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Abstract: The importance of stereochemistry for medicinal chemistry and pharmacology is well
recognized and the dissimilar behavior of enantiomers is fully documented. Regarding the
environment, the significance is equivalent since enantiomers of chiral organic pollutants can also
differ in biodegradation processes and fate, as well as in ecotoxicity. This review comprises designed
biodegradation studies of several chiral drugs and pesticides followed by enantioselective analytical
methodologies to accurately measure the enantiomeric fraction (EF). The enantioselective monitoring
of microcosms and laboratory-scale experiments with different environmental matrices is herein
reported. Thus, this review focuses on the importance of evaluating the EF variation during
biodegradation studies of chiral pharmaceuticals, drugs of abuse, and agrochemicals and has
implications for the understanding of the environmental fate of chiral pollutants.

Keywords: enantiomeric fraction (EF); enantioselectivity; chiral analysis; biodegradation;
pesticides; pharmaceuticals

1. Introduction

Chiral organic pollutants are a major trend in environmental science research and include
compounds with different physical chemical properties and applications, such as pesticides, herbicides,
pharmaceuticals, flame retardants, and synthetic polycyclic musk [1]. In general, agrochemicals are
commercialized as racemic mixtures [2], although the bioactivity of these compounds is primarily
associated with only one stereoisomer [3,4]. However, a few examples of pesticides are marketed as
single enantiomeric formulations, namely some pyrethroid insecticides, aryloxypropanoate herbicides,
and triazole fungicides [4]. Currently, in the pharmaceutical industry, chiral drugs are often developed
and employed as single enantiomers and more enantiopure pharmaceutical preparations are being
approved each year [5].

Despite the well-known importance of enantioselectivity on pharmacokinetic, pharmacodynamics,
and toxicology in biological processes [3,6,7], stereochemistry is often neglected in environmental
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research considering enantiomers as a unique molecular entity. However, when a racemate reaches
the environment, enantiomers of the compound can differ significantly in their environmental fate
as well as in their toxicological impacts; the evaluation of the enantiomeric fraction (EF) is of critical
importance to assess the environmental risk of each enantiomer. Enantioselective analysis of chiral
organic compounds is also important to evaluate their susceptibility to biodegradation, which can give
useful insight into the biodegradative treatment to apply, as firstly proposed by Buser et al. [8]. The use
of EF as an appropriate parameter for quantification of enantiomers in environmental analysis has
been addressed [9]. Enantioselective studies on biodegradation, ecotoxicity, and environmental fate are
crucial to provide an accurate risk assessment of chiral organic compounds [10–15]. Concerning
the enantioselectivity of degradation processes, biotic mediums assume further relevance since
biodegradation is expected to be enantioselective while abiotic degradation rates in an achiral
environment are usually non-enantioselective [16–18]. Although less common, enantioselective
abiotic degradation, namely in adsorption processes to sludge and soils, has been reported [19,20].
The EF of a chiral compound can suffer variations due to enantioselective degradation processes,
and different events may contribute to these deviations: enantiomerization, racemization, or one
enantiomer being preferentially degraded, leading to the enrichment of one enantiomeric form and
thus accumulating in the medium [21]. The first studies on the stereoselectivity of chiral pollutants date
from 1988 [22], with the first reports on the enantioselective degradation of pesticides regarding the
herbicides diclofop-methyl and fenoxaprop-ethyl in soil [23], and 1999 with one of the initial studies
concerning the anti-inflammatory ibuprofen in aqueous environmental matrices [8].

The most recent reviews on chiral pollutants emphasize the occurrence and toxicity of chiral
pesticides and/or drugs [5,7,18,24–26] and explore the importance of chirality in the environment.
The purpose of this review is to focus on enantioselective biodegradation studies using environmental
matrices and on the importance of chiral analysis throughout EF as an indicator of enantioselectivity
during the degradation processes. Two types of chiral organic compounds are considered: pesticides
and drugs (pharmaceuticals and drugs of abuse).

2. Chiral Organic Pollutants in the Environment

Pharmaceuticals are an important group of pseudo-persistent compounds that have been detected
at concentrations ranging from ng L−1 to µg L−1 in aquatic environments, causing great concern
about non-target populations and, directly or indirectly, about human health via drinking water
and foodborne exposure [27,28]. In 2013, the European Commission launched a Directive regulating
several priority substances [29] and, more recently, a watch list of substances of environmental concern
was published, including five pharmacologically active compounds (PACs): one anti-inflammatory
(diclofenac), one synthetic hormone (17alpha-ethinylestradiol), and three antibiotics belonging to the
macrolide class (azithromycin, clarithromycin, and erythromycin) [30].

PACs reach the environment by three main ways: the disposal of pharmaceuticals from
manufacturing, hospitals, and other healthcare services; the elimination of unused pharmaceuticals
through wastewater treatment plants (WWTPs) or solid waste facilities; and the excretion route
after human and/or veterinary use [27]. The potential contamination of the main environmental
compartments, such as surface water, ground water, and soils, which are constantly interconnected,
may result in pharmaceuticals ending up in drinking water [31].

Concerning veterinary pharmaceuticals, they reach ecosystems by other pathways including
treatment carried out on pets, in aquacultures, and in livestock production, with the spread of
pharmaceuticals occurring directly via run-off or leaching to the ground water, or indirectly via manure
use as fertilizer on agricultural soils [32,33]. In human or animal organisms, pharmaceuticals undergo
metabolism, which includes chemical reactions (e.g., oxidation, reduction, hydrolysis, hydration,
conjugation, condensation, or isomerization) that transform them into more hydrophilic compounds,
allowing for easier excretion in urine and feces [33]. Usually, a fraction of the administered PACs is
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excreted unchanged. As such, pharmaceuticals can be excreted in the parent form, as one or several
metabolites, or in both forms in varying proportions [34].

Most of the PACs and/or their metabolites resulting from human excretion reach domestic sewage,
which is collected for treatment at municipal WWTPs. Since WWTPs are not designed to eliminate
completely organic compounds at low concentrations [12], the WWTPs’ effluents are considered the
main source of human PACs in the environment and represent a critical contribution to the increasing
loading of pharmaceuticals in the environment [35,36]. The main transformation processes of human
PACs occurring within the WWTPs are sorption and biodegradation, with the latter suggested as the
most important elimination process in wastewater treatment [37]. The non-biodegradable fraction and
transformation products represent the “pharmaceutical bulk” of the effluent load in surface waters.
For a complete understanding of the distribution and removal of each pharmaceutical in WWTPs, it is
important to consider and compare both influent and effluent liquid and solid phases (i.e., sewage
sludge and suspended solids) [38–40].

