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Abstract: Anomaly detection systems, also known as intrusion detection systems (IDSs), continuously
monitor network traffic aiming to identify malicious actions. Extensive research has been conducted
to build efficient IDSs emphasizing two essential characteristics. The first is concerned with
finding optimal feature selection, while another deals with employing robust classification schemes.
However, the advent of big data concepts in anomaly detection domain and the appearance of
sophisticated network attacks in the modern era require some fundamental methodological revisions
to develop IDSs. Therefore, we first identify two more significant characteristics in addition to the
ones mentioned above. These refer to the need for employing specialized big data processing
frameworks and utilizing appropriate datasets for validating system’s performance, which is
largely overlooked in existing studies. Afterwards, we set out to develop an anomaly detection
system that comprehensively follows these four identified characteristics, i.e., the proposed system
(i) performs feature ranking and selection using information gain and automated branch-and-bound
algorithms respectively; (ii) employs logistic regression and extreme gradient boosting techniques
for classification; (iii) introduces bulk synchronous parallel processing to cater computational
requirements of high-speed big data networks; and; (iv) uses the Infromation Security Centre of
Excellence, of the University of Brunswick real-time contemporary dataset for performance evaluation.
We present experimental results that verify the efficacy of the proposed system.

Keywords: anomaly detection; network intrusion detection systems; bulk synchronous parallel;
machine learning; big data; ISCX-UNB dataset; DARPA; KDD Cup 99

1. Introduction

This decade has witnessed tremendous growth in cyberspace and various computing devices.
Proliferation of the Internet with these computing devices has enhanced efficiency and productivity in
almost all the dimensions of life. Along with such advancements, mechanisms to cope with intrusive
activities have become a primary concern for almost every individual and organizations in particular.
An unintended access to organizational network can create havoc and even jeopardize activities.
Therefore, regardless of the nature of the organization, detecting possible intrusions and protecting
against external as well as internal attacks on networks is of paramount importance. In order to
mitigate this problem, intrusion detection systems (IDSs), especially network intrusion detection
systems (NIDSs) are widely implemented in various network environments. An IDS is a software or
hardware component that aims at identifying malicious actions such as attempts to compromise the
confidentiality, integrity or availability of a resource [1].
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A significant amount of research has been conducted to develop efficient intrusion detection
systems using various techniques such as statistical, soft computing, combination learners, and the
methods based on classification, knowledge, clustering, and so on [2–6]. However, in the past few
years, the exponential growth of massive data in network domain has posed many challenges to
researchers in the field [7–9]. A large number of new data is being produced by high speed networks
on daily basis. Security solutions such as NIDSs need to analyze huge traffic of such networks in real
time, as the ever-increasing number of anomalies can have a destructive effect on confidentiality and
availability of information. The situation has resulted in introducing the term ‘big data’ also in the field
of intrusion detection. Current anomaly detection systems require frequent analysis of big data, which
is an active research problem as it is very difficult or impossible for traditional technologies to handle
such huge datasets [10,11]. Big data is generally represented by the mathematical relationship with
three independent variables: volume, velocity, and variety of the datasets [12]. In anomaly detection
domain, big data problem has its own issues. For instance, a large number of data can cause a chain
reaction which reduces the efficiency of NIDSs. The main challenges and issues regarding network
anomaly detection under big data environments are summarized in Table 1.

Table 1. Main issues regarding network anomaly detection under big data.

Dimension Description Challenges and Issues

Volume The size of the datasets • Can cause traffic overloads
• Can make the processing capability slower

Velocity The speed at which the data is
being generated

• Difficult to handle traffic in
real-time environment

• May increase packet-drop ratio

Variety The complexity of data
• Hard to perform feature selection operations
• Many machine learning techniques may not

