Aboveground and Belowground Colonization of Vegetation on a 17-Year-Old Cover with Capillary Barrier Effect Built on a Boreal Mine Tailings Storage Facility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Its CCBE
2.2. Experimental Design
2.3. Measurements, Sampling, and Analyses
2.3.1. Aboveground Vegetation
2.3.2. Belowground Vegetation
2.4. Statistical Analyses
3. Results
3.1. Vegetation Colonization
3.2. Aboveground Parameters
3.3. Belowground Parameters
3.4. Aboveground and Belowground Interactions
4. Discussion
4.1. Vegetation Colonization on the CCBE
4.2. Species Root Depth Colonization
4.3. Correlation between Aboveground and Underground Vegetation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nicholson, R.V.; Gillham, R.W.; Cherry, J.A.; Reardon, E.J. Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barriers. Can. Geotech. J. 1989, 26, 1–8. [Google Scholar] [CrossRef]
- Yanful, E.K.; Bell, A.V.; Woyshner, M.R. Design of a composite soil cover for an experimental waste rock pile near Newcastle, New Brunswick, Canada. Can. Geotech. J. 1993, 30, 578–587. [Google Scholar] [CrossRef]
- Yanful, E.K.; Riley, M.D.; Woyshner, M.R.; Duncan, J. Construction and Monitoring of a Composite Soil Cover on an Experimental Waste Rock Pile near Newcastle, New Brunswick, Canada. Can. Geotech. J. 1993, 30, 588–599. [Google Scholar] [CrossRef]
- Yanful, E.K.; Simms, P.H.; Payant, S.C. Soil Covers for Controlling Acid Generation in Mine Tailings: A Laboratory Evaluation of the Physics and Geochemistry. Water Air Soil Pollut. 1999, 114, 347–375. [Google Scholar] [CrossRef]
- Aubertin, M.; Chapuis, R.P.; Aachib, M.; Bussière, B.; Ricard, J.F.; Tremblay, L. Évaluation en Laboratoire de Barrières Sèches Construites à Partir de Résidus Miniers; NEDEM/MEND Report 2.22.2a, École Polytechnique de Montréal, Project CDT P1622; CD-ROM; Canada Centre for Mineral and Energy Technology (CANMET): Ottawa, ON, Canada, 1995. [Google Scholar]
- Aubertin, M.; Bussière, B.; Monzon, M.; Joanes, A.-M.; Gagnon, D.; Barbera, J.-M.; Aachib, M.; Bédard, C.; Chapuis, R.P.; Bernier, L. Étude sur les Barrières Sèches Construites à Partir des Résidus Miniers. Phase II—Essais en Place; NEDEM/MEND Report 2.22.2c, École Polytechnique de Montréal, Project CDT P1899; CD-ROM; Canada Centre for Mineral and Energy Technology (CANMET): Ottawa, ON, Canada, 1999. [Google Scholar]
- Lundgren, T. The dynamics of oxygen transport into soil covered mining waste deposits in Sweden. J. Geochem. Explor. 2001, 74, 163–173. [Google Scholar] [CrossRef]
- MEND. Mine Environment Neutral Drainage (MEND) Manual; Volume 4: Prevention and Control; Canada Center for Mineral and Energy Technology: Varennes, QC, Canada, 2001; p. 477. [Google Scholar]
- MEND. Design, Construction and Performance Monitoring of Cover Systems for Waste Rock and Tailings; Report No. 2.21.4; Canada Center for Mineral and Energy Technology: Varennes, QC, Canada, 2004. [Google Scholar]
- Bussière, B.; Aubertin, M.; Chapuis, R.P. The behavior of inclined covers used as oxygen barriers. Can. Geotech. J. 2003, 40, 512–535. [Google Scholar] [CrossRef]
- Bussière, B.; Maqsoud, A.; Aubertin, M.; Martschuk, J.; McMullen, J.; Julien, M. Performance of the Oxygen Limiting Cover at the LTA Site, Malartic, Quebec. CIM Bull. 2006, 1, 1–11. [Google Scholar]
- Molson, J.; Aubertin, M.; Bussière, B.; Benzaazoua, M. Geochemical transport modelling of drainage from experimental mine tailings cells covered by capillary barriers. Appl. Geochem. 2008, 23, 1–24. [Google Scholar] [CrossRef]