Additional concerns arise with chiral PACs, which represent more than half of the drugs
currently in use [41]. Chiral PACs are administrated as racemates or as enantiomerically pure forms [42].
Each enantiomer can suffer metabolism, leading to other stereoisomeric compounds, or can be excreted
unchanged. The study of chiral PACs in the different environmental compartments may provide
valuable insight about the transport and fate of these chemicals in the environment. Although chiral
PACs reach different compartments in the environment through the same pathways described for
PACs in general, they have been detected in the environment with different values of EF, due to the
enantioselectivity in the metabolism and/or in the biodegradation in WWTPs [43–45], as represented
in Figure 1.
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Enantioselectivity has also been demonstrated in several ecotoxicological studies, regarding the
survival and sublethal effects of highly ecologically relevant end points, such as growth, reproduction,
and feeding rate [47,48]. Nevertheless, only a few therapeutic classes of chiral PACs have been
reported in environmental matrices, concerning the quantification of their enantiomers [43–45,49–55].
Additionally, the biodegradation in biotic mediums, as occurs in secondary treatment of WWTPs,
adds complexity to this issue since it is also expected to be enantioselective [8,56,57]. Recently,
some authors have reported enantioselectivity occurring during biodegradation and a need to quantify
the enantiomers in this circumstance (this point will be further discussed in Section 3).

Regarding agrochemicals, pesticides are the group of compounds that covers the largest number of
substances, and can be grouped into several classes: insecticides, herbicides, fungicides, rodenticides,
molluscicides, insect repellents, nematicides, and plant growth regulators [58,59]. Application of
pesticides is a worldwide and of utmost importance for current agricultural productivity standards
and the control of vectors and pests of public health relevance [60]. The dissipation rate of a pesticide
into the environment is the primary indicator to its environmental fate [61]; these concepts are
further explained in a recent review work [62]. Applied pesticides in agricultural fields affect the
surrounding environmental compartments at four major levels: (i) air, through volatilization and
wind action; (ii) soil, through direct application and run-off; (iii) surface waters, through run-off
and via drainage systems; and (iv) ground water, via leaching and preferred water flow [62–64].
The dissipation of an applied pesticide is the predominant removal pathway and is influenced not only
by its chemical characteristics but also by several environmental aspects, such as photodegradation,
temperature, surface wash-off, spatial variability, humidity, and soil properties [62]. The reports
on pesticides’ occurrence in the environment are extensive and regard several matrices, namely soil,
sediment, surface water, and ground water [65–68]. In the European Directive 2013/39/EC, the extended
list of 45 priority substances included 19 pesticides [29].

Almost one-third of marketed pesticides are chiral and most of them are used as racemates
even though the desirable activity is generally dependent on one unique enantiomer, while the
other(s) may produce toxic or harmful effects on non-target organisms [2,25,69,70]. Enantioselectivity
has been demonstrated in environmental fate [71], field experiments [72], toxicological studies [73],
and biodegradation [74], regarding some of the most common pesticides. Works reporting enantioselective
biodegradation of chiral pesticides will be further discussed in Section 4.

3. Biodegradation Studies of Chiral Drugs

In the last two decades studies on biodegradation of organic pollutants have become very popular
and the number of publications in this area has grown substantially. Enantioselectivity is not always
considered in the studies of biodegradation of chiral compounds and most of the published works
addressing it date from the year 2000 onward, as observed using specific search keywords. Since 2000
ScienceDirect® offers 193 papers related with “pharmaceuticals + enantioselective + biodegradation”
out of the 269 papers related to the same keywords when no time frame was selected. In this
review, studies on enantioselective biodegradation of chiral compounds will be discussed, reporting
the most representative examples. EF assessment during biodegradation experiments is crucial to
understanding the stereoselectivity, concerning degradative routes and elimination and/or enrichment
of the target enantiomers. Biodegradation studies with pharmaceuticals and drugs of abuse are usually
designed for laboratory batch incubation experiments [75–78] or laboratory-scale bioreactors [79–82].
Enantioselective studies with constructed wetlands have also been reported [83]. Table 1 shows
enantioselective biodegradation studies of chiral drugs in different environmental matrices and the
chiral analytical techniques used to assess the EF during degradation, published between 1999 and
2017. In the original papers [8,10,75–93], 22 different compounds from nine different drug classes are
mentioned, including anti-inflammatory agents, antidepressants, and beta-blockers as the three most
represented classes (Figure 2).
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Table 1. Chiral drugs discussed in this review and the chiral analytical techniques used to quantify enantiomers in biodegradation studies.

Title Chiral Drugs Matrix Biodegradation
Experiment Analytical Method EF/Observations Reference

antibiotics ofloxacin, levofloxacin
minimal salts
medium inoculated
with activated sludge

laboratory-scale
microcosms, under
aerobic conditions,
with and without an
extra carbon source

HPLC-FD;
LC-MS/MS

enantioselective biodegradation of
ofloxacin observed; (S)-ofloxacin
degraded at higher extents;
biodegradation of levofloxacin
((S)-enantiomer) led to (R)-enantiomer
formation

[77]

anticoagulants warfarin
sterile and nonsterile
turfgrass and
groundcover soil

aerobic and ambient
temperature
incubation

HPLC-FD

fast degradation of warfarin in the
nonsterile soils while no degradation
was observed in the sterile conditions;
slightly enantioselective
biodegradation with (R)-warfarin
being preferentially degraded

[10]

antidepressants

fluoxetine

minimal salts
medium inoculated
with a single
microbial strain

batch experiment
incubations with an
additional carbon
source under aerobic
conditions, protected
from light

HPLC-FD
enantioselective biodegradation of
fluoxetine was observed;
(R)-fluoxetine preferentially degraded

[89]

fluoxetine synthetic wastewater

laboratory-scale
aerobic granular
sludge sequencing
batch reactor

HPLC-FD
fluoxetine degraded at low extents
and following a non-enantioselective
pattern

[80]

fluoxetine, norfluoxetine WWTP effluents

microcosms tests at
laboratory scale
under aerobic
conditions, protected
from light

HPLC-FD

fluoxetine degradation followed a
non-enantioselective pattern; no
formation of the metabolite
norfluoxetine was observed

[90]

venlafaxine river water

laboratory-scale
experiments to assess
photolysis, sorption
and biodegradation

LC-MS/MS

venlafaxine sorption and
biotranformation processes were
non-enantioselective; venlafaxine
biodegradation was enantioselective
and formed (O)-desmethylvenlafaxine

[76]

venlafaxine, metabolites
WWTP effluents
charged with
activated sludge

laboratory-scale
incubation of
effluents with
activated sludge
under anaerobic and
aerobic conditions

LC-MS/MS

venlafaxine degradation presented
slight enantioselectivity;
(O)-desmethylvenlafaxine showed (S)
to (R)-enantiomer enrichment
exclusively under aerobic conditions

[75]
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Table 1. Cont.

