2).

Therefore, F′(x, d) is subadditive about the direction d.

Definition 11. In reference [40], let D be a convex set of Rm and F : D → E1 be a fuzzy function. Let x̄ ∈ D,
if there exists δ0 > 0 and no x ∈ U(x̄, δ0)

⋂
D such that F(x) � F(x̄), then x̄ is a local minimum solution of

F(x).

Theorem 9. Let D be a convex set of Rm and F : D → E1 be a fuzzy function. For x̄ ∈ D, let d ∈ Rm

such that x̄ + λd ∈ D for any λ > 0 sufficiently small. The directional derivative of F at x̄ along the vector d
is a fuzzy number denoted by F

′
(x̄, d) if 0 ∈ inter [F

′
(x̄, d)]0, where inter A denotes the interior of the set A.

Then, x̄ is a local minimum solution of F(x).

Proof. Suppose that x̄ is not a local minimum solution of F(x). Hence, there exists a sequence {xn}∞
n=1

and any δ > 0 such that xn = x̄ + λd ∈ U(x̄, δ)
⋂

D (|λd| < δ) and

F(x̄ + λd) = F(xn) � F(x̄)

for all n ∈ N. That is,
FL(x̄ + λd, α) ≤ FL(x̄, α)

and
FR(x̄ + λd, α) ≤ FR(x̄, α).

for each α ∈ [0, 1]. From Definition 10, we conclude that

F
′
L((x̄, d), α) = lim

λ→0+
FL(x̄+λd,α)−FL(x̄,α)

λ

≤ 0
(35)

and
F
′
R((x̄, d), α) = lim

λ→0+
FR(x̄+λd,α)−FR(x̄,α)

λ

≤ 0.
(36)

for each α ∈ [0, 1]. Hence, we have 0 /∈ inter [F
′
(x̄, d)]0. This is a contradiction with the hypothesis.

Then x̄ is a local minimum solution of F(x).

4. Subdifferential of Fuzzy Function

Definition 12. (Subdifferential of a fuzzy function) Let D be a convex set of Rm and F : D → E1 be a fuzzy
number-valued function. For x̄ ∈ D, let d ∈ Rm such that x̄ + λd ∈ D for any λ > 0 and sufficiently small.
The directional derivative of F at x along the vector d is a fuzzy number denoted by F

′
(x, d).
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(1) A fuzzy function l(d) : Rm → E1 with

l(d) � F′(x̄, d) f or all d ∈ Rm.

Then l(d) is called a subgradient of F at x̄.
(2) Define the set

∂F(x̄) = {l(d)|l(d) � F′(x̄, d) f or all d ∈ Rm}

The set ∂F(x̄) of all subgradients of F at x̄ is called the subdifferential of F at x̄.

Now, we present some basic properties of subdifferential of fuzzy function.

Theorem 10. Let D be a convex set of Rm and F : D → E1 be a S-differential fuzzy function. For x̄ ∈ D, let
d ∈ Rm such that x̄ + λd ∈ D for any λ > 0 and is sufficiently small. The directional derivative of F at x along
the vector d is a fuzzy number denoted by F

′
(x, d). Then, ∂F(x̄) is convex.

Proof. Take any l1(d), l2(d) ∈ ∂F(x̄) and λ ∈ [0, 1]. By Definition 12, it follows that

l1(d) � F′(x̄, d) (37)

and
l2(d) � F′(x̄, d) (37)

that is,
l1
L(d, α) ≤ F′L((x̄, d), α) (39)

l1
R(d, α) ≤ F′R((x̄, d), α), (40)

and
l2
L(d, α) ≤ F′L((x̄, d), α) (41)

l2
R(d, α) ≤ F′R((x̄, d), α). (42)

Now combining λ× (39) and (1− λ)× (41), we have that

λl1
L(d, α) + (1− λ)l2

L(d, α) ≤ λF′L((x̄, d), α) + (1− λ)F′L((x̄, d), α)

= F′L((x̄, d), α).
(43)

Similarly, we obtain

λl1
R(d, α) + (1− λ)l2

R(d, α) ≤ λF′R((x̄, d), α) + (1− λ)F′R((x̄, d), α)

= F′R((x̄, d), α).
(44)

The Equations (43) and (44) imply

λ× l1(d) + (1− λ)l2(d) � F′(x̄, d).

By Definition 12, we obtain

λ× l1(d) + (1− λ)l2(d) ∈ ∂F(x̄).

Then ∂F(x̄) is convex.

Theorem 11. Let D be a convex set of Rm and F : D → E1 be a fuzzy function. For x̄ ∈ D, let d ∈ Rm such
that x̄ + λd ∈ D for any λ > 0 and sufficiently small. The directional derivative of F at x along the vector d is
a fuzzy number denoted by F

′
(x, d). Then ∂F(x̄) is closed.
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Proof. Take an arbitrary sequence of fuzzy functions {ln(d)}n∈N of subgradient is convergent to fuzzy
functions l(d). By Definition 6, for any ε > 0, there exists a positive integer M = M(ε) ∈ N such that

D(ln(x), l(x)) < ε (45)

for any d ∈ Rm, all n ≥ M. Hence, by Definition 5, we obtain that

sup
α∈[0,1]

max{|ln.L(d, α)− lL(d, α)|, |ln.R(d, α)− lR(d, α)|} < ε.

Therefore, for any ε > 0, there exists a positive integer M = M(ε) ∈ N such that |ln.L(d, α)−
lL(d, α)| < ε and |ln.R(d, α)− lR(d, α)| < ε for any d ∈ Rm, all n ≥ M, and each α ∈ [0, 1].

That is,
lim

n→∞
ln.L(d, α) = lL(d, α) (46)

and
lim

n→∞
ln.R(d, α) = lR(d, α) (47)

In view of Definition 12, we get
ln(d) � F

′
(x̄, d).

That is,
ln.L(d, α) ≤ F

′
L((x̄, d), α) (48)

and
ln.R(d, α) ≤ F

′
R((x̄, d), α). (49)

Now combining (46), (47), (48) and (49), we obtain

lL(d, α) ≤ F
′
L((x̄, d), α)

and
lR(d, α) ≤ F

′
R((x̄, d), α).

That is,
l(d) � F

′
(x̄, d).

Thus, l(d) is a subgradient. That is, the subdifferential ∂F(x̄) is closed.

5. Conclusions

We have investigated several characterizations of directional derivative of fuzzy function about
the direction, based on the partial order. For example, we present strictly positive homogeneity,
convexity and subadditivity of directional derivative of fuzzy functions. And we also propose the
sufficient optimality condition for fuzzy optimization problems. Afterwards, we introduce the concept
of the subdifferential of convex fuzzy function. And we present some basic characterizations of
subdifferential of fuzzy function and application in the convex fuzzy programming. Thus, we will
apply the subdifferentiablity of fuzzy function to deal with the multiobjective fuzzy optimization
problem in the future. Constrained optimization problems involving fuzzy functions are an interesting
field for future study. For example, finance represents a good field to implement models for sensitive
analysis through fuzzy mathematics. Several authors are working hard to shape sources of uncertainty:
prices, interest rates, volatilities, etc. (see Guerra et al. [41], Buckley [42]). Therefore, fuzzy optimization
problems based on parameter uncertainty sources are a topic of interest in many applications. Inspired
by [20,22], directional derivatives and subdifferentials of fuzzy functions will be extensively applied in
some fields, such as economics, engineering, stock market greenhouse gas emission and interest rates.
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