- Maqsoud, A.; Bussière, B.; Aubertin, M.; Chouteau, M.; Mbonimpa, M. Field investigation of a suction break designed to control slope-induced desaturation in an oxygen barrier. Can. Geotech. J. 2011, 48, 53–71. [Google Scholar] [CrossRef]
- Blowes, D.; Ptacek, C.; Jambor, J.; Weisener, C.; Paktunc, D.; Gould, W.; Johnson, D. The Geochemistry of Acid Mine Drainage. In Treatise on Geochemistry; Elsevier: Oxford, UK, 2014; pp. 131–190. [Google Scholar]
- Smirnova, E.; Bussière, B.; Tremblay, F.; Bergeron, Y. Vegetation Succession and Impacts of Biointrusion on Covers Used to Limit Acid Mine Drainage. J. Environ. Qual. 2011, 40, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Canadell, J.G.; Jackson, R.B.; Ehleringer, J.B.; Mooney, H.A.; Sala, O.E.; Schulze, E.-D. Maximum rooting depth of vegetation types at the global scale. Oecologia 1996, 108, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Zhang, G. Soil-water characteristics of compacted sandy and cemented soils with and without vegetation. Can. Geotech. J. 2015, 52, 1331–1344. [Google Scholar] [CrossRef]
- Scanlon, B.R. Field study of spatial variability in unsaturated flow beneath and adjacent to playas. Water Resour. Res. 1999, 33, 33–2239. [Google Scholar] [CrossRef]
- Leung, A.K.; Garg, A.; Ng, C.W.W. Effects of plant roots on soil-water retention and induced suction in vegetated soil. Eng. Geol. 2015, 193, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ghodrati, M. Preferential Transport of Nitrate through Soil Columns Containing Root Channels. Soil Sci. Soc. Am. J. 1994, 58, 653–659. [Google Scholar] [CrossRef]
- Hu, X.; Li, X.-Y.; Li, Z.-C.; Gao, Z.; Wu, X.-C.; Wang, P.; Lyu, Y.-L.; Liu, L.-Y. Linking 3-D soil macropores and root architecture to near saturated hydraulic conductivity of typical meadow soil types in the Qinghai Lake Watershed, northeastern Qinghai–Tibet Plateau. Catena 2020, 185, 104287. [Google Scholar] [CrossRef]
- Guittonny-Larchevêque, M.; Beaulieu, A.; Proteau, A.; Bussière, B.; Maqsoud, A. Vegetation Management on Tailings Impoundments Reclaimed with Covers with Capillary Barrier Effects. In Proceedings of the 5e Symposium on Sediment Management, Montréal, QC, Canada, 10–13 July 2016. [Google Scholar]
- Gao, Y.; Xie, Y.; Jiang, H.; Wu, B.; Niu, J. Soil water status and root distribution across the rooting zone in maize with plastic film mulching. Field Crop. Res. 2014, 156, 40–47. [Google Scholar] [CrossRef]
- Zhou, Z.; Shangguan, Z. Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China. Plant Soil 2006, 291, 119–129. [Google Scholar] [CrossRef]
- Proteau, A.; Guittonny, M.; Bussière, B.; Maqsoud, A. Oxygen migration through a cover with capillary barrier effects colonized by roots. Can. Geotech. J. 2020. [Google Scholar] [CrossRef] [Green Version]
- Guittonny, M.; Bussière, B.; Maqsoud, A.; Proteau, A.; Khouya, T.B.; Botula, Y.-D. Colonisation racinaire dans les recouvrements miniers et impact sur leur fonctionnement. In Proceedings of the Symposium 2018 on Mines and the Environment, Rouyn-Noranda, QC, Canada, 17–20 June 2018. [Google Scholar]
- Naeth, M.A.; Chanasyk, D.; Burgers, T. Vegetation and soil water interactions on a tailings sand storage facility in the athabasca oil sands region of Alberta Canada. Phys. Chem. Earth Parts A/B/C 2011, 36, 19–30. [Google Scholar] [CrossRef]
- Stoltz, E.; Greger, M. Root penetration through sealing layers at mine deposit sites. Waste Manag. Res. 2006, 24, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Waugh, W.J. Uranium Mill Tailings covers: Evaluating long-term performance. In Proceedings of the International Containment & Remediation Technology Conference, Orlando, FL, USA, 10–13 June 2001; pp. 10–13. [Google Scholar]