Title Chiral Drugs Matrix Biodegradation
Experiment Analytical Method EF/Observations Reference

antifungals climbazole
WWTP effluents
charged with
activated sludge

biotic and sterile
batch anoxic
degradation
experiments, under
dark and light
conditions

LC-MS/MS

enantioselective degradation of
climbazole observed under biotic
conditions; faster degradation of
E1-climbazole

[92]

anti-hyperlipidemic agents metoprolol, ibuprofen, naproxen,
gemfibrozil river water

microcosm
experiments to assess
photolysis and
biotransformation

GC-MS/MS

no degradation observed in the dark;
metoprolol EF remained unchanged in
the microcosms; metoprolol EF
decrease along the river flow
suggested biological
mediated-degradation

[86]

anti-hyperlipidemic and
anti-inflammatory agents Ibuprofen clofibric acid river water incubation with a

river biofilm reactor GC-MS

ibuprofen and two metabolites were
degraded in the biofilm reactor;
(R)-ibuprofen, pharmacologically
inactive, degraded faster

[84]

anti-inflammatory agents

ibuprofen, naproxen, ketoprofen synthetic wastewater laboratory-scale
membrane bioreactor GC-MS/MS

ibuprofen EF decreased during
biodegradation and (S)-ibuprofen was
preferentially degraded;
(R)-ketoprofen degraded at a greater
extent with minor increase in EF;
(S)-naproxen EF significantly
decreased during biodegradation, and
(R)-naproxen concentration increased,
suggesting enantiomeric inversion

[81]

ibuprofen
surface waters;
WWTP influents and
effluents

incubation of fortified
lake water; incubation
with activated sludge
under aerobic
conditions

GC-MS/MS
rapid degradation of ibuprofen in the
incubation experiments; (S)-ibuprofen
exhibited faster degradation rates

[8]

ibuprofen urban wastewater;
synthetic wastewater

aerated batch reactors
inoculated with
microalgae

GC-MS
enantioselective biodegradation of
(S)-ibuprofen observed; EF decreased
over degradation time

[91]

ibuprofen, naproxen synthetic wastewater;
real wastewater

removal efficiency in
WWTP, pilot and
microcosm-scale
constructed wetlands

GC-MS

(S)-ibuprofen degraded faster under
aerobic conditions; under anaerobic
conditions ibuprofen degradation was
non-enantioselective; naproxen
presented an enantioselective
degradation profile both under aerobic
and anaerobic conditions

[83]

antidepressants and
beta-blockers atenolol, metoprolol, fluoxetine

minimal salts
medium inoculated
with activated sludge

batch experiment
incubations with and
without an extra
carbon source under
aerobic conditions

HPLC-FD

metoprolol enantioselective
biodegradation was observed;
(S)-metoprolol degraded at higher
extents; atenolol and fluoxetine
biodegradation processes were
non-enantioselective

[88]
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Table 1. Cont.

Title Chiral Drugs Matrix Biodegradation
Experiment Analytical Method EF/Observations Reference

beta-blockers

propranolol WWTP secondary
effluents; river water

microcosm
experiments to
simulate
biotransformation in
WWTP (activated
sludge) and in surface
water

GC-MS/MS

EF varied in the incubation with
activated sludge but not in the
non-inoculated conditions; EF
remained unchanged in the surface
water experiments

[85]

alprenolol, propranolol
minimal salts
medium inoculated
with activated sludge

batch experiment
incubations with and
without an extra
carbon source under
aerobic conditions

HPLC-FD

enantioselective biodegradation of
both drugs was observed;
(S)-alprenolol and (S)-propranolol
slightly higher degraded;
enantioselective degradation pattern
sustained in the presence of the extra
carbon source

[87]

antidepressants,
beta-blockers, and

bronchodilators

alprenolol, bisoprolol, metoprolol,
propranolol, venlafaxine,
salbutamol, fluoxetine,
norfluoxetine

synthetic wastewater
aerobic granular
sludge-sequencing
batch reactor

LC-MS/MS

enantioselective biodegradation of
norfluoxetine observed;
(R)-norfluoxetine preferentially
degraded; non-enantioselective
removal of the other target compounds

[93]

antidepressants,
beta-blockers,

bronchodilators, and
synthetic psychoactive agents

MDMA
(3,4-methylenedioxy-methamphetamine),
MDA
(3,4-methylenedioxyamphetamine),
ampethamine, methamphetamine,
venlafaxine, fluoxetine,
O-desmethylvenlafaxine, atenolol,
metoprolol, propranolol,
alprenolol, sotalol, salbutamol,
mirtazapine, citalopram,
desmethylcitalopram

receiving waters
(mixture of river
water and WWTP
effluent); activated
sludge

receiving surface
waters and activated
sludge simulating
microcosms systems
under light, dark,
biotic and abiotic
conditions

LC-MS/MS

enantioselective degradation of
amphetamines, beta-blockers and
antidepressants observed; (S)-forms
preferentially degraded for
amphetamines and antidepressants
and (R)-forms for beta-blockers;
metabolites tested showed higher
enantioselective degradation rates
than parent compounds

[82]

synthetic psychoactive agents

amphetamine, methamphetamine river water

microcosm
bioreactors in the
light (microbial
degradation) and in
the dark
(photochemical
processes)

LC-MS/MS

EF variations observed exclusively
under biotic conditions; non-racemic
by-products formation during the
biodegradation

[79]

amphetamine, methamphetamine,
MDMA, MDA

WWTP effluents;
river water

receiving surface
waters and activated
sludge simulating
microcosms systems

LC-MS/MS

enantioselective biodegradation of all
compounds observed in activated
sludge simulating microcosms with
the (S)-enantiomers being
preferentially degraded;
(R)-enantiomers limited or
non-degraded; racemic MDMA
enantioselective biodegradation
resulted in (R)-enantiomer enrichment
and formed (S)-MDA; MDMA slight
enantioselective degradation observed
in river water

[78]
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Figure 2. Relative percentages of each PAC classes mentioned in the reviewed enantioselective
biodegradation studies.

Concerning the analytical methods used to quantify the enantiomers during biodegradation,
a clear trend is observed. The first works used gas chromatography coupled with mass spectrometry
(GC-MS) and were predominantly aimed at the enantioselective analysis of anti-inflammatory
agents [8,81,83–86]. This pattern changed after 2012, when almost all works began to use liquid
chromatography (LC), mostly coupled with mass spectrometry (MS) using CSP [75–79,92], a tendency
that continues nowadays, with the single exception of a work published in 2009 in which GC-MS
was used [91]. Regarding GC analysis, both direct and indirect methods for chiral determinations
are reported. Indirect methods include a derivatization step to convert the target enantiomers in
diastereomers so they can be separated through an achiral method [81,85,86]. Direct methods using
CSP described the usage of a homemade modified beta-cyclodextrin column [8] and methyl-derivatized
beta-cyclodextrin columns [83,91].