be applicable

Veracity Refers to the trustworthiness of
the data in terms of accuracy

• May include data quality problems such as
noise or missing values

During the past number of years, anomaly detection based on machine learning and data mining
techniques have received considerable attention among researchers. More emphasis has been given
on devising efficient feature selection schemes and robust classification methods, as they are generally
considered most vital characteristics to build an efficient IDS. In recent years, the association of intrusion
detection with big data domain has been recognized and researchers have started to deploy specialized
big data frameworks attempting to handle computational requirements efficiently [13–15]. Despite great
efforts, there are two important aspects that hinder the progress of NIDS research and greatly need the
attention of IDS research community. They are concerned with the decision to select appropriate big
data computing framework and to utilize adequate datasets for the evaluation of an IDS. We emphasize
that the value and legitimacy of such decisions is equally important as other fundamental characteristics
possess in the process of developing efficient IDSs. Building on the points addressed so far, we introduce
a comprehensive IDS incorporating bulk synchronous parallel (BSP_based machine learning classification
techniques and validate its effectiveness using an adequate modern dataset from the Information Security
Centre of Excellence, of the University of Brunswick (ISCX, UNB) [16]. To the best of our knowledge,
this article provides the first such mechanisms and settings for anomaly detection in big data networks.
The key contributions of this paper are summarized as follows:

• We begin by providing a concise introduction to the changing dynamics in the field of
intrusion detection.

• Then identify the four vital characteristics to be considered appropriately while devising network
anomaly detection system.

• Propose anomaly detection system based on the suggested principles.
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• Perform feature ranking and selection using information gain (IG) and automated
branch-and-bound (ABB) algorithms, respectively.

• Implement logistic regression (LR) and eXtreme gradient boosting (XGBoost) techniques for
classifying network traffic.

• Employ an emerging and powerful big data computing framework based on bulk synchronous
parallel (BSP) processing.

• Evaluate the proposed system to verify its efficacy using ISCX-UNB dataset, which adequately
represents network traffic patterns, and also highlight the significance of using appropriate
datasets in anomaly detection domain.

The rest of the paper is organized as follows. The following section presents the background of
network intrusion detection and related work. Section 3 introduces the BSP model, the big data framework
Apache Hama, and also explains the motivation behind utilizing BSP based machine learning techniques
for anomaly detection. Section 4 provides the architectural details of the proposed system. Section 5
presents the implementation and evaluation details followed by conclusion in Section 6.

2. Background and Related Work

Intrusion detection systems have been developed for over three decades, whereas the notion
of big data trend in network security is relatively new. In order to establish a better understanding,
in this section, we review some important concepts of network intrusion detection, related work and
associated challenges that form the basis for motivation behind utilizing BSP-based machine learning
computing in this area.

The possibility of automatic intrusion detection was first put forward by James Anderson in
1980 [17] in his classic paper, which states that a certain class of intruders or masqueraders who usually
operate with stolen identities could probably be detected by their departures from the set norm for the
original user. The proposed idea was basically to monitor security threats to audit trails. Afterward,
the notion of checking all activities against a set security policy was introduced. Since Anderson’s
paper, numerous theories, methods, and hardware and software frameworks have been presented in
the literature as well as in the form of commercial products. Consequently, security mechanisms such
as firewalls, access control, and cryptography are now available and function as the first line of security
defense with challenges involved from ever-evolving intrusion skills and techniques [18]. A firewall
mainly protects the network resources by allowing and disallowing certain types of access on the basis
of a configured security policy. An access control is usually deployed for authentication purposes,
whereas cryptography is used to achieve secure communication. These traditional defensive techniques
have several limitations in fully protecting networks and systems from increasingly sophisticated
attacks and malware. Moreover, most systems built on such techniques suffer from high false positive
and false negative detection rates and also lack the ability to continuously adapt with the changing
malicious behaviors [18]. IDSs overcome certain limitations and provide a better security solution by
protecting the network from both internal and external attacks. Table 2 summarizes the prominent
network security solutions based on their significant characteristics.

Although both firewalls and IDSs are common network security solutions, they have significant
differences in operation and functions. Traditional firewalls sniff out network packets at the network
boundaries and are unable to detect complex attacks such as denial of service (DoS), distributed denial
of service (DDoS), flooding attacks, user-to-root attacks, and port scanning. Moreover, firewalls have no
intelligent way of identifying whether the network traffic is legit and normal [19]. An IDS diminishes
threat impact and addresses such problems by performing an in-depth analysis of the network streams.
It provides a more comprehensive defense against those threats and enhances network security. Access
control and cryptography, on the other hand are more focused to ensure both confidentiality and
integrity. We refer the reader to Axelsson [20] for a comprehensive detail on the taxonomy of IDSs.
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Table 2. Common solutions to network intrusions.