- Neuschütz, C.; Stoltz, E.; Greger, M. Root Penetration of Sealing Layers Made of Fly Ash and Sewage Sludge. J. Environ. Qual. 2006, 35, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- O’Kane Consultants Inc. Modelling the Critical Interactions Between Cover Systems and Vegetation; MEND Report 2.21.6; Canada Center for Mineral and Energy Technology: Varennes, QC, Canada, 2014; 52p. [Google Scholar]
- Guittonny-Larchevêque, M.; Lortie, S. Above- and Belowground Development of a Fast-Growing Willow Planted in Acid-Generating Mine Technosol. J. Environ. Qual. 2017, 46, 1462–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrigues, E.; Doussan, C.; Pierret, A. Water Uptake by Plant Roots: I—Formation and Propagation of a Water Extraction Front in Mature Root Systems as Evidenced by 2D Light Transmission Imaging. Plant Soil 2006, 283, 83–98. [Google Scholar] [CrossRef]
- Lambers, H.; Chapin, F.S.; Pons, T.L.; Chapin, F.S. Plant Physiological Ecology; Springer: New York, NY, USA, 2008. [Google Scholar]
- Moreno, G.; Obrador, J.; Cubera, E.; Dupraz, C. Fine Root Distribution in Dehesas of Central-Western Spain. Plant Soil 2005, 277, 153–162. [Google Scholar] [CrossRef]
- Granier, A.; Barataud, F.; Moyne, C. Soil water dynamics in an oak stand. Plant Soil 1995, 172, 17–27. [Google Scholar] [CrossRef]
- Jackson, R.B.; Canadell, J.G.; Ehleringer, J.R.; Mooney, H.A.; Sala, O.E.; Schulze, E.D. A global analysis of root distributions for terrestrial biomes. Oecologia 1996, 108, 389–411. [Google Scholar] [CrossRef]
- Strong, W.L.; La Roi, G.H. Root-system morphology of common boreal forest trees in Alberta, Canada. Can. J. For. Res. 1983, 13, 1164–1173. [Google Scholar] [CrossRef]
- Fan, Y.; Miguez-Macho, G.; Jobbágy, E.G.; Jackson, R.B.; Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. USA 2017, 114, 10572–10577. [Google Scholar] [CrossRef] [Green Version]
- Souch, C.; Martin, P.; Stephens, W.; Spoor, G. Effects of soil compaction and mechanical damage at harvest on growth and biomass production of short rotation coppice willow. Plant Soil 2004, 263, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Jackson, M.B.; Attwood, P.A. Roots of willow (Salix viminalis L.) show marked tolerance to oxygen shortage in flooded soils and in solution culture. Plant Soil 1996, 187, 37–45. [Google Scholar] [CrossRef]
- Vepraskas, M.J.; Hoyt, G.D. Comparison of the Trench-Profile and Core Methods for Evaluating Root Distributions in Tillage Studies. Agron. J. 1907, 80, 166–172. [Google Scholar] [CrossRef]
- Gwenzi, W.; Veneklaas, E.J.; Holmes, K.W.; Bleby, T.M.; Phillips, I.R.; Hinz, C. Spatial analysis of fine root distribution on a recently constructed ecosystem in a water-limited environment. Plant Soil 2011, 344, 255–272. [Google Scholar] [CrossRef]
- Di Iorio, A.; Montagnoli, A.; Terzaghi, M.; Scippa, G.S.; Chiatante, D. Effect of tree density on root distribution in Fagus sylvatica stands: A semi-automatic digitising device approach to trench wall method. Trees 2013, 27, 1503–1513. [Google Scholar] [CrossRef] [Green Version]
- Bond-Lamberty, B.; Wang, C.; Gower, S.T. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can. J. For. Res. 2002, 32, 1441–1450. [Google Scholar] [CrossRef]
- Gross, M.F.; Hardisky, M.A.; Wolf, P.L.; Klemas, V. Relationship between Aboveground and Belowground Biomass of Spartina alterniflora (Smooth Cordgrass). Estuaries 1991, 14, 180–191. [Google Scholar] [CrossRef]