Degradation of chiral anti-inflammatory agents, specifically nonsteroidal anti-inflammatory drugs
(NSAIDs), were the starting point of enantioselective biodegradation studies with pharmaceutical
compounds [8,84]. Ibuprofen, ketoprofen, and naproxen biodegradation was reported in different
environmental matrices as surface waters [8,84,86], WWTPs influents and effluents [8,83,91],
and synthetic wastewater, the latter to operate a laboratory-scale bioreactor and constructed
wetlands [81,83]. All the works with NSAIDs reported the use of GC-MS to perform the chiral
analysis, although different methodologies are reported [8,83–86,91]. Generally enantioselective
biodegradation was observed for the NSAIDs in all matrices. (S)-ibuprofen degraded faster and/or at
higher extents in almost all matrices and studies [8,81,83,91], except for one work with a river biofilm
reactor where the pharmacologically inactive (R)-ibuprofen was preferentially degraded [84]. Although
it has been claimed that degrading microorganisms prefer the use of the (R)-enantiomer, as verified by
Winkler et al. [84], the majority of reports on enantioselective biodegradation of ibuprofen achieved
disagreeing results, describing preferential degradation of (S)-ibuprofen. Accordingly, the influence of
specific experimental settings (such as aerobic/anaerobic conditions) has been stated as preponderant
in the enantioselective degradation of (S)-ibuprofen by other authors [83,94]. Naproxen presented
enantioselective degradation profiles as well, with the EF decreasing under both aerobic and anaerobic
conditions in WWTP treatments [83] and potential occurrence of enantiomeric inversion during
a membrane bioreactor operation, where the (S)-form EF decreased over time and the (R)-form
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concentration increased [81]. Biodegradation of ketoprofen showed a slight preference towards the
(R)-ketoprofen, and a slight increase of EF was observed [81].

Biodegradation assays of beta-blockers and antidepressants are herein discussed.
The biodegradation of the beta-blockers alprenolol, atenolol, propranolol, and metoprolol
and the antidepressant fluoxetine by an activated sludge inoculum collected from a WWTP was
recently reported by our group [87,88]. Briefly, biodegradation studies of alprenolol, propranolol,
and metoprolol were monitored using HPLC-FD with a vancomycin-based CSP. Biodegradation
occurred in the same stereoselective pattern, with the (S)-form being degraded to a slightly higher
extent. The presence of another growth substrate maintained such behavior and enhanced the
biodegradation up to 14%. Atenolol and fluoxetine biodegraded in a non-enantioselective way [88].
The assays were performed by supplementing the compounds into a mineral growth medium
inoculated with the activated sludge inoculum, in the absence and in the presence of acetate, a ready
source of carbon and energy.

As an example, chromatograms of samples supplemented with 1 µg mL−1 of alprenolol at
different times are presented in Figure 3 to illustrate the degradation behavior obtained from the
single supplementation.
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Figure 3. Representative chromatograms illustrating the loss of (R)- and (S)-enantiomers of alprenolol
(ALP) during biodegradation assays of 1 µg mL−1 solutions of a mineral growth medium containing
activated sludge supplemented with acetate. The numbers represent: (1) initial time; (2) 8th day;
(3) 15th day. Reproduction with permission of Elsevier (Figure 3 from Ribeiro et al. [87]).

Acetate slightly increased the biodegradation extent of all enantiomers of all beta-blockers,
which may be due to a higher metabolic activity of the cells in the presence of a readily available
growth substrate. For all compounds, the enantioselectivity of the degradation process in the presence
of acetate was the same as that observed without this additional energy source. Activated sludge could
remove both enantiomers of fluoxetine. The removal percentage was approximately 80% at an initial
concentration of 1 µg mL−1 in the presence and absence of the extra carbon source. The half-life of
both enantiomers was similar and biodegradation seemed to be non-enantioselective.

The biodegradation of pharmaceuticals in mixtures can be different from individual
supplementation [34,51]; however, the monitoring analytical methods required separation of all
enantiomers of the pool of compounds. Alprenolol and propranolol were supplemented as a mixture
at two different initial concentrations (0.5 and 5 µg mL−1), and degradation was monitored for 15 days
using a validated HPLC-FD method with a vancomycin-based CSP for the simultaneous separations
of the enantiomers of both compounds. Also, a mixture of metoprolol, atenolol, and fluoxetine was
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assessed in the exact same chromatographic conditions (mobile phase, column oven temperature,
and flow rate). In this report, despite the similar order of magnitude of the biodegradation rate in
the single and mixed supplementation, the degradation rates of the mixtures were different to that
occurring during single supplementation. All enantiomers had their degradation rate diminished.
It is important to assess the mixture effect, since pharmaceuticals can affect the metabolism of each
other [34,51]. These phenomena may be explained by competition for the same enzyme and can affect
biodegradation in a real environment.

The degradation of racemic-fluoxetine and its enantiomers in wastewater effluents, as well as
their enantioselective degradation by L. portucalensis F11 [89], a microbial strain with the capacity
to degrade a range of fluorinated aromatic compounds, was also studied and monitored with
a HPLC-FD method with a vancomycin-based CSP under reversed mode of elution. This strain
was used as a model organism to study the influence of stereochemistry on the biodegradation of
enantiomers of fluoxetine [89]. Non-enantioselective degradation and no formation of enantiomers of
the metabolite norfluoxetine were observed in the spiked wastewater samples. However, fluoxetine
was degraded in an enantioselective manner by L. portucalensis F11, in assays performed with the
single bacteria strain, with preferential degradation of the (R)-enantiomer, both at racemic and single
enantiomeric supplementation [89]. The single enantiomer supplementation showed the total removal
of (R)-fluoxetine with a slower degradation rate compared to the racemic supplementation. In the case
of (S)-fluoxetine, almost total removal was observed with a faster degradation rate compared to the
racemic supplementation. No racemization was observed [89]. This is in accordance with previous
publications that enforce the dependency of the degradation pattern and the enantioselectivity on the
microorganism phylogenies.

Fluoxetine is used in large amounts; however, there are only few studies concerning its
biodegradation and reports on enantioselective biodegradation are rare [89,90]. A reversed-phase
enantioselective LC-MS/MS method using a Chirobiotic™ V CSP was used to study the occurrence of
fluoxetine in WTTP samples and revealed that the influent was more enriched in (R)-enantiomer than
the effluent, suggesting the preferential degradation of this enantiomer in the treatment processes [95].
However, it is necessary to consider that influent and effluent samples do not necessarily represent the
same plug of water and that the EF in the influent does not necessarily remain constant. This study
confirmed the enantioselective biodegradation of fluoxetine by the single bacterium previously
observed in our group [89], in which the (S)-enantiomer dissipation was slower than the (R)-enantiomer,
and also reassured us that racemization phenomena were not occurring. Fluoxetine biotransformation
to the metabolite norfluoxetine, which is known from human metabolism, was not detected in
biodegradation by L. portucalensis F11 [89]. These results are in accordance with the abovementioned
study performed in our laboratory concerning biodegradation of racemic-fluoxetine at a higher
concentration of 10 µg mL−1 by activated sludge collected from a WWTP [88].

