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Abstract: An important prerequisite for the generation of realistic material behavior with the Discrete
Element Method (DEM) is the correct determination of the material-specific simulation parameters.
Usually, this is done in a process called calibration. One main disadvantage of classical calibration
is the fact that it is a non-learning approach. This means the knowledge about the functional
relationship between parameters and simulation responses does not evolve over time, and the
number of necessary simulations per calibration sequence respectively per investigated material
stays the same. To overcome these shortcomings, a new method called Metamodel-based Global
Calibration (MBGC) is introduced. Instead of performing expensive simulation runs taking several
minutes to hours of time, MBGC uses a metamodel which can be computed in fractions of a second
to search for an optimal parameter set. The metamodel was trained with data from several hundred
simulation runs and is able to predict simulation responses in dependence of a given parameter set
with very high accuracy. To ensure usability for the calibration of a wide variety of bulk materials,
the variance of particle size distributions (PSD) is included in the metamodel via parametric PSD-
functions, whose parameters serve as additional input values for the metamodel.

Keywords: discrete element method; global metamodel; calibration; symbolic regression; genetic
programming; particle size distribution

1. Introduction

In recent years, discrete element method (DEM) has proven to be a suitable tool
for simulating the behavior of different kinds of granular materials. Therefore, DEM
is used in a wide range of industrial sectors, such as mining [1], construction machin-
ery [2,3], agriculture [4], geotechnique [5], food industry [6] or pharmacy [7]. In addition
to application-specific problems, all those who deal with DEM face the same problem
at some point—the determination of the material-specific simulation parameters. These
include particle density, particle shape and particle size distribution and the contact model
parameters that define the interactions of the particles with each other or between particles
and walls. While some of the parameters can be determined experimentally, e.g., particle
size distribution in sieve analysis or coefficient of particle-wall friction in shear-cell test, the
determination of others is rather difficult. The simple reason for this is that many contact
model parameters are abstractions and simplifications of reality; thus, they have no physi-
cal counterpart and therefore cannot be determined by measurements. Typically, inverse
parameter identification—also called calibration—is used to solve this issue. During cali-
bration, a parameter set is sought for which the simulated material behavior corresponds
as closely as possible to that of the real material. Figure 1 shows the scheme of a classical
calibration approach.
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Figure 1. Scheme of a classic calibration approach for discrete element method.

Starting with experimental investigations on the real bulk material, measurable pa-
rameters as well as material responses are determined. Material responses are quantities
that represent the macroscopic bulk material behavior in so-called calibration experiments,
e.g., the well-known angle of repose in a cylinder test. The measured material parameters
as well as the experimental setups are used to create simulation models replicating the cali-
bration experiments. Subsequently an initial sampling will be created containing Nj,;; € N
different parameter sets x, = {x1,...,xp}; n = 1... Nj,;;, where D € N represents the
number of unknown parameters respective to the number of dimensions. Generation of
parameter sets can be done manually or automatically using different sampling strategies.
Often full factorial designs or Latin hypercube samplings [8] are used. All parameter sets as
well as the simulation models are passed to the DEM-Software, and Nj,;; simulations will
be carried out. Afterwards, each parameter set is evaluated by an error function e(y, y,,)
that compares the simulated material responses y, with the measured responses y,,. The
result of e(y, y,,) is called objective function value z and should be minimized. If there is
no parameter set x; leading to z, < €, with ¢, acting as a user defined threshold for the
acceptable error, new parameter sets will be generated by the user or an algorithm, trying
to optimize respectively minimize z.

Every parameter set generated during sampling- and optimization-phase corresponds
to a DEM simulation, which may require several hours to days of computing time. Thus,
total computational cost of calibration essentially depends on the number of necessary sim-
ulation runs, which can often be several hundred or thousand. In recent years, the focus of
scientific investigations in this field of research has therefore been on reducing the number
of simulations. In particular, new sampling methods and different optimization algorithms
have been investigated, e.g., particle swarm optimization [2] or genetic algorithms [9].
Significant reductions on necessary simulation runs can be achieved especially by opti-
mization algorithms which use the evaluated simulation results to train a metamodel,
e.g., gaussian process models [10], kriging models [11] or artificial neural networks [12].
In literature, this is referred to as metamodel-based optimization (MBO). Metamodels,
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also known as surrogate models or response surface methodology, mimic the behavior of
simulation models and can be used to predict a value Z for an unknown parameter set x*.
The biggest advantage of metamodels is that most of them can be calculated in fractions
of a second. MBO-algorithms use the results of the initial sampling to create an initial
metamodel. Afterwards, an adaptive sampling strategy is used to search for new parame-
ter sets, also referred to as points, which either improve model accuracy or minimize the
estimated value of Z. Each new point is then simulated, and a new meta-model is built
with the results.