- Schenk, H.J.; Jackson, R.B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 2002, 90, 480–494. [Google Scholar] [CrossRef] [Green Version]
- Körner, C.; Renhardt, U. Dry matter partitioning and root length/leaf area ratios in herbaceous perennial plants with diverse altitudinal distribution. Oecologia 1987, 74, 411–418. [Google Scholar] [CrossRef]
- Young, I.W.R.; Naguit, C.; Halwas, S.J.; Renault, S.; Markham, J. Natural Revegetation of a Boreal Gold Mine Tailings Pond. Restor. Ecol. 2012, 21, 498–505. [Google Scholar] [CrossRef]
- Kovář, P.; Štefánek, M.; Mrázek, J. Responses of Vegetation Stages with Woody Dominants to Stress and Disturbance During Succession on Abandoned Tailings in Cultural Landscape. J. Landsc. Ecol. 2011, 4, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, A. The use of natural processes in reclamation—Advantages and difficulties. Landsc. Urban Plan. 2000, 51, 89–100. [Google Scholar] [CrossRef]
- Cuevas, J.G.; Silva, S.I.; León-Lobos, P.; Ginocchio, R. Nurse effect and herbivory exclusion facilitate plant colonization in abandoned mine tailings storage facilities in north-central Chile. Rev. Chil. Hist. Nat. 2013, 86, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Kimmerer, R.W. Vegetation Development on a Dated Series of Abandoned Lead and Zinc Mines in Southwestern Wisconsin. Am. Midl. Nat. 1984, 111, 332–341. [Google Scholar] [CrossRef]
- Benson, C.H.; Thorstad, P.A.; Jo, H.Y.; Rock, S.A. Hydraulic Performance of Geosynthetic Clay Liners in a Landfill Final Cover. J. Geotech. Geoenviron. Eng. 2007, 133, 814–827. [Google Scholar] [CrossRef]
- Bouazza, A. Geosynthetic clay liners. Geotext. Geomembr. 2002, 20, 3–17. [Google Scholar] [CrossRef]
- Párraga-Aguado, I.; Querejeta, J.I.; González-Alcaraz, M.N.; Jiménez-Cárceles, F.J.; Conesa, H.M. Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: Grasses vs. shrubs vs. trees. J. Environ. Manag. 2014, 133, 51–58. [Google Scholar] [CrossRef]
- Dagenais, A.-M.; Aubertin, M.; Bussière, B.; Bernier, L.; Cyr, J. Monitoring at the Lorraine Mine Site: A Follow-Up on the Remediation Plan. In Proceedings of the National Association of Abandoned Mine Land Programs Annual Conference, Athens, OH, USA, 19–22 August 2001; pp. 1–19. [Google Scholar]
- Genty, T.; Bussière, B.; Paradie, M.; Neculita, C.M. Passive Biochemical Treatment of Ferriferous Mine Drainage: Lorraine Mine Site, Northern Québec, Canada. In Proceedings of the International Mine Water Association (IMWA) Conference, Leipzig, Germany, 11–15 July 2016; pp. 790–795. [Google Scholar]
- Nastev, M.; Aubertin, M. Hydrogeological Modelling for the Reclamation Work at the Lorraine Mine Site, Québec. In Proceedings of the 1st Joint IAH-CNC and CGS Groundwater Specialty Conference, Montreal, QC, Canada, 15–18 October 2020. [Google Scholar]
- Potvin, R. Évaluation à Différentes Échelles de la Performance de Systèmes de Traitement Passif Pour des Effluents Fortement Contaminés par le Drainage Minier Acide. Ph.D. Thesis, Université du Québec en Abitibi-Témiscamingue, Noranda, QC, Canada, 2009. [Google Scholar]
- MFFP, Gouvernement du Québec. Zones de Végétation et Domaines Bioclimatiques du Québec. Available online: https://mffp.gouv.qc.ca/forets/inventaire/inventaire-zones-carte.jsp (accessed on 14 August 2017).
- Government of Canada. Mean Climatic Data from 1981 to 2010 for Ville-Marie Station. Available online: http://climat.meteo.gc.ca/climate_normals/results_1981_2010_f.html?stnID=6002&lang=f&province=QC&provSubmit=go&page=151&dCode=0 (accessed on 14 August 2017).