The removal of fluoxetine in a non-enantioselective manner was also recently reported in an
aerobic granular sludge sequential batch reactor, suggesting adsorption of the compound to the aerobic
granules [80]. This finding confirms the importance of studying not only the aqueous compartments
but also the solids, such as sludge, soils, and river sediments, as reported by many authors [45,96,97].
A different study referred to an aerobic granular sludge-sequencing batch reactor (AGS-SBR)
operated with simulated wastewater containing a mixture of chiral PACs, namely alprenolol,
bisoprolol, metoprolol, propranolol, venlafaxine, salbutamol, fluoxetine, and norfluoxetine [93].
The AGS-SBR exhibited the highest removal efficiency for norfluoxetine, with preferential removal of
the (R)-enantiomer indicating that enantioselective biologically mediated processes occurred. Removal
was non-enantioselective for the other chiral PACs, and occurred through biosorption onto AGS.
This study was monitored by LC-MS/MS using a Chirobiotic™ V CSP under the reverse-phase elution
mode and the same analytical method developed and reported in a previous work [93]. Different works
have reported the utilization of batch reactors in enantioselective biodegradation experiments with
different drugs such as amphetamine, methamphetamine [79], and NSAIDs [81,84,91]. Considering
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existing reports on biodegradation experiments using batch reactors, the main strengths highlighted are
the robustness of reactors’ functionality, the ability to survive pollutant shock loads, and high biomass
density (compared to batch incubations with bacterial consortia or activated sludge inoculum) [80,93].
Conversion of lab-scale operating reactors to full-scale reactors applied to real scenarios has been
accomplished, and Portugal, the Netherlands, South Africa, and China have full-scale batch reactors
currently in operation [98]. Advances in this type of technology will benefit the diffusion of its
application in the future [99].

Concerning antibiotics, there are many reports regarding biodegradation [100,101], but very
few citations about enantioselectivity in degradation studies. In our recent work, concerning
biodegradation of racemic-ofloxacin and (S)-ofloxacin (levofloxacin) by an activated sludge consortium,
enantioselective degradation was observed with the (S)-enantiomer from the racemic mixture
being degraded at higher extents and the degradation of the enantiopure (S)-ofloxacin leading
to enrichment of the R-form [77]. Similar behavior was observed for the same antibiotics
using the single bacterial strains L. portucalensis F11 and Rhodococcus sp. FP1, under aerobic
conditions (manuscript submitted for publication). Both works were followed by LC-FD and
LC-MS/MS with a Chirobiotic™ R CSP under reverse-phase mode and isocratic elution, using
0.45% triethylamine aqueous solution (pH 3.6) and ethanol (80/20, v/v) and ammonium formate
in water (concentration 20 mM, pH 4.25) and ethanol (80/20, v/v) as mobile phases, respectively.
Reports on the enantioselective biodegradation of chiral drugs are still scarce, although there
are other studies including warfarin, venlafaxine, climbazole, and synthetic psychoactive agents
(amphetamine, methamphetamine, and related compounds). Macrocyclic antibiotics-based CSP,
mainly Chirobiotic™ columns, are most often used in enantioselective biodegradation studies of
chiral PACs [75–77,79,80,82,87–90,93], but other chiral selectors such as cyclodextrin-based [91],
polysaccharide-based [92], protein-based [78,82], and Pirkle-type [10] CSP have been reported.
For more information, please refer to the literature [10,11,75,76,78,79,82,92].

Different studies have considered metabolites originating during the biodegradation of chiral
compounds [75,82,84,91,93]. Matamoros et al. followed the formation of the two major human
metabolites of ibuprofen during experiments with microalgae reactors (carboxy-ibuprofen and
hydroxy-ibuprofen) [91]. These metabolites, described as the most abundant originating during
biodegradation, were already present at the beginning of experiments with wastewater, agreeing with
occurrence data for these compounds usually found in this type of matrix [102]. Carboxy-ibuprofen and
hydroxy-ibuprofen followed the degradation pattern of the parent compound, which, according to the
authors, established biodegradation as the key process for their removal [91]. The formation of these
metabolites was not enantioselectively monitored and analyzed. A different study with ibuprofen [84]
described the detection and identification of the same two metabolites during experiments with a river
biofilm reactor, as well as their degradation. The authors suggested that the degradation pathway
of ibuprofen in river systems and the metabolites originated differ from those observed in human
metabolism. Hydroxy-ibuprofen appears first and carboxy–ibuprofen shows more persistence in
human metabolism; the opposite has been verified for the environment [84]. Amorim et al. observed
enantioselective removal of norfluoxetine (metabolite of fluoxetine) in an AGS-SBR experiment
and variations of the compound EF throughout the different operational phases of the reactor.
Enantioselective degradation of metabolites of venlafaxine, citalopram, and MDMA was reported in
two recent studies [75,82]. Degradation of the metabolite O-desmethylvenlafaxine exhibited notable
enantiomeric enrichment under aerobic conditions and none under anaerobic conditions, contrary to
the results obtained for the parent compound, which involved only slight stereoisomeric selectivity [75].
Evans et al. reported higher degradation extents of desmethyl metabolites of venlafaxine, citalopram,
and MDMA both for stereoselective metabolic and non-stereoselective photochemical processes [82].

A recent study described beta-blockers’ enantiomer adsorption by sludge using batch experiments,
and reported the abiotic enantioselectivity of the processes [19]. The authors observed that the
enantioselectivity of adsorption phenomena increased with the hydrophilicity of the compounds
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through variation of the EF of the beta-blockers sorbed on sludge. This work presents a new vision of
the enantioselective behavior of chiral compounds in the environment, suggesting that it may not be
solely associated with biologically mediated processes.

4. Biodegradation Studies of Chiral Pesticides

The earliest enantioselective studies on pesticides’ biodegradation date back to the 1970s [103],
but it was only in the 1990s that the subject began to be widely explored [13,104–115]. A research
on ScienceDirect® under the keywords “pesticides + enantioselective + biodegradation” provides
267 results. This review will not cover all the works on the topic and therefore was limited to papers
published after 2006, the year when a comprehensive review on environmental fate and biochemical
transformations of chiral pollutants was published [1]. As previously stated regarding chiral drugs,
the EF calculation during biodegradation experiments is one of the most useful tools to understand
the enantioselectivity of the processes. Studies on the degradation of pesticides involving incubation
tests are mostly performed in laboratory-scale batch experiments [21,116–153], with rare exceptions
where the treatment performance of constructed wetlands was investigated [154].

Table 2 shows enantioselective biodegradation studies of chiral pesticides in different
environmental matrices and the chiral analytical techniques used to assess the EF during degradation,
published between 2006 and 2017. In the original papers [21,116–155] 41 different compounds from
14 different pesticide classes are mentioned, with triazole fungicides and phenoxy herbicides being
the two most represented classes (Figure 4). Dissipation studies and field-only experiments with no
incubation experiments considered were left out [72,149,156–167].
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Table 2. Chiral pesticides discussed in this review (works published between 2006 and 2017) and the chiral analytical techniques used to quantify enantiomers in
biodegradation studies.