Both, classical calibration in general and MBO in particular, still have some disadvantages:

e  During initial sampling, a large number of parameter sets will be generated at once.
Depending on the available computational resources, these parameter sets can be
evaluated in parallel. Most metamodel-based optimization algorithms generate only
one new parameter set per iteration, so the total time needed for calibration strongly
depends on the number of necessary iterations during optimization phase.

e  Each calibration sequence starts with an initial sampling. This is necessary to generate
a minimum amount of initial information needed for the optimization algorithms,
e.g., for training of initial metamodels. Even with continuous improvement of opti-
mization algorithms as well as metamodel types, the minimal computational effort
per calibration sequence is limited to N;,,;; simulations. Depending on the available
computational resources as well as the simulation model, the time required for a
calibration sequence can still take several hours to days.

e  Simulation results as well as metamodels generated in one calibration sequence cannot
be reused for other calibration sequences with new bulk materials. This has several
reasons. First, most metamodels do not predict simulated material responses but ob-
jective function results z. The objective function already contains the material-specific
real material responses, which were previously determined in the course of experimen-
tal investigations. Another reason, which prevents the transferability of metamodels
and simulation results to other bulk solids, is the fact that they are produced with
discrete element models containing specific values for particle density, particle shape
and particle size distribution. Thus, most metamodels are material-specific.

o  The lack of reusability of metamodels as well as simulation results for other calibration
sequences means that they are usually deleted immediately after the calibration
sequence is completed. The only used output of a calibration sequence is the identified
parameter set. If the output per calibration sequence is put in relation to the required
time and computational effort, classical calibration has a very poor efficiency.

e C(Classical calibration aims at identifying a parameter set which leads to the desired
material responses. Thus, it provides a punctual assignment between the input and
output variables of the DEM simulation. The underlying effective relationships are not
examined more closely and remain hidden. It is therefore a non-learning approach.

In the following metamodel based global calibration will be introduced, which solves
the mentioned disadvantages.

2. Basic Idea of Metamodel-Based Global Calibration

The basic idea of metamodel-based global calibration (MBGC) is to completely remove
the time-consuming and expensive DEM simulations from the calibration process. This
is done by using a global metamodel for predicting the material responses for unknown
parameter sets as illustrated in Figure 2. Due to the omission of the simulations, the DEM
modelling is also not part of the calibration sequence. The remaining steps are basically the
same as in classical calibration approaches.
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Figure 2. Scheme of metamodel-based global calibration (MBGC).

As mentioned before, MBO also uses metamodels for the prediction of material re-
sponses; therefore, it is important to point out that MBGC and MBO differ from each other
in the way the metamodels are employed. MBO includes training and prediction of meta-
models in the calibration process, while MBGC starts with an already existing metamodel.
Furthermore, MBO uses DEM simulations in the calibration sequence, e.g., for calculation
of points proposed by initial or adaptive sampling. In contrast to this, MBGC completely
replaces the DEM simulations in the calibration sequence by metamodel predictions.

The term global in MBGC refers to the common differentiation between global and lo-
cal metamodels [13]. While local metamodels are used to guide the optimization algorithm
towards an optimum and are discarded afterwards [14], global metamodels provide a fast
but accurate approximation of the behavior of the simulator on the entire domain [15].
Applied to the calibration of DEM models, this means local metamodels are able to predict
the material responses for one bulk material, while global metamodels are suitable for the
prediction of different bulk materials.

Central prerequisite for the calibration process is a global metamodel, which serves
as an input value for the MBGC-algorithm. The metamodel must be created beforehand
which requires an initial one-time effort. Subsequently, the metamodel can be used for
the calibration of different bulk materials. The process of global metamodeling should be
explained below.

3. Global Metamodeling

Success of MBGC strongly depends on the metamodel used. In the following, the
different steps in the process of global metamodeling shall be briefly explained.

3.1. Material Domain

First of all, the user has to define which kind of materials the future metamodel
should represent. The specification of certain material properties and limits defines the
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boundary conditions under which the metamodel can be used later and forms the so-called
material domain. It should be clear that the more generalized the specification of a material
domain is, the larger is the range of materials it covers and the higher the utility of the
future metamodel. For this, the specification requires a certain level of abstraction and
interdisciplinary thinking by the user, because usually material range is not fixed to one
industrial sector. The delimitation of the material domain as well as the specification of the
material range it covers is hard to define. It is helpful to first outline the domain qualitatively
with the help of a simple description. This description should contain important bulk
material properties under consideration as optionally some industrial sectors to get an
imagination who could use the later metamodel. For example, the material domain, which
should be investigated below, is defined as follows: “Non-cohesive bulk materials from
mining, construction industry and natural materials technology”.