Solution Description Intrusion Scope Attack Types

Firewall A system designed to stop
unauthorized access. External IP spoofing, eavesdropping, DoS,

port scan, and fragmentation attacks

Access control A system that controls or limit
illegal access. External

Unauthorized access, password
attacks, dictionary attacks, rainbow
table attacks, and sniffer attacks

Cryptography To stop the coding or decoding
of secret messages. External Man-in-the-middle attacks, brute

force attacks, and birthday attacks

IDS A system that controls and
monitors a network or a system. Internal & External DoS, DDoS, U2R, port scanning,

and flooding

Notes: DoS = Denial of service; DDoS = distributed denial of service; U2R = user to root; IP = internet protocol;
IDS = Intrusion detection system.

The issues discussed earlier have jolted the anomaly detection domain acutely, specifically the
ones highlighted in Table 1. In order to cope with them, there is a great need to employ efficient
big data technologies having real-time processing capabilities. Research efforts are afoot to address
these problems by devising techniques using frameworks like Hadoop [21], Spark [22], and Storm [23]
ecosystems. However, they are still in their infancy and, unfortunately most existing works are based
on outdated datasets namely DARPA [24], University of California, Irvine, Knowledge Discovery and
Data Mining Archive, 1999 (KDD Cup 99) [25], and its variations [26] that significantly reduce the
value of such contributions. We address the issues related with evaluations based on these inadequate
datasets later in this section.

Recently, Manzoor et al. [13] proposed network intrusion detection system using support vector
machines (SVM) to classify incoming network traffic into benign or malicious. The authors utilized
Apache Storm to handle computational requirements for big data networks. It is a development
platform generally used to develop real-time big data stream processing applications. In this work,
the proposed storm topology consist of one spout and three bolts: (i) input reader, the only spout
which reads a network trace and forwards it to the next bolt; (ii) data preprocessor, which mainly
performs data conversion and normalization functions; (iii) an SVM algorithm, which performs the
classification task; and (iv) result aggregator is the last bolt which aggregates the classification results
and store them in a file. Evaluations have been performed using KDD Cup 99 datasets; however a
detailed experimental analysis and some important performance metrics are missing in this work.

Rathore et al. [14] proposed a real-time intrusion detection system in a ultra high-speed big
data environment using the Hadoop framework. The architecture of the proposed system consists
of four layers: (i) traffic capturing, which reads the network traffic; (ii) filtration and load balancing
server, which performs filtration of the network traffic to achieve preliminary flow identification using
in-memory database and also achieve load balancing of network packets among master and slave
nodes using IP addresses; (iii) the processing layer, which is an important component of the system
composed of various master and data nodes of Hadoop. Moreover, the authors also briefly claimed
the use of Apache Spark to achieve real-time processing capabilities, however its use has not been
justified well and (iv) the decision server layer, which performs classification operations using machine
learning algorithms such as J48, Reduced Error Pruning Tree (REPTree), and Support Vector Machine
(SVM). The evaluations are performed using DARPA, KDD Cup 99, and NSL_KDD datasets.

Janeja et al. [15] presented the architecture of a Big-distributed intrusion detection system (B-dIDS)
to detect multipronged attacks existing across multiple subnets in a distributed network. The proposed
solution is composed of two main components: a big data processing framework named HAMR,
developed by HAMR Analytic Technologies (HAMRTECH), and an analytics engine consisting of
a novel ensemble algorithm. Basically, the authors used an ensemble classification technique to
automatically classify large amount of network data and to provide summarized alerts to system
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administrator for possible malicious activities. This study motivates the need for employing specialized
tools to implement intrusion detection systems, however lacks in performing benchmark evaluations.

Similarly, the studies in [27–31] also addressed the notion of intrusion detection in large-scale
networks and paved the path forward by devising various strategies and architectures. In [27],
the authors proposed centralized parallel Snort-based NIDSs to deal with the issues of high speed
networks using various multicore processors and operating systems. The system attempts to
enhance the performance in terms of reducing packet drop ratio, and it also helps the network
security management to keep track of all attack behaviors to develop and enhance security policies.
In [28], the authors focused on NIDSs’ weaknesses in terms of their inability to perform efficient
packet processing in high speed networks. The proposed approach adopted quality of service
configuration and parallel technologies in Cisco Catalyst Switches to improve the performance of a
NIDS and to reduce the packet drop ratio that may be caused by several types of attacks. Similarly,
Vasiliadis et al. [29] addressed the challenges of intrusion detection in large-scale networks and
presented a multiparallel intrusion detection architecture to cope with the increased processing
throughput requirements.