Chiral Pesticide Matrix Biodegradation Experiment Analytical Method EF/Observations Reference

amides - - - - -

beflubutamid soil

laboratory incubation
experiments under aerobic
conditions with acidic and
alkaline matrices

GC-MS

enantioselective degradation of
beflubutamid observed in alkaline soil;
(-)-beflubutamid degraded slower in
alkaline soil; both enantiomers degraded
similarly in acidic soil; highly
enantioselective degradation of the
metabolite phenoxybutanamide observed

[116]

aminophosphonic acid derivatives - - - - -

dufulin soil

laboratory incubation
experiments under sterile and
non-sterile conditions with
racemic mixture and individual
enantiomers

HPLC-DAD

faster degradation of enantiopure
(S)-dufulin compared to its antipode;
enantiomerization not observed during
incubation of individual enantiomers

[117]

chloroacetanilides - - - - -

metolachlor soil
laboratory incubation
experiments under sterile and
non-sterile conditions

GC-ECD
enantioselectivity observed during
degradation; (S)-metolachlor degraded
faster than the racemic mixture

[118]

metolachlor runoff waters laboratory scale wetlands;
column wetlands GC-MS

enantioselective degradation of
metolachlor observed; EF variations
detected along the wetland distinct zones

[154]

diphenyl ethers - - - - -

lactofen and metabolites sediment

laboratory incubation
experiments with racemic
mixture and individual
enantiomers

HPLC-VWD

enantioselective degradation observed
with (S)-lactofen and (S)-desethyl lactofen
being preferentially degraded and
enrichment of the (R)-forms.

[119]

imidazolinones - - - - -

imazethapyr soil

laboratory incubation
experiments under aerobic,
sterile and non-sterile conditions
with variable pH, humidity and
temperature settings

HPLC-UV-CD

(R)-imazethapyr preferentially degraded
in all samples; average (R)-imazethapyr
half-lives significantly shorter than its
antipode; EF values significantly higher in
less acidic soil

[120]

neonicotinoids - - - - -

cycloxaprid soil

laboratory incubation
experiments under anoxic and
flooded conditions with racemic
mixture and individual
enantiomers

HPLC-LSC;
LC-MS/MS

enantioselective abiotic and biotic
cycloxaprid degradation not observed;
non-enantioselective transformation could
be related to the absence of oxabridged
ring in the transformation products

[121]
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Table 2. Cont.

Chiral Pesticide Matrix Biodegradation Experiment Analytical Method EF/Observations Reference

cycloxaprid soil
laboratory incubation
experiments under aerobic
conditions

HPLC-DAD

non-enantioselective degradation of
racemic-cycloxaprid and its (1S2R)- and
(1R2S)-enantiomers observed in the soil
samples tested

[122]

paichongding soil
laboratory incubation
experiments under anaerobic
conditions

HPLC-DAD;
LC-MS/MS

enantioselective degradation of
paichongding observed; types of soil
influenced enantiomers degradation rates;
degradation process originated three
achiral transformation products

[123]

organochlorines - - - - -

α-HCH, cis- and trans-chlordane,
o,p'-DDT

woodland and
grassland background

soil

laboratory incubation
experiments under aerobic
conditions

GC-ECNI-MS enantioselectivity degradation observed in
field and laboratory experiments [124]

organophoshorus - - - - -

malathion soil, environmental
waters

laboratory incubation
experiments HPLC-VWD

(S)-malathion degraded faster than the
active (R)-malathion in all environmental
samples; biodegradation of pure
enantiomers of malathion showed
enantiomeric inversion in soil and water
samples

[125]

oxadiazines - - - - -

indoxacarb soil

laboratory incubation
experiments under sterile and
non-sterile conditions with acidic
and alkaline matrices

HPLC-DAD

enantioselective degradation of indoxacarb
observed under non-sterile conditions;
(R)-indoxacarb degraded faster in acidic
soil; (S)-indoxacarb preferentially
degraded in alkaline soil;
enantiomerization observed in both acidic
and alkaline soils

[126]

phenoxies - - - - -

diclofop-methyl, diclofop algae cultures laboratory incubation
experiments HPLC-FD

enantioselective degradation of diclofop
and diclofop-methyl observed and
influenced by temperature

[127]

diclofop-methyl agricultural soil,
Chinese cabbage

laboratory incubation
experiments; field experiments in
spiked plants

HPLC-DAD

enantioselective degradation of
diclofop-methyl observed in two of the
tested soil samples, where (-)-enantiomer
degraded faster; (+)-enantiomer
preferentially degraded in cabbage

[128]

dichlorprop-methyl sediment
laboratory incubation
experiments with bacterial strain
isolated from activated sludge

HPLC-UV-CD;
GC-ECD

(R)-dichlorprop-methyl preferentially
degraded at different pH values;
enantioselectivity more evident at neutral
pH conditions

[129]
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Table 2. Cont.

Chiral Pesticide Matrix Biodegradation Experiment Analytical Method EF/Observations Reference

fluazifop-butyl soil, water

laboratory incubation
experiments under different pH
conditions (water) with racemic
mixture and individual
enantiomers

LC-MS/MS

enantioselective degradation of
fluazifop-butyl observed in two soil
samples but not on water; enantiomeric
form preferentially degraded varied
within soil samples

[130]

mecoprop soil sampled at
different depths

laboratory incubation
experiments under aerobic and
anaerobic conditions

LC-MS/MS

(R)-mecoprop preferentially degraded
under aerobic conditions in soils from 3
and 6 m depth when using nM mecoprop
concentrations; (S)-mecoprop
preferentially degraded in all samples
when using higher mecoprop
concentrations (µM)

[131]

quizalofop-ethyl,
quizalofop-acid (metabolite) soil

laboratory incubation
experiments with racemic
mixture and individual
enantiomers

HPLC-UV

enantioselective degradation of
quizalofop-ethyl observed;
(S)-quizalofop-ethyl degraded faster both
in acidic and alkaline soils; quizalofop-acid
degraded faster in acidic soil;
quizalofop-acid enantiomerization
observed with enrichment of the
(R)-enantiomer

[132]

spiroxamine soil
laboratory incubation
experiments under anaerobic
conditions

LC-MS; GC-MS non-enantioselective degradation of
spiroxamine observed [133]

phenylamides - - - - -

benalaxyl agricultural soil,
cucumber plant

laboratory incubation
experiments in the dark HPLC-DAD

enantioselective degradation of benalaxyl
observed; (S)-benalaxyl degraded faster in
plants and (R)-benalaxyl degraded faster
in soils

[134]

benalaxyl soil, vegetables

laboratory incubation
experiments with soil; growth of
plants in controlled environment
with fungicide application

HPLC-DAD

enantioselective degradation observed in
soil where (R)-benalaxyl dissipated faster;
(S)-benalaxyl preferentially degraded in all
vegetables with resulting enrichment of
(R)-benalaxyl.