In order to quantify the domain boundaries, it is useful to supplement this admittedly
very vague description with some example materials. Hence, different materials from
mining (coke, hard coal, limestone) and construction industry (gravel 2/8 mm, gravel
16/32 mm, dry sand) as well as from natural materials technology (woodchips, dry corn)
were chosen (Figure 3).

Figure 3. Granular materials considered to quantify the boundaries of the investigated material domain: (a) coke; (b) stone

chippings 2-5 mm; (c) limestone; (d) gravel 2/8 mm; (e) gravel 16/32 mm; (f) dry sand; (g) woodchips; (h) dry corn.

3.2. Contact Model

After some example materials have been chosen a contact model should be defined,
which is able to describe this range of materials. As mentioned above, the material domain
covers only non-cohesive materials. For this, a Hertz—Mindlin-model with no cohesion
will be used. As an idealization, all particles are considered as spheres. To account for
the fact that some particles have a shape that is far away from spherical a modified elastic
plastic spring dash pot model (EPSD) according to Wensrich [16] will be used to calculate
rolling friction. It should be mentioned that the future metamodel can only be used in
conjunction with this contact model. The used contact model is kind of a standard model,
which is implemented in many software tools. The DEM software which is used here is
LIGGGHTS-PUBLIC 3.8.0 [17].

3.3. Parametric Particle Size Distribution

An essential novelty of MBGC is to consider the particle size distribution (PSD) as an
additional input for the metamodel. This is the key to represent different materials, which
usually have different particle size distributions. A major challenge in this context is the
appropriate parametric representation of particle size distributions. Usually, the PSD of a
material is described by discrete pairs of values d;, Q3(d;), where d; is the particle diameter
of fraction i and Q3(d;) is the associated cumulative mass fraction. The corresponding
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values are determined, for example, in the course of a sieve analysis. An obvious way to
include the PSD in the metamodel is to use these values as additional input parameters.
One major drawback of this variant, is that it results in a relative high number of inputs.
For a usual number of 5. .. 8 fractions, this results in 10. .. 16 additional parameters. This
is unfavorable, because the number of training data sets strongly depends on the number
of input parameters. For this reason, analytical distribution functions should be used here.

In literature, there are different distribution functions that could be used for the
description of particle size distributions. Among the best known are Rosin-Rammler—
Sperling-Bennet (RRSB), Gates-Gaudin—-Schumann (GGS) and the Lognormal-distribution
(LOGN) (Equations (1)—(3)). All these functions are two-parametric, which means only two
additional inputs are used for the metamodel.

d' k
Qs,66s(di) = ( dm;x) 1
i \"
Q3rrsB(dj) = 1—exp [_<6163> } )
1 1 (Ind—u,
Qsroen(di) = 2+2erf<n\ﬁa:l> 3)

To find out which distribution function should be used, all of them have been fitted
to the real PSD-data of the example materials. Fitting was done using linear least squares
approach. Figure 4 shows the results. For comparison the coefficient of determination
as well as the mean squared error between the real data and the fitted curves have been
calculated (Table 1). The results show that GGS-function provides worst results for all ma-
terials considered. LOGN as well as RRSB approximate the real particle size distributions
very accurate, while Log-normal distribution delivers slightly better results and therefore
should be used for this material domain.

Table 1. Coefficient of determination and mean squared error of analytical distribution functions.

Mean Over All Materials
Metric
GGS RRSB LOGN
Coefficient of determination (R?) 0.8155 0.9925 0.9935

Mean squared error (MSE) 0.0308 0.0012 0.0010
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Figure 4. Comparison how good different analytical distributions functions fit the real particle size distribution of the
example materials.

3.4. Definition of Parameter Space

Next, the parameter space must be defined, containing the lower and upper bound-
aries for all input parameters of the metamodel. The parameter space is a quantification of
the material domain defined above. Table 2 shows all parameters used in the following.
The lower and upper boundaries for dsy and o7, are results from the fitting process, while
other parameters are limited to reasonable values based on experience and theory behind.
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Table 2. Parameter ranges used for data generation. The ranges define the parameter space in which

the metamodel is valid.