- Bussière, B.; Potvin, R.; Dagenais, A.-M.; Aubertin, M.; Maqsoud, A.; Cyr, J. Restauration du site minier Lorraine, Latulipe, Québec: Résultats de 10 ans de suivi. Déchets Sci. Tech. 2009, 54, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Jonasson, S. The point intercept method for non-destructive estimation of biomass. Phytocoenologia 1983, 11, 385–388. [Google Scholar] [CrossRef]
- Bonan, G.B.; Sirois, L. Air temperature, tree growth, and the northern and southern range limits toPicea mariana. J. Veg. Sci. 1992, 3, 495–506. [Google Scholar] [CrossRef]
- Black, R.A.; Bliss, L.C. Reproductive Ecology of Picea Mariana (Mill.) BSP., at Tree Line Near Inuvik, Northwest Territories, Canada. Ecol. Monogr. 1980, 50, 331–354. [Google Scholar] [CrossRef]
- Jones, C.C.; Del Moral, R. Patterns of Primary Succession on the Foreland of Coleman Glacier, Washington, USA. Plant Ecol. 2005, 180, 105–116. [Google Scholar] [CrossRef]
- Chapin, F.S.; Walker, L.R.; Fastie, C.L.; Sharman, L.C. Mechanisms of Primary Succession Following Deglaciation at Glacier Bay, Alaska. Ecol. Monogr. 1994, 64, 149–175. [Google Scholar] [CrossRef]
- Huang, L.-N.; Tang, F.-Z.; Song, Y.-S.; Wan, C.-Y.; Wang, S.-L.; Liu, W.-Q.; Shu, W.-S. Biodiversity, abundance, and activity of nitrogen-fixing bacteria during primary succession on a copper mine tailings. FEMS Microbiol. Ecol. 2011, 78, 439–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egli, M.; Wernli, M.; Kneisel, C.; Haeberli, W. Melting Glaciers and Soil Development in the Proglacial Area Morteratsch (Swiss Alps): I. Soil Type Chronosequence. Arct. Antarct. Alp. Res. 2006, 38, 499–509. [Google Scholar] [CrossRef] [Green Version]
- Frenot, Y.; Van Vliet-Lanoë, B.; Gloaguen, J.-C. Particle Translocation and Initial Soil Development on a Glacier Foreland, Kerguelen Islands, Subantarctic. Arct. Alp. Res. 1995, 27, 107–115. [Google Scholar] [CrossRef]
- Boy, J.; Godoy, R.; Shibistova, O.; Boy, D.; McCulloch, R.; De La Fuente, A.A.; Morales, M.A.; Mikutta, R.; Guggenberger, G. Successional patterns along soil development gradients formed by glacier retreat in the Maritime Antarctic, King George Island. Rev. Chil. Hist. Nat. 2016, 89, 76. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Yu, L.; Jiang, Y.; Lei, Y.; Korpelainen, H.; Niinemets, Ü.; Li, C. Nitrogen-controlled intra-and interspecific competition between Populus purdomii and Salix rehderiana drive primary succession in the Gongga Mountain glacier retreat area. Tree Physiol. 2017, 37, 799–814. [Google Scholar] [CrossRef]
- Porter, R.; LaCourse, T.; Hawkins, B.; Yanchuk, A. Adaptive variation in growth, phenology, cold tolerance and nitrogen fixation of red alder (Alnus rubra Bong.). For. Ecol. Manag. 2013, 291, 357–366. [Google Scholar] [CrossRef]
- Bradshaw, A.D. The Reconstruction of Ecosystems: Presidential Address to the British Ecological Society, December 1982. J. Appl. Ecol. 1983, 20, 1. [Google Scholar] [CrossRef]
- Kendle, A.D.; Bradshaw, A.D. The role of soil nitrogen in the growth of trees on derelict land. Arboric. J. 1992, 16, 103–122. [Google Scholar] [CrossRef]