Despite significant contributions, there is still need to devise more efficient solutions by employing
appropriate computing technologies, robust machine learning techniques, and adequate datasets as
briefly indicated earlier. Therefore, the principle novelty of this paper lies with the use of BSP-based
machine learning techniques, specifically XGBoost, with cutting edge real-time big database (i.e.,
ISCX-UNB). Regarding the role of datasets for NIDS evaluation, the extensive use of nearly two
decades of the old KDD dataset family in this modern era is disappointing, specifically when some
better alternatives are available [16,32–34]. These flawed datasets lack veracity from the perspective
of big data as indicated in Table 1, and so they would not be relevant as a consequence of having
poor quality. Due to this low veracity, these datasets would also lack value as well, further reducing
their relevancy. This deduces that the performance evaluation of a system is always considered of
fundamental importance and must be based on standardized approaches; especially it is much vital to
evaluate IDS with contemporary datasets. Failing to do so does not contribute to IDS research even if
the system reliably detects all attacks showing the best possible capabilities. It has also been reported
that the results of such contributions become irrelevant mostly when performed cross-validation with
contemporary workloads [35]. Therefore, the models and evaluations based exclusively on outdated
datasets place a shadow of doubt on their usefulness and also impair the ability to explore further
knowledge horizons.

3. Utilizing Machine Learning and Bulk Synchronous Parallel Computing Techniques

Intrusion detection has led to a big data problem mainly due to the nature of its requirement to
perform massive data analysis. The integration of machine learning techniques and big data processing
technologies have helped in correctly identifying malicious activities in IDSs, which in turn help to
improve network security. The tasks to generate efficient algorithmic techniques and selecting an
appropriate computing framework are equally important in order to build an efficient IDS. Despite
great efforts, some issues regarding their selection need further attention that could be comprehended
with the following scenarios.

The Cloud Security Alliance reported in 2013 that an enterprise such as Hewlett-Packard (HP)
can generate one trillion events per day or about 12 million events per second [36]. It was also
reported that such large volumes of data are overwhelming and even data storage is becoming the
primary concern rather than processing. It became very difficult for enterprises to rely on traditional
software applications to deal with such big data issues. Moreover, traditional platforms like relational
databases do not scale effectively against the onslaught of big data challenges posed by intrusion
detection. Therefore, enterprises at large scale started to utilize big data solutions like Hadoop to better
accommodate the storage requirements of massive volume with potentially very diverse heterogeneous
data structures. Similarly, attempts have been made to make use of Hadoop in developing anomaly
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detection systems which is not very suitable to employ for such applications. These systems heavily
depend on iterative and real-time capabilities whereas a map-shuffle-reduce paradigm of Hadoop
often becomes a bottleneck to address such challenges [37]. As such, the focus has been shifted to
develop IDSs using frameworks like Apache Spark and Apache Storm etc. In this work, we use a
BSP-based processing model named Apache Hama [38] to develop anomaly detection system using
efficient machine learning techniques.

Hama, a top level project of Apache Software Foundation, is a distributed computing framework
based purely on the BSP programming model, which acts as a bridge between software and hardware
for parallel computing [39]. In the BSP model, the input data is divided between concurrently
working tasks and the computation process consists of a sequence of iterative supersteps separated
by barrier synchronization, as shown in Figure 1a. This methodology facilitates programmers
by reducing the overhead of managing memory in performing local computations, manipulating
global communications, and implementing efficient barrier synchronization. Figure 1b illustrates the
process of computing the maximum vertex value using a BSP programming technique. The overall
computation process in a BSP-based solution involves multiple supersteps and each superstep is
divided into three smaller steps: local computation, global communication, and barrier synchronization.
In the local computation step, a user-defined function is applied to every subtask concurrently,
which effectively parallelizes the computation for ‘read’ and ‘write’ operations. In the global
communication step, processes exchange their locally produced data according to the requests made
during the local computation phase. Finally, the barrier synchronization phase ensures completion of
all communication actions and makes previously exchanged data available to processes for use in the
next superstep.