Parameter Symbol Unit Range

Young’s modulus of particles Ep Pa 5x 10°...5x 108
Young’s modulus of walls Ey Pa 5% 10°...5x 108
Poisson ratio for particles Vp - 01...05
Coefficient of restitution particle-particle epp - 0.05...0.95
Coefficient of restitution particle-wall epw - 0.05...0.95
Coefficient of friction particle-particle Hpp - 0.0...1.0
Coefficient of friction particle-wall Mpw - 0.0...1.0
Coefficient of rolling friction particle-particle Hrpp - 0.0...1.0
Coefficient of rolling friction particle-wall Hr,pw - 0.0...1.0
Particle density op kg/ m3 250 ... 3000
Median diameter of PSD dso mm 0.40... 25.6
Standard Deviation of PSD O mm 0.07... 117

3.5. Calibration Experiment and DEM-Modeling

The next step is to select or devise a calibration experiment. Global metamodeling
places some demands on the experimental design, which should be considered. Since
several hundred simulations have to be carried out to obtain enough training data for an
adequate metamodel, the experiment should be simple and small-scale in order to compute
it within a short time. The use of a parametric particle size distribution leads to a varying
number of particles in the simulation. In order to keep the number of particles as well as the
computing time per simulation approximately the same, the experiment should be scalable
and the extracted features scale-invariant. This means if the particle size is increased, the
geometric shapes should be downscaled too, but the extracted results, e.g., the angle of
repose, should not be affected by this. Furthermore, the experimental design should be
robust and reliable. This means that for each parameter combination, the experiment
should have the expected course. The problem of a potentially unrobust experiment can
be illustrated by the example of a silo outflow. Due to the varying parameter values,
e.g., for coulomb and rolling friction, bridging can occur in some simulations, which leads
to no measurable angle of repose under the silo. This would lead to no or invalid results
for some parameter sets. One possibility to make this kind of experiment more robust is to
choose the silo opening large enough to avoid bridging in all cases.

In the following, the shear box test proposed by Rossler et al. [18] was used. In this
experiment, a box is filled with material, and then, one side is opened so that the material
can flow out. Figure 5 shows the geometric setup of the experiment.

Initial state Final state

Whox =S * Wpase

hpox =S * hpase
0.9 hbox

lhox =S * lpase

Figure 5. Structure of the shear box test: (left) initial state before opening the flap; (right) final state.
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The basic dimensions of the original experiment were modified and given a scale factor
S, which depends on the maximum particle diameter d;,;x and the minimum side length
of the basic box geometry defined by /j,5, = 100 mm, wj,5, = 100 mm and /p,5, = 150 mm.
Equation (4) shows the calculation of S, which ensures that smallest dimension of the box
is ten times the maximum particle diameter.

S — 10'dmax (4)

min(lbaser Whaser hbase)

Moreover, the simulation time step depends on the current parameter values and
must be calculated for each simulation. As suggested by Thornton [19], the Rayleigh wave
speed can be used to determine the critical time step for non-linear contact models such
as Hertz—Mindlin. The following expression for the Rayleigh time step T is given by

Li et al. [20].
/ Pp
TTminy/ G
Tr a

— Vo 5
0.163v, + 0.8766 ®)

The time step used for simulation is a fraction of Ty as defined by Boac et al. [21].
At = 0.25-Tg (6)

3.6. Sampling Strategy

The data used for metamodel training, i.e., the parameter sets and corresponding
features, are of crucial importance for future model accuracy. The choice of a suitable
sampling strategy used to generate the parameter sets is therefore at least as important as
the choice of a metamodel type. As mentioned by Liu et al. [22], sampling approaches can
be classified into two categories: one-shot sampling and sequential sampling. One-shot
sampling approaches determine the sample size and points in a single stage. Well-known
representatives are full factorial designs as well as Latin hypercube designs. One-shot
approaches are unsuitable if no prior knowledge about the target function is given and
an optimal or appropriate sample size cannot be predetermined. In this case, sequential
approaches should be used, which sequentially determine new points using the information
from previous iterations.

Sequential sampling approaches can be subdivided into two categories—space-filling
sequential sampling and adaptive sequential sampling (Figure 6). Space-filling approaches
try to fill the space between the points iteratively and spread the generated points over
the entire parameter space. Adaptive approaches attempt to improve the accuracy of the
metamodel by incorporating information about the metamodel into the generation process
for new points. Subsequently, adaptive strategies as well as the resulting sampling are not
model independent and should not be used to train different metamodel types. For this
reason, in the following, only space-filling sequential sampling is investigated.
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() (b)

Figure 6. Alternative sequential sampling design strategies (initial samples in black dots, sequentially added samples in red
squares): (a) space-filling sampling; (b) adaptive sampling [23].