- Walters, M.B.; Reich, P.B. Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shade. Ecology 2000, 81, 1887–1901. [Google Scholar] [CrossRef]
- Payandeh, B.; Haavisto, V.F. Prediction Equations for Black Spruce Seed Production and Dispersal in Northern Ontario. For. Chron. 1982, 58, 96–99. [Google Scholar] [CrossRef] [Green Version]
- McVean, D.N. Ecology of Alnus Glutinosa (L.) Gaertn.: II. Seed Distribution and Germination. J. Ecol. 1955, 43, 61–71. [Google Scholar] [CrossRef]
- Shearer, R.C. Proceedings—Conifer Tree Seed in the Inland Mountain West Symposium, Missoula, Montana, 5–6 August 1985; US Department of Agriculture, Forest Service, Intermountain Research Station: Missoula, MT, USA, 1986; Volume 203. [Google Scholar]
- Lezberg, A.L.; Antos, J.A.; Halpern, C.B. Belowground traits of herbaceous species in young coniferous forests of the Olympic Peninsula, Washington. Can. J. Bot. 1999, 77, 936–943. [Google Scholar]
- Guittonny, M. Root Colonization in Mine Covers and Impact on Their Functioning. In Proceedings of the 43rd CLRA/ACRSD National Conference and AGM/ARC 2018 Event, Miramichi, NB, Canada, 15–18 October 2018. [Google Scholar]
- Mishra, H.S.; Rathore, T.R.; Pant, R.C. Root growth, water potential, and yield of irrigated rice. Irrig. Sci. 1997, 17, 69–75. [Google Scholar] [CrossRef]
- Mishra, H.S.; Rathore, T.R.; Tomar, V.S. Root growth, water potential and yield of irrigated wheat. Irrig. Sci. 1999, 18, 117–123. [Google Scholar] [CrossRef]
- Pauliukonis, N.; Schneider, R. Temporal patterns in evapotranspiration from lysimeters with three common wetland plant species in the eastern United States. Aquat. Bot. 2001, 71, 35–46. [Google Scholar] [CrossRef]
- Amato, M.; Basso, B.; Celano, G.; Bitella, G.; Morelli, G.; Rossi, R. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging. Tree Physiol. 2008, 28, 1441–1448. [Google Scholar] [CrossRef]
- Naghdi, R.; Maleki, S.; Abdi, E.; Mousavi, R.; Nikooy, M. Assessing the effect of Alnus roots on hillslope stability in order to use in soil bioengineering. J. For. Sci. 2013, 59, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Rytter, L. Distribution of roots and root nodules and biomass allocation in young intensively managed grey alder stands on a peat bog. Plant Soil 1989, 119, 71–79. [Google Scholar] [CrossRef]
Parameter | Unit | High | Interm. | Low |
---|---|---|---|---|
Total vegetation cover | % | 67 (4.9) | 48 (6.5) | 38 (4.9) |
Contributions by vegetation type | ||||
Tree contribution to total vegetation cover | % | 16 (2.1) | 31 (4.2) | 18 (3.9) |
Shrub contribution to total vegetation cover | % | 35 (4.4) | 38 (7.1) | 47 (10.2) |
Herbaceous species contribution to total vegetation cover | % | 49 (7.3) | 31 (8.1) | 35 (8.5) |
Woody species density | ||||
Total density | Nb.m−2 | 6 (1.3) | 8 (2.1) | 5 (1.8) |
Broadleaved contribution to woody species density | % | 86 (2.1) | 86 (1.6) | 88 (2.0) |
Coniferous contribution to woody species density | % | 14 (2.1) | 14 (1.6) | 12 (2.0) |
Species | Maximal Age of the Shoots in 2015 (Year) | Mean Age of the Shoots in 2015 (Year) |
---|---|---|
Salix sp. | 14 | 7.3 (0.6) a |
Populus balsamifera | 11 | 5.6 (0.7) a |
Populus tremuloides | 13 | 6.8 (0.5) a |
Picea mariana | 16 | 10.7 (0.6) b |