Among big data processing frameworks used in practice, Hama follows the original BSP model
relatively closely [40,41]. It supports diverse massive computational tasks in several application
domains such as graphs, matrices, machine learning, deep learning, and network algorithms.
Like many other frameworks, it utilizes Hadoop Distributed File System (HDFS) as underlying
environment as shown in Figure 1c. However, it is significantly different from other frameworks,
incorporating versatile graph processing techniques and a wide range of application domains. It has
the capability to significantly outperform MapReduce-based frameworks including the BSP-inspired
framework, Giraph [41,42]. This work introduces another landmark of a BSP model to develop an
anomaly detection system using parametric and nonparametric classification schemes, namely logistic
regression [43] and XGBoost [44] respectively. The results obtained in Section 5 demonstrate the
viability of BSP model also in the field of intrusion detection.
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4. Proposed Framework

The architecture of the proposed framework is depicted in Figure 2. Basically it involves
three major phases: (i) input, which captures the network traffic and transmits it to the next phase;
(ii) analysis, which is the most significant phase of the system where actual computation is performed
and it consists of several components; and (iii) output, where alerts are being generated to identify
malicious activities. The following subsections explain each phase in detail.Symmetry 2017, 9, 197  7 of 15 
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4.1. Input

It is the basic but most significant part of any system that greatly affects its performance and
operations. In the case of IDSs, these are network flows in real-time environments or may be recorded
network traces often called workloads or datasets. The type, quality and the location where data is
collected from are the determinate factors in the design and effectiveness of an IDS. We believe that the
productivity of NIDS research is largely dependent on the quality of datasets being used in addition
to computational techniques involved. Based on these principles, we decided to use the ISCX-UNB
dataset [16] as input to our proposed system for further experimental evaluations. The dataset details
are given in Section 5.1.

4.2. Analysis

This is the core of the proposed system which performs an in-depth analysis of the network traces
based on the following components.

4.2.1. Data Preprocessing

This component is responsible to preprocess the data involving conversion and normalization
operations in order to make it ready for feature ranking and selection. The dataset consists of
miscellaneous types of data including symbolic and numeric representation such as protocolName
and totalDestinationpackets, respectively. The classification techniques require each record in the input
data to be represented as a vector of real numbers; therefore, every symbolic feature in a dataset is first
converted to a numerical value in this phase. The integers from 0 to N − 1, where N is the number
of symbols, are assigned to each symbolic feature and then each value is linearly scaled to the range
of [0–1]. For instance, the three symbols in protocolName—TCP, UDP, and ICMP—are assigned the
values of 0, 1 and 2 respectively and are then scaled to 0, 1/3 and 2/3. Logarithmic scaling with base
10 has been applied to numeric features having a large integer value ranges like totalDestinationPackets
and totalSourcePackets to reduce value ranges. This process brings dispersion in smaller values and
compression in larger values, and hence interpretation becomes easier without losing information.
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Once the conversion is done, an essential step of data normalization is performed to avoid the biasing
factor in favor of features with greater values. It is a process of scaling the value of each attribute into a
well-proportioned range. Every feature within each record is normalized by the respective maximum
value and falls into the same range of [0–1].

4.2.2. Feature Ranking and Selection

One of the important factors in developing an intrusion detection system, which uses machine
learning technique, is to devise an optimal feature selection scheme that reliably detects malicious
activities. Although machine learning has been introduced in IDS to deal with finding patterns
in big data, the presence of redundant features may degrade the classification performance
significantly and pull the efficiency of learning algorithms down if they were not properly excluded.
Moreover, it increases the computational resource needed during training and testing of IDS
models. An optimal feature selection scheme helps to reduce computation time, improve prediction
performance, and understand the data in in developing IDSs. To accomplish this task, we first applied
information gain measure to rank the features based on their importance and then utilized automated
branch-and-bound technique [45] to obtain optimal feature subset.