A popular group of sequential space-filling strategies are low discrepancy sequences,
also known as quasi-random sequences. These methods are deterministic and obtain a
uniform distribution of points based on discrepancy criteria. Discrepancy is a measure
of the distance between an empirical distribution of points and a theoretically uniform
distribution. Examples are Halton sequences [24] or Sobol Sequences [25]. Alternatives to
low discrepancy sequences are the fully sequential space-filling design algorithm (FSSF-f)
proposed by Shang and Apley [26] and the Monte Carlo-Intersite-proj-th (MIPT) algorithm
proposed by Crombecq et al. [15].

For the comparison of the different methods, metrics for the evaluation of the space-
filling properties as well as the uniformity of the sampling are necessary. One of the most
used criteria is the maximin-criterion also referred to as minimum intersite distance (MID)
(Equation (7)). High values of MID correspond to a good space-filling.

@)

Another metric is the cover measure (COV) [27]. Low values of COV correspond to a
distribution close to a regular grid and ensure that the points fill up the space.

_n\1/2
covX) = (R (- 7)°)
2 8
withry = _min 70 (s <) and7 = L2210

To benchmark the different sampling strategies all methods, including a purely ran-
dom sampling, were used to create 100 points in a 2-dimensional as well in a 10-dimensional
parameter space. This process has been repeated 10 times with different initial seed values
for the algorithms. Box plots in Figures 7 and 8 show the results.



Minerals 2021, 11, 848 11 of 21

0.6
I
0.08 -

0.06 A 0.4 1
2 0.3 - — |
= 0.04 1 —
0.2 A
0.02 -

D
cov

0.1 o ==
L
e < [T w < Q
(a) (b)

Figure 7. Benchmark of different sequential space-filling methods for 2-dimensional space. Blue bars show the mean
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Figure 8. Benchmark of different sequential space-filling methods for 10-dimensional space. Blue bars show the mean

value of 10 different designs. Black whiskers show the minimum and maximum values. (a) minimum intersite distance;
(b) cover measure.

It can be seen that the FSSF-f algorithm gives by far the best results leading to high
values for MID as well as low values for COV. While MIPT also performs very well for

2-dimensional space, the algorithm delivers poor results in high dimensional space. that is
why, in the following, the FSSF-f algorithm is used.

3.7. Metamodel

Various types of metamodels can be found in literature. Among the most popular
ones are linear and polynomial regression models, artificial neural networks, support
vector machines, radial basis functions, kriging or gaussian process models. All of these
have advantages and disadvantages, which makes the selection of a suitable model type

quite difficult. For this purpose, it is necessary to list the most important requirements for
metamodels used for MBGC.

3.7.1. Choice of a Metamodel

First of all, a suitable metamodel should be appropriate for global approximation.
Local approximation techniques, such as linear and quadratic polynomial regression, can
therefore be excluded. Other important requirements are interpretability and introspective
properties. A large number of metamodel-types can be seen as kind of a Blackbox. Such
models allow the prediction of values but do not provide deeper insights into the func-
tional relationships between the input and output variables. Last but not least, a suitable
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metamodel should have extrapolative properties making it possible to predict the results
for parameter sets laying beyond the secured parameter range.

In the following, a meta-modelling technique is used which fulfils all requirements.
This technique is called Symbolic regression (SR). Symbolic Regression is a type of regres-
sion analysis that searches the space of mathematical expressions to find an expression that
best fits a given dataset, both in terms of accuracy and simplicity. Contrary to other regres-
sion techniques, such as linear or non-linear regression, no particular model is provided
as a starting point to the algorithm. Instead, initial expressions are formed by randomly
combining mathematical building blocks such as mathematical operators, analytic func-
tions, constants and state variables. By not requiring a specific model to be specified,
symbolic regression is not affected by human bias or unknown gaps in domain knowledge.
There are different methods and algorithms for performing symbolic regression. Besides
lesser-known methods such as Prioritized Grammar Enumeration [28] or Deep Symbolic
Regression [29], the most popular one is Genetic Programming (GP), which is used in the
following. The basics of genetic programming should be explained briefly below.

3.7.2. Genetic Programming

The basic idea of genetic programming is based on the fact that functions can also be
represented as tree structures also called expression trees (Figure 9). Internal nodes of an
expression tree contain mathematical operators while terminal nodes contain the operands,
e.g., constants and variables.