Parameter | Number of Individuals | Minimum | Mean | Maximum |
---|---|---|---|---|
Height (cm) | ||||
Alnus sp. | n = 25 | 10.2 | 96.7 (16.3) | 255.5 |
P. mariana | n = 20 | 8.9 | 29.8 (4.3) | 78.7 |
Populus sp. | n = 35 | 10.0 | 61.8 (10.8) | 234.0 |
Salix sp. | n = 12 | 22.0 | 101.7 (27.3) | 261.6 |
Leaf biomass (g) | ||||
Alnus sp. | n = 25 | 0.3 | 76.8 (19) | 371.6 |
P. mariana | n = 20 | 0.1 | 36.9 (11.1) | 175.0 |
Populus sp. | n = 35 | 0.1 | 42.5 (14.6) | 400.0 |
Salix sp. | n = 12 | 0.6 | 46.9 (23.5) | 280.0 |
Leaf area (m2) | ||||
Alnus sp. | n = 25 | 0.002 | 1.02 (0.27) | 5.36 |
P. mariana | n = 20 | N.A. | N.A. | N.A. |
Populus sp. | n =35 | 0.002 | 0.60 (0.21) | 6.32 |
Salix sp. | n = 12 | 0.004 | 0.58 (0.26) | 2.80 |
Biomass (g) | ||||
Alnus sp. | n = 25 | 0.36 | 98.2 (22.7) | 408 |
P. mariana | n = 20 | 0.13 | 39.9 (11.1) | 176 |
Populus sp. | n = 35 | 0.11 | 57 (17.5) | 442 |
Salix sp. | n = 12 | 2.44 | 72.3 (32.3) | 359 |
Parameter | Unit | Minimum | Mean | Maximum |
---|---|---|---|---|
Woody biomass | g/m2 | 0 | 66 (14) | 263 |
Herbaceous biomass | g/m2 | 0.7 | 41 (12) | 160 |
Total biomass | g/m2 | 1.4 | 101 (15) | 284 |
Depth | Parameter | Unit | Minimum | Mean | Maximum |
---|---|---|---|---|---|
0–10 cm | RLD | m/m3 | 17 | 1489 (184) | 5301 |
RVD | cm3/m3 | 0.6 | 195 (35) | 1383 | |
RMD | g/m3 | 0.2 | 31 (5) | 239.1 | |
20–30 cm | RLD | m/m3 | 8.2 | 130 (20) | 610 |
RVD | cm3/m3 | 0.2 | 21 (6) | 231 | |
RMD | g/m3 | 0.2 | 4.1 (1) | 29 | |
35–45 cm | RLD | m/m3 | 17 | 97 (18) | 512 |
RVD | cm3/m3 | 0.6 | 12 (3) | 79 | |
RMD | g/m3 | 0.2 | 4.6 (1) | 30 |
1st Parameter | 2nd Parameter | n | Correlation Statistics | |
---|---|---|---|---|
Aboveground Woody Biomass (g/m2) | Mean RMD (g/m3) | 25 | Pearson r | 0.34 |
p-value | 0.09 | |||
Mean Woody leaf area (cm2) | Log mean RLD (m/m3) | 25 | Pearson r | 0.50 |
p-value | 0.06 | |||
Aboveground Woody Biomass (g/m2) | Mean RVD (cm3/m3) | 25 | Pearson r | 0.45 |
p-value | 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proteau, A.; Guittonny, M.; Bussière, B.; Maqsoud, A. Aboveground and Belowground Colonization of Vegetation on a 17-Year-Old Cover with Capillary Barrier Effect Built on a Boreal Mine Tailings Storage Facility. Minerals 2020, 10, 704. https://doi.org/10.3390/min10080704
Proteau A, Guittonny M, Bussière B, Maqsoud A. Aboveground and Belowground Colonization of Vegetation on a 17-Year-Old Cover with Capillary Barrier Effect Built on a Boreal Mine Tailings Storage Facility. Minerals. 2020; 10(8):704. https://doi.org/10.3390/min10080704
Chicago/Turabian StyleProteau, Alex, Marie Guittonny, Bruno Bussière, and Abdelkabir Maqsoud. 2020. "Aboveground and Belowground Colonization of Vegetation on a 17-Year-Old Cover with Capillary Barrier Effect Built on a Boreal Mine Tailings Storage Facility" Minerals 10, no. 8: 704. https://doi.org/10.3390/min10080704
APA StyleProteau, A., Guittonny, M., Bussière, B., & Maqsoud, A. (2020). Aboveground and Belowground Colonization of Vegetation on a 17-Year-Old Cover with Capillary Barrier Effect Built on a Boreal Mine Tailings Storage Facility. Minerals, 10(8), 704. https://doi.org/10.3390/min10080704