Information gain evaluates the worth of an attribute by measuring the IG with respect to the class.
It has a tendency to choose features with more distinct values. It is based on the concept of entropy
which is widely used in the information theory domain. If data D is split by feature X into p partitions,
and d classes given by ci, the information for D is defined as:

I(D) = −
d

∑
i=1

PD(ci)log2PD(ci), (1)

where the information for Dj due to partition D at X is defined as,

I(Dj
X) = −∑d

i=1 PDjX(ci)log2PDjX(ci), (2)

And the information gain for the feature X is obtained as,

IG(X) = I(D)−
p

∑
j=1

∣∣Dj
∣∣

|D| I(Dj
X), (3)

where |D| is the number of instances in D, and PD(ci) represent the prior probabilities for data D
estimated by P(ci) = |ci,D|/|D|. The time complexity to retrieve list of ranked features is O(N2), where
N is the number of features.

Figure 3 shows the procedure of feature selection whereas the process of IG evaluation and feature
selection using ABB technique is defined using Equations (1)–(3) and Algorithm 1 respectively [45].
Unlike a conventional algorithm of branch-and-bound in which the bound is predetermined,
ABB determines it automatically. This algorithm starts with reading a complete set of features and
attempts to remove one feature at a time using a breath-first search mechanism until base criteria is
satisfied. In this process, a node acts as a subset of features and a legitimacy test for each node is
performed to ensure valid execution. A node is said to be legitimate if the Hamming distance between
the node being visited and a pruned node is not 1. Since one feature is removed in each iteration whose
time complexity is O(N), where N is the number of features. As a matter of fact, m iterates are required
to complete the procedure. Therefore, the overall time complexity of ABB is O(mN), where m is the
maximum number of children a node can have and it is always smaller than N. The final integrated
results of both IG and Algorithm 1 provided us with the best feature subset to be used for classification
techniques. The details of selected features to be used for the proposed system are presented in Table 3.
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Algorithm 1. Automated branch-and-bound feature selection

Input: S—Training dataset D with features Xi
where i = 1, 2, 3 . . . N

Q—An empty queue, S1, S2—temporary subsets
U—Evaluation measure (inconsistency)

Output: A selected feature subset S
1: initialize L = {S}
2: α = U (S2, D)
2: ABB(S, D)/*Main function reading all features in data D */
3: do
4: S1 = S − X;
5: add S1 to Q;
6: while Q is NOT empty
7: S2 = delete from Q;
8: if (S2 is legitimate and U (S2, D) ≤ α)
9 Append S2 in L;
10 ABB (S2, D)
11: while (i = 1 to N);
12: Return the minimum subset;

Table 3. Selected features for the proposed system.

Serial No. Feature Rank Feature Name Type Description

1 f5 totalSourcePackets Numeric Total number of packets transmitted
from source to destination

2 f4 totalDestinationPackets Numeric Total number of packets transmitted
from destination to source

3 f9 direction Text Direction of the flow e.g., L2L, L2R etc.
4 f13 protocolName Text Type of the protocol, e.g., tcp, udp, etc.
5 f12 source Text Source IP
6 f15 destination Text Destination IP
7 f17 startDateTime Date Start timestamp of the connection
8 f18 stopDateTime Date Stop timestamp of the connection

4.2.3. BSP-based Machine Learning Classifiers

Once the optimal subset of features is obtained, it is taken as input to the classifier training phase
where we employ two efficient machine learning classifiers namely, logistic regression and XGBoost.

Logistic regression, also known as logit regression or logit model, is a function-based classifier
that uses ridge estimator and considered suitable approach to binary classification problems [43].
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The binary logistic model determines the relationship between binary outcomes and independent
variables by using a probability as the predicted value of the dependent variable. The binary outcomes
specify the presence (1) or absence (0) of a certain characteristic or outcome in general. Given a feature
X, it attempts to find whether a particular activity Y exists or not. For example, if an activity exists,
Y is assigned a value of 1 and 0 otherwise. In the case of anomaly detection, the value of Y represents
whether the network traffic flow is malicious or normal. Each flow or record is assigned a probability
which is then used to classify it as anomalous or benign. This model generates a logistic curve and the
predicted probability must lie between 0 and 1. This is where simple linear regression techniques are
inefficient to perform because they allow the dependent variable to pass these limits and to produce
inconsistent results. Defining the probability of an object belonging to group 1 as P1, and P0 for group
0, the logistic regression model can be written as:

Zi = log(Pi1/Pi0)= b0 + b1xi1 + b2xi2 + . . . + bkxik, (4)

where Pi1/Pi0 is called the odd ratio, k is the number of parameters, bj represents the value of the jth

co-efficient, j = 1, 2, . . . , k, and xij holds the value of the ith case of the jth predictor. The parameters (b0

to bk) of the logistic model are estimated via maximum likelihood method [46]. Finally, the probability
of occurrence of an event as defined above is calculated as follows:

P(Yi = 1| Xi) =
ebT Xi

1 + (ebT Xi )
=

1
1 + e−bT Xi

, (5)

where Yi is a dependent variable under study, and ebT Xi is a linear predictor of the logistic regression
function. The flows are classified as anomalous if P1 > 0.5 and benign if P1 < 0.5.

XGBoost is another method we employed to achieve classification tasks [44]. It is an efficient
and scalable implementation of gradient boosting framework originally proposed by Friedman [47].
Among the library of machine learning algorithms, Gradient Tree Boosting (GTB) is a technique that
dominates in several applications. Undoubtedly, it has provided state-of-the-art results on many
standard classification benchmarks [48]. The motivation behind boosting was to build a procedure
combining the outputs of many weak classifiers to produce a strong and robust classifier. In practice,
a weak learner or classifier is a prediction model having relatively poor performance statistics such
as detection rate or accuracy that often leads to unreliable conclusions, thereby making it impractical
due to high rate of misclassification error. In order to turn weak classifier to a stronger one that could
act as a powerful committee, the predictions of a number of independent weak learners need to be
combined. This process is generally accomplished by taking into account the maximum frequency of
each prediction of all weak learners as a final prediction. This may also be achieved by making use of
the weighted average.

XGBoost is a new technique among the representatives of the boosting family such as Adaptive
Boosting (AdaBoost) and GTB. Even though XGBoost is built on the idea of basic gradient boosting,
it takes significantly less compute effort and produces much smaller models. In this work, we used
dmlc/xgboost package, which provides interfaces for most popular data science languages like R, Java,
Scala, C++ and Python [49]. The impact of this robust technique has been widely recognized in a
number of machine learning and data mining challenges. Among the 29 challenge winning solutions
published at Kaggle’s blog during 2015, 17 solutions employed XGBoost. However, its application in
the field of intrusion detection has not been seen before, and this study applies XGBoost to perform
classification on a contemporary dataset.

4.2.4. Attack Recognition

Once the classifier is trained using the selected subset of features, the normal and intrusive data
can be recognized by using the saved trained classifier. The test data is then transported to the saved
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trained model to detect intrusions. The traces matching to the normal class are treated as normal data
while others are reported as intrusive activities.

4.3. Output

The final phase of the proposed system acts like an output component of the traditional system
which is responsible to present processed data in usable format, i.e., it mainly interacts with the user
by generating alerts.

5. Implementation and Evaluation

5.1. Dataset and Experimental Setup

Considering the significance of using appropriate datasets for evaluating NIDSs as discussed
earlier in this paper, we preferred to use ISCX-UNB datasets rather than following traditional approach
to use legacy KDD dataset family. It was built on the concept of profiles to reflect network traffic and
intrusions. The traces were obtained in seven days under practical and systematic conditions. It is a
labeled dataset consisting of normal and malicious flows consisting of 2,381,532 and 68,792 records
respectively. Furthermore, various multistage attack scenarios have been executed to generate
malicious traces such as infiltrating the network from the inside: HTTP, DoS, DDoS using an Internet
Relay Chat (IRC) botnet, and brute force Secure Shell (SSH).

The experiments were conducted on an Intel core i7-6500U CPU @2.5 GHz with 512 GB SSD, 8 GB
RAM with Apache Hama version 0.7.1 installed on Ubuntu 12.04.

5.2. Performance Evaluation

To validate the proposed system performance, we used the following performance metrics.

• Accuracy has traditionally been considered the most important performance evaluation metric.
In the proposed system, accuracy was expressed as the percentage of true IDS predictions,

Accuracy =
TP + TN

TP + TN + FP + FN
, (6)

where TP (true positive) is the number intrusions/anomalies identified correctly, i.e., successfully
identifying an attack; TN (true negative) is the number of normal flows identified correctly,
i.e., successfully identifying acceptable behavior; FP (false positive) is the number of normal
flows incorrectly classified as intrusions, i.e., false alarms; FN (false negative) is the number of
intrusions/anomalies incorrectly classified as benign, the most serious and dangerous state: the
IDS failed to detect an attack.