()
0.73—sin(xl)+0_435€—1_x2 » @ 0 °
D @ ®

Figure 9. Representation of a function as an expression tree.

At the beginning of a genetic programming sequence, several expression trees are
generated by randomly choosing and combining different mathematical operators, con-
stants and variables. Thereby, the mathematical operators are drawn from a predefined
function set . Every expression tree can be seen as an individual of a population P.
Afterwards, a fitness value F is assigned to each individual, representing how good the
corresponding function fits the data. Typical metrics for calculating F are the well-known
mean squared error or root mean squared error. Subsequently, the GP algorithm uses the
basic principles of evolution, namely, selection, recombination and mutation, to gradually
create new generations of individuals. Each new generation of expression trees is evolved
from the one that came before it by selecting the fittest individuals from the population
in a tournament and recombine them. This process of mixing genetic material between
individuals is called crossover (Figure 10). Additionally, to crossover different kinds of
mutation are used to maintain genetic diversity from one generation to the next.
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Figure 10. Crossover.

Point mutation is probably the most common mutation method in genetic program-
ming, which takes the winner of a tournament and selects random nodes from it to be
replaced. Terminals are replaced by other terminals, and operators are replaced by other
operators that require the same number of operands as the original node (Figure 11). The
purpose of point mutation can be used to reintroduce extinct functions and operators into

the population to maintain diversity.

©
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Figure 11. Point mutation.

Another mutation technique is subtree mutation, which can also be used to maintain
diversity (Figure 12). Subtree mutation takes the winner of a tournament and selects a
random subtree from it to be replaced by a donor subtree, which is generated randomly.
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Figure 12. Subtree mutation.

Crossover and subtree mutation may lead to expression trees growing larger and
larger with no significant improvement in fitness. This phenomenon is called bloat. One
effective method to counteract the growth of expression tress is hoist mutation. Hoist
mutation takes the winner of a tournament and selects a random subtree from it (Figure 13).
A random subtree of that subtree is then selected and “hoisted” into the original subtree’s
location. In this way, genetic material is removed from the expressions.

5 O o

Figure 13. Hoist mutation.

Another way to fight bloat is the use of a penalized fitness measure where the fitness
of an individual is made worse the larger the corresponding expression tree is. The
length of an expression tree can easily be determined counting the number of nodes. The
penalty and thus the intensity with which bloat is controlled depends on the so-called
parsimony coefficient.

For genetic programming the software package gplearn [30] is used. Population size
is set to 5000 individuals, and a parsimony coefficient of 0.001 is used. The function set

is F = {+, =X,/ log, exp, tanh }, which includes the most important mathematical

operators and functions except trigonometric functions. Trigonometric functions, e.g., sin,
cos and tan, have been excluded from the function set because it can be assumed that
there is no periodically repeating behavior. Furthermore, it was found that usage of these
functions could lead to overfitting.

4. Results
4.1. Global Metamodelling

In this section, the results of the metamodeling process shall be presented. For training
of the different metamodels, 563 parameters sets generated by FSSF-f algorithm have been
used. Originally, 600 simulations have been carried out, but some results were discarded
because of simulation crashes. Validation of model accuracy was done using a second
dataset with 68 parameter sets generated by a random sampling method. The considered
response variables are the shear angle ¢ and bulk density p. Response variables are
obtained automatically using the output data of the simulations. For determination of the
shear angle, the coordinates of all particles are evaluated at the end of the simulation, and
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a linear regression is performed through uppermost particles. Calculation of bulk density
is based on the mass of the particles in the box after filling as well as the volume of the box.

Equation (9) shows the final analytical solution for shear angle estimation. The
corresponding residuals between the estimated values and the training samples respectively
test samples are shown in Figure 14.

¢ = (Sl'(c4'ym7p + 501, + tanh(cé'ﬂr,pp)
+tanh(c7-07, +log(csppw))-co)-c10
+tanh(ci1-pr,pp + C12-r,pw + €13:01,) C14
+exp(ci5-fpw)-C16 + C17)-C18 + €19
S1 = Co*Hrpp + C1-€pp° + tanh (co-pupp-tanh (c3-ppw ) ) 9)
co = 0.12527; ¢; = 0.11035; ¢y = —4.06792; c3 = 6.897; ¢y — —0.94137;
cs = 0.46337; cg = —4.3047; ¢y = 0.98436; cg = 13.162; co = —1.0992;
C10 = 14.699; C11 = 0.49926; C1p = 4.1879; C13 = 0.94883; Cl14 = 13.384;
C15 = —7.3423; Cl6 = —16.389; Cl7 = 4.873; C18 = 0.93837; C19 = 0.77686

Training samples [ Test samples
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Figure 14. Residual Histogram for shear angle estimation.