[135]

benalaxyl freshwater algae
cultures

laboratory incubation
experiments HPLC-UV

enantioselective degradation of benalaxyl
observed; (S)-benalaxyl half-life slightly
smaller and relative enrichment of the
(R)-enantiomer occurred

[136]

furalaxyl, metalaxyl microbial liquid
cultures

laboratory incubation
experiments with the individual
compounds and its mixture

HPLC-MS

enantioselective degradation of furalaxyl
and metalaxyl observed with one of the
isolated microorganisms; (R)-enantiomers
of both compounds preferentially
degraded

[137]
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Table 2. Cont.

Chiral Pesticide Matrix Biodegradation Experiment Analytical Method EF/Observations Reference

metalaxyl sewage sludge
laboratory incubation
experiments under anaerobic
conditions

HPLC-UV-CD

(S)-metalaxyl from the racemic mixture
degraded faster, presenting a T1/2 much
lower than the (R)-metalaxyl; racemic
mixture T1/2 lower than the
(R)-enantiomer

[138]

phenylpyrazoles - - - -

fipronil sediment
laboratory incubation
experiments under anaerobic
conditions

GC-MS

enantioselective degradation of fipronil
observed; fipronil EF varied during
incubation period in sulfidogenic
sediments and the (S)-enantiomer was
preferentially degraded

[139]

fipronil soil
laboratory incubation
experiments under aerobic and
anaerobic conditions

HPLC-DAD

almost non-enantioselective degradation
of racemic fipronil observed; (S)-fipronil
preferentially degraded under anaerobic
conditions with flooded soil; no
enantiomerization of fipronil observed

[140]

fipronil algae cultures

laboratory incubation
experiments with racemic
mixture and individual
enantiomers

HPLC-UV

enantioselective degradation of fipronil
observed; EF varied from 0.5 to 0.65 in 17
days; longer half-life values observed for
(S)-fipronil

[141]

pyrethroids - - - - -

alpha-cypermethrin soil laboratory incubation
experiments HPLC-VWD; GC-ECD

enantioselective degradation of
α-cypermethrin observed; EF varied from
0.55 to 0.61 in 42 days;
(+)-(1R,cis,αS)-cypermethrin
preferentially degraded

[142]

beta-cypermethrin soil
laboratory incubation
experiments under sterile and
non-sterile conditions

HPLC-VWD

enantioselective degradation of
beta-cypermethrin observed; different
degradation rates observed for the four
beta-cypermethrin isomers; EF variation
noticed during the degradation process

[143]

beta-cypermethrin- soil

laboratory incubation
experiments under sterile and
non-sterile conditions with acidic
and alkaline matrices, and with
racemic mixture and individual
enantiomers

HPLC-UV

enantioselective degradation of
racemic-beta-cypermethrin observed only
in non-sterile soils; different degradation
rates and half-lives observed for the four
beta-cypermethrin isomers; no
enantiomeric enrichment observed during
degradation of individual enantiomers

[144]
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Table 2. Cont.

Chiral Pesticide Matrix Biodegradation Experiment Analytical Method EF/Observations Reference

(Z)-cis-bifenthrin, cis-permethrin,
cyfluthrin, cypermethrin soil, sediment

laboratory incubation
experiments under aerobic and
anaerobic conditions

GC-ECD
enantioselective degradation of
cis-bifemthrin, pemethrin and cyfluthrin
observed

[145]

fenpropathrin, fenvalerate soil
laboratory incubation
experiments with acidic and
alkaline matrices

HPLC-UV

slightly enantioselective degradation of
fenpropathrin and fenvalerate in alkaline
samples where (S)-fenpropathrin and
(αS,2R)-fenvalerate were degraded faster;
racemization observed in alkaline samples
but not on acidic soils

[146]

triazoles - - - - -

epoxiconazole, cyproconazole soil
laboratory incubation
experiments under different pH
conditions

GC-MS

soil pH affected degradation
enantioselectivity; enantioselective
degradation of epoxiconazole observed at
higher pH values

[147]

enilconazole soil

laboratory incubation
experiments under different
conditions of light and UV
irradiation

CE enantioselective degradation of
enilconazole not observed in alkaline soil [148]

fenbuconazole, RH-9129
(metabolite), RH-9130 (metabolite) soil

laboratory incubation
experiments under aerobic and
anaerobic conditions

LC-MS/MS

enantioselective degradation of
fenbuconazole observed under aerobic and
anaerobic conditions; (-)-fenbuconazole
preferentially degraded; enantioselective
degradation of the metabolites differed
with aeration and pH conditions

[21]

flutriafol, hexaconazole,
tebuconazole sediment

laboratory incubation
experiments under sterile and
non-sterile conditions

HPLC-UV

enantioselective degradation of the three
triazole fungicides observed;
(-)-enantiomers preferentially degraded in
native conditions; no significant
enantioselective degradation observed
under sterilized conditions

[155]

triadimefon soil
laboratory incubation
experiments in sterile and
non-sterile conditions

HPLC-UV

(R)-triadimefon preferentially degraded in
acidic and alkaline soils; racemization
observed in the abiotic degradation of
enantiopure triadimefon enantiomers

[150]
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Table 2. Cont.

Chiral Pesticide Matrix Biodegradation Experiment Analytical Method EF/Observations Reference

triadimenol soil
laboratory incubation
experiments in sterile and
non-sterile conditions

HPLC-UV

relative enantioselective degradation of
triadimenol observed; epimerization
observed in incubations with enantiopure
triadimenol enantiomers

[151]

tebuconazole agricultural soil,
vegetables

laboratory incubation
experiments in sterile and
non-sterile conditions

HPLC-DAD,
LC-MS/MS

tebuconazole EF varied slightly during
biodegradation in soil samples;
(R)-tebuconazole degraded faster than the
(S)-enantiomer in tested soils

[152]

tebuconazole, myclobutanil soil

laboratory incubation
experiments under aerobic and
anaerobic conditions with
racemic mixture and individual
enantiomers

LC-MS/MS

enantioselective degradation of
tebuconazole observed in aerobic and
anaerobic soils; (S)-tebuconazole
preferentially degraded; enantioselectivity
correlated with the soils organic carbon
content; (+)-myclobutanil preferentially
degraded in aerobic soils; similar
degradation rates of myclobutanil
enantiomers in anaerobic soils

[153]

Notes: CE, capillary electrophoresis; CD, circular dichroism; ECD, electron capture detector; ECNI, electron capture negative ion; LSC, liquid scintillation counter; VWD, variable
wavelength detector.
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Figure 4. Relative percentages of each pesticide classes mentioned in the reviewed enantioselective
biodegradation studies.