• Detection rate (DR) represents the percentage of correctly classified intrusions or attacks compared
with the total number of intrusions,

DR =
TP

TP + FN
. (7)

• False positive rate (FPR) represents the percentage of normal flows incorrectly classified as
intrusions compared with the total number of normal flows,

FPR =
FP

FP + TN
. (8)

5.3. Results and Discussion

Several experiments have been conducted to evaluate the performance and efficacy of the
proposed system. For this purpose, accuracy, detection rate, and false positive rate metrics are



Symmetry 2017, 9, 197 12 of 15

applied, as defined in Equations (6)–(8) respectively. The performance of the proposed system is shown
in Table 4. Overall performance under both classification schemes is promising, obtaining at least
99.15% accuracy for the ISCX-UNB-Saturday dataset using logistic regression. Also, it is worth noticing
that XGBoost performs comparatively better than logistic regression. Further, several observation
can be extracted in the Table 4 such as the logistic regression classifier shows highest accuracy for the
network flows named ISCX-UNB-Monday, which contains HTTP DoS attacks. Whereas it performs
lower for ISCX-UNB-Tuesday, which contains DDoS using Internet Relay Chat (IRC) botnet attacks.

Table 4. Performance results of the proposed system.

Dataset/Network Flows
Logistic Regression XGBoost

DR FPR Accuracy DR FPR Accuracy

ISCX-UNB-Saturday 98.09 0.18 99.15 99.49 0.13 99.78
ISCX-UNB-Monday 99.39 0.58 99.53 99.37 0.35 99.34
ISCX-UNB-Tuesday 98.56 0.67 98.99 98.99 0.29 99.69

ISCX-UNB-Wednesday 99.11 0.45 99.26 99.48 0.58 99.68
ISCX-UNB-Thursday 99.23 0.39 99.44 99.69 0.16 99.79

Notes: Accuracy, DR, and FPR as defined in Equations (6)–(8), respectively.

The XGBoost scheme shows highest accuracy for the network flows named ISCX-UNB-Thursday,
which contains brute force SSH attacks, whereas it performs slightly lower in detecting DOS attacks.
The average accuracy rate for logistic regression and XGBoost is 99.27% and 99.65% respectively,
with low false positive rates. In addition to the performance metrics given in Table 4, the time efficiency
of the proposed system has also been measured. The metric we used is the training time, which is
defined as the time taken to build the training model. Figure 4 illustrates the time taken by each
classification schemes for about 120,000 network packets. It can be seen that the proposed system is
also efficient in terms of low computational cost, specifically when utilizing XGBoost. In particular,
the training time of XGBoost classifier is 1.01–1.18× better than the logistic regression scheme.
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6. Conclusions

Anomaly detection is a significant issue in computer networks. The advances in high-speed
big data networks and the concomitant rise in network attacks require fundamental methodological
revisions to develop efficient NIDSs. Based on this need, we first identified four vital characteristics
that form the basis to devise a comprehensive network anomaly detection system. The first two
specifically deal with implementing machine learning concepts and greatly affect the performance
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of the system, namely feature selection and the employment of classification schemes. The other
two characteristics combat the challenges introduced by large-scale networks and sophisticated
network attacks, namely utilizing specialized big data computing engines and obtaining contemporary
workloads to conduct performance evaluations of the proposed systems. Building on the principles and
issues analyzed in this paper, we proposed an efficient intrusion detection system that comprehensively
follows the identified characteristics with an emphasis to handle big data problems in high speed
networks. This is because anomaly detection in big data networks is particularly crucial due to
the volume, velocity, variety, and veracity of the datasets. Thus, the proposed system incorporated
a powerful BSP computing engine, which is capable of handling large volume of network traffic
in real-time environments. Apart from using a real-time contemporary dataset for performing
experimental evaluation, we also emphasized the role and importance of using appropriate datasets,
which greatly lacks in existing studies. The experimental results on contemporary dataset verify
the accuracy and efficiency of the proposed system. The future works include devising more novel
NIDSs techniques using deep learning for more generalized (e.g., cross-scenarios) systems and higher
security applications.
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