It can be seen that not all of the 12 variables considered in Table 2 are included in
Equation (6). This is due to the property of genetic programming that variables with little
influence on the results are eliminated by the evolutionary process sooner or later. This
means GP implicitly performs a sensitivity analysis and variable selection. This makes
analysis of the parameter effect very easy.

The shear angle is influenced by the parameters p,p, #pw, tr,pp, tr,pw, €pp and oy, Tt
is immediately apparent, for example, that the shear angle is not influenced by particle
scaling, which would lead to changes in dsy. Moreover, it does not depend on young'’s
modulus, Poisson ratio or particle density. The histogram values show that most of the
estimated values have a residual between —1.4° and 1.4°, which is very accurate. The
coefficient of determination for this model is 0.98085. The outliers on the right side of
the histogram can be attributed to inadequacies in shear angle calculation, which will be
explained more in detail in Section 4.

Equation (10) shows the analytical solution for bulk density estimation. The bulk
density results from the mass in the box divided by its volume. The corresponding residuals
between the estimated values and the training samples respective test samples are shown
in Figure 15.
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eXP(C4"71n+55'd50)+exp<56']4r,pp)'C7'P‘PP+W (10)
co = 1.142; ¢; = 0.145; ¢y = —0.045916; c3 = —2.2697; ¢, = 0.64515;
c5 = 0.018921; c4 = —5.3066; c; = 3.7192; cg = 0.9565; cg = 0.72724;

C10 = —0.3645; 11 = 0.034013; C1p = 1.0005; C13 = —1.5194
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Figure 15. Residual histogram for bulk density estimation.

It is recognizable again that not all parameters have an influence on the bulk density.
Bulk density is influenced by the parameters 1y, tpw, tr,pp, €pp, €pw, Pp, 01, and dsp. Even
if the absolute values of the residuals seem to be very large, they are very small considering
the large range of values for bulk density starting from 100 kg/m? and going to 2000 kg/m?.
With a determination coefficient of 0.99975, the prediction accuracy of this model is quite
better than that of shear angle estimation.

The equations above show that it is sometimes unpredictable which parameters have
an influence on the response variables and which not. For example, it is not easy to
understand neither to explain why e, an influence on bulk density but not on shear angle
has. Interpretation of the equations generated by MBGC is a separate task and not topic of
this research paper.

4.2. Parameter Identification and Validation

Next, the identified metamodels are used for the parameter identification in a MBGC
process. For this, an unknown material —Gravel 8/16 mm—is used. Following the scheme,
in Figure 2, first some experimental investigations on the real material have to be carried
out to determine the particle size distribution of the material. Particle size distribution as
well as the fitting of the Log-normal distribution are shown in Figure 16. The corresponding
values for dsy and 07, as well as the target values for shear angle and bulk density are
shown in Table 3. Furthermore, the table contains the value for ji,;, determined by Jenike-
wall-friction-tester.
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Figure 16. Particle size distribution of Gravel 8/16 and fitting of Log-normal distribution.
Table 3. Values of Gravel 8/16 determined in experimental investigations.

Parameter/Response Value Symbol Unit Value
Median diameter of PSD dso mm 11.16
Standard Deviation of PSD Ol mm 0.26
Coefficient of friction particle-wall Hpw - 0.363
Shear angle ] ° 35.53
Bulk density 0 kg/m3 1478.8

The optimization method used for calibration is a L-BFGS algorithm (Limited-memory
BFGS), which belongs to the family of quasi-Newton methods. For error calculation, the
squared residuals for shear angle and bulk density are cumulated using Equation (11).

error = (¢ — ¢)* + (p — p)° (11)

Due to the fact that there are 2 equations (Equations (9) and (10)) and 6 unknown
parameters (€pp, €pw, Hpp, Hrpps Hr, pws Pp), the system is underdetermined, which means
there are several parameter combinations leading to the desired response values. In order
to reduce the number of possible parameter combinations and identify a single solution,
there are several possibilities. One would be the usage of other calibration experiments to
produce more response values leading to more equations. Another possibility is to add
some additional constraints. Constraints can be fixed values for some parameters as well
as inequality constraints, e.g., epp < 0.5. Here, we use fixed parameter values (Table 4).
These values are based on previous investigations with the same bulk material done by
Roessler et al. [17].