Regarding the analytical methods used to quantify pesticides’ enantiomers during
biodegradation, the trend is clear and high-performance liquid chromatography with a
diode array detector (HPLC-DAD) [117,122,123,126,128,134,135,140,152] and an ultraviolet
detector (UV) [120,129,132,136,138,141,144,146,150,151,155], as well as liquid chromatography
tandem-mass spectrometry (LC-MS/MS) [21,121,123,130,131,152,153], are the predominant
quantification approaches employed. Other analytical methods have been reported, such as
GC [116,118,124,133,139,145,147,154] and capillary electrophoresis [148]. Chromatographic stopped-flow
techniques have been used to monitor enantiomerization studies [168]. All the works with GC
described direct enantioselective methods using cyclodextrin-based CSP, the CSP most often applied
in enantioselective analysis of organochlorine compounds [169,170]. Enantioselective LC-MS/MS
methods performed direct chiral analysis, mostly using polysaccharide-based CSP [21,123,130,152,153],
although the utilization of a cyclodextrin-based CSP was also described [131]. Soil is the major matrix
used in pesticides’ biodegradation studies, accounting for more than 70% of the works considered in
this review, probably because it is the primary environmental compartment with which they are in
contact. This matrix choice propensity in biodegradation studies with pesticides is clearly different
to that observed for pharmaceuticals and drugs of abuse, where environmental waters are the main
matrix used.

Triazole fungicides are the class with a higher number of compounds employed in
biodegradation studies. Enantioselectivity was observed for all triazole compounds considered,
although at different degrees depending on experimental conditions such as aeration and pH
range [21,147,148,150,153]. A comprehensive study with fenbuconazole conducted with soil in
laboratory incubation experiments monitored not only the biodegradation of the target fungicide
but also the formation and biodegradation of two chiral metabolites [21]. Results demonstrated
enantioselectivity during the biodegradation of fenbuconazole and during the biodegradation of
the two chiral metabolites monitored, in which the (+)-enantiomer of the parent compound was
preferentially degraded—the opposite of the pattern observed for the metabolites with (-)-enantiomers,
which degraded faster and to a larger extent. Epoxiconazole biodegradation in soil exhibited greater
enantioselectivity at higher pH levels [147]. Conversely, the biodegradation of enilconazole in soil
samples at alkaline pH was not enantioselective [148]. Triadimefon-enantioselective biodegradation
was observed at acidic and alkaline pH levels in a similar matrix, and in both conditions the
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(R)-enantiomer was preferentially degraded [150]. pH’s impact on biodegradation has been
correlated with enzymatic reactions and microbiological activity and can, consequently, affect the
enantioselectivity of the degradative course [148,171]. These results suggest that, as well as for the
matrix chemical characteristics, the specific individual structure of a compound has a great impact
on its enantioselective behavior during degradative processes, and different outcomes regarding the
enantioselectivity may be obtained for compounds that are chemically related.

Phenoxy herbicides are another pesticide class frequently used to assess enantioselectivity during
biodegradation. Generally, all the studies reported enantioselective biodegradation to some extent
in the various matrices considered (for instance, algae cultures, agricultural soil, sediment, water,
and vegetables) [127–130]. Diclofop-methyl exhibited diverse enantioselective behaviors in different
biodegradation matrices, with its (-)-enantiomer being degraded faster in soil samples and more
slowly in Chinese cabbage samples [128]. The same multiplicity of enantioselective behaviors
was observed for fluazifop-butyl, which was enantioselectively biodegraded in soil, though the
enantiomer preferentially degraded varied within samples, while its degradation on water samples
was non-enantioselective [130].

Fipronil is a phenylpyrazole broad-spectrum insecticide broadly used on house pets as well as in
pest control on agricultural fields [139]. Different works reported the biodegradation of fipronil
in several matrices (sediment, soil, and algae cultures) [139–141]. Fipronil biodegradation was
enantioselective, although with different contours: in sediment samples the (S)-enantiomer was
preferentially degraded and variations in the EF were observed during the degradation period [139];
in algae cultures the EF of racemic fipronil also varied during the degradation period but the
(S)-enantiomer had longer half-life values, persisting longer in the medium [141]; and in soil samples
the racemic fipronil biodegradation was almost non-enantioselective, even though the (S)-enantiomer
was slightly more degraded under anaerobic conditions [140].

Benalaxyl is a phenylamide fungicide widely used in tomato, grape, potato, tobacco, and soybean
crops; its biodegradation has been reported as enantioselective in different matrices as soil, plants and
vegetables [134,135], and freshwater algae cultures [136]. Biodegradation in plants and vegetables
showed faster degradation of (S)-benalaxyl in diverse experimental conditions, while experiments in
soil reported preferential degradation of (R)-benalaxyl [134,135]. (S)-benalaxyl exhibited somewhat
smaller half-life values in freshwater algae cultures and in the same study enrichment of the
(R)-enantiomer was also reported [136]. Degradation in vegetables also resulted in (R)-benalaxyl
enrichment [135].

Beta-cypermethrin is a pyrethroid insecticide with four isomers and is one of the most
used worldwide, notwithstanding its well-known toxic effects against different organisms and
environmental compartments [1,25,172]. Two different studies on soils reported the enantioselective
biodegradation of beta-cypermethrin [143,144] and in both works different degradation rates and
extents were observed for the four isomers. Additionally, no enantiomeric enrichment was detected
when enantiopure isomers were employed in biodegradation experiments [144].

All the works discussed here reinforce the importance of developing enantioselective methods
to determine the EF of chiral organic pollutants in the environment and to encourage more concern
about the stereochemistry in this field. Concerning enantioselective biodegradation studies, samples
tend to be cleaner and with higher concentration than in soils, effluents, and surface water samples,
allowing for easier sample preparation process and feasibility in EF quantification [173,174].

5. Conclusions and Future Perspectives

Overall regardless of the great importance given to chiral organic pollutants, the stereochemistry
involved in biodegradation is still frequently overlooked. Although enantioselective methods and
biodegradation experiments have evolved in recent years, namely regarding pesticide compounds,
studies with chiral pharmaceuticals and drugs of abuse are nonetheless only a minor part of the
research work in this field. The study of enantioselective processes associated with the formation
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and degradation of chiral metabolites of chiral compounds is practically non-existent. In addition to
the occurrence and environmental fate of the metabolites and products of transformation of chiral
pollutants, it is of great importance to evaluate the inherent enantioselectivity given their potential
consequences for the environment.

The understanding of the impact of stereoselectivity on the degradation and transformation
of chiral organic compounds in environmental matrices and non-target organisms is key for an
improved environmental risk assessment of these pollutants, since these developments can represent
unexpected ecotoxicological effects. Further knowledge of enantioselective environmental processes
could help the agrochemical industry to redirect production of broadly applied chiral compounds to
enriched- or single-enantiomer formulations, thus reducing the pollutant load of racemic mixtures
into the environment.
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