Table 4. Constraints introduced to reduce the number of possible solutions.

Constraint

epp = 0.6
epw = 0.6
prpp = 0.8
Hr, pw = 0.8

Using the constraints above, the optimization algorithm identified the parameter set
shown in Table 5 to be optimal. The final optimization error was 1.034 x 10711, If the
parameters from Tables 3-5 are entered into Equations (6) and (7), the estimated response
values are ¢ = 35.530 and p = 1478.78.
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Table 5. Optimal parameter set identified by MBGC.

Parameter Value
Hpp 0.1852
o 2608.4

For validation, a simulation with the identified parameter values was done. The results
show a very good agreement with the experimentally determined values. The simulated
values are ¢ = 34.90° and p = 1514.1 kg/m? . This corresponds to a relative error of 1.77%
for the shear angle respectively 2.38% for bulk density. This almost corresponds to the
stochastic fluctuation range of the measurements and can therefore be seen as very accurate.
Figure 17 shows a comparison between the simulated and the real material behavior.

Figure 17. Validation of the identified set of parameters. (a) Simulated bulk material; (b) real
bulk material.

5. Discussion

The results above show that MBGC can be successfully used to identify a parameter
set that provides the desired bulk material behavior. This can be seen as a proof of
principle that the methodology works. In order to be able to make reliable statements
on the performance and possible limitations of the methodology, further investigations
are necessary regarding the calibration of other bulk materials, the metamodeling of new
material domains (e.g., cohesive materials) as well as the variation and tuning of the
different parts of the metamodeling process.

Furthermore, it could be proven that analytical equations exist which can be used to
accurately model the relationships between the input and output parameters of a DEM
simulation. Symbolic regression respectively genetic programming is an effective way to
identify these equations. Although most of the points can be explained by the identified
equations, there are also some outliers where the estimated value has a relatively high
deviation from the real value.

Outliers in shear angle estimation can be attributed to inadequacies in shear angle
calculation. Shear angle calculation is based on the assumption that a flat flank is formed.
The calculation of the angle is then done with help of linear regression. On closer inspection
of the outliers, it was found that all of them had a curved flank leading to highly varying
values in shear angle calculation (Figure 18). It is suspected that this uncertainty affecting
the quality of the training and test data, which finally leads to the prediction errors. This
means that in parameter space areas where these curved flanks occur, the metamodel has
only limited validity.
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Figure 18. Varying values in shear angle calculation for curved flanks.

The Problem of ambiguity of parameter combinations is still present, even with MBGC.
A requirement to solve this problem is to have as many equations as unknown variables.
Additional equations mean more response values. If there is not the possibility to extract
or measure more response values as shown in the example above, some of the unknown
parameters should be set to fixed.

Furthermore, the suitability of the identified parameter sets for simulating other
mechanical behaviors of non-cohesive materials was not verified. Bulk density and shear
angle characterize the flow behavior of the material. Accordingly, the identified parameter
sets will lead to a realistic flow behavior in the simulations but not necessarily to realistic
drag forces when, for example, soil-tool-interaction is simulated. For simulating other
mechanical behaviors, other response variables must be included in the calibration.

6. Conclusions

In the present article, a new calibration method for the determination of material
specific parameters in discrete element simulations has been introduced. Metamodel-based
global calibration (MBGC) represents a paradigm shift in the field of DEM calibration,
because it is the first method which does not include iterative DEM simulations in the
calibration sequence. Instead, a global metamodel capable of estimating the behavior
of different bulk materials in a predefined calibration experiment is used. Creating this
metamodel is a one-time effort in contrast to classical calibration approach. Important
factors in global meta-modelling are the sampling method as well as the kind of metamodel.
Good space-filling properties of a sampling can be achieved by using the FSSF-f method.
Symbolic regression respective genetic programming can be used to identify analytical
equations which model the relationships between the input parameters and the result
variables of a DEM simulation very well. Analytic equations are much better in terms of
readability and human interpretability than, for example, matrix representations of weight
factors or coefficients as used by other metamodels.

The identified equations can be used to calibrate a wide range of non-cohesive mate-
rials. As an application and validation example, the calibration of gravel 8/16 mm was
shown. Future investigations will concentrate on generating new metamodels, e.g., for
cohesive bulk materials as well as new calibration experiments. These experiments can be
used to generate more response values and solve the problem of ambiguity of parameter
sets without additional constraints. Another focus of future investigations will be the
application of the methodology on complex-shaped particles. For this, superquadrics can
be used to achieve a parametric description of the particle shape.
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