Novel Technology for Comprehensive Utilization of Low-Grade Iron Ore
Abstract
:1. Introduction
2. Materials and Experimental
2.1. Materials
2.2. Experimental Equipment and Methods
2.3. Characterization
3. Results and Discussion
3.1. Pre-Concentration
3.2. Suspension Magnetization Roasting
3.2.1. Roasting Temperature
3.2.2. Reductant Dosage
3.2.3. Feeding Capacity
3.2.4. Gas Flow Rate
3.2.5. Stable Running Test
3.3. Phase Transformation
3.4. Magnetism Properties
3.5. Micromorphology Analysis
3.6. Product Property Analysis
3.6.1. Chemical Elemental Analysis
3.6.2. Particle Size Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hu, M.; Pauliuk, S.; Wang, T.; Huppes, G.; van der Voet, E.; Müller, D.B. Iron and steel in Chinese residential buildings: A dynamic analysis. Resour. Conserv. Recycl. 2010, 54, 591–600. [Google Scholar] [CrossRef]
- Yellishetty, M.; Ranjith, P.G.; Tharumarajah, A. Iron ore and steel production trends and material flows in the world: Is this really sustainable? Resour. Conserv. Recycl. 2010, 54, 1084–1094. [Google Scholar] [CrossRef]
- Yellishetty, M.; Mudd, G.M. Substance flow analysis of steel and long term sustainability of iron ore resources in Australia, Brazil, China and India. J. Clean. Prod. 2014, 84, 400–410. [Google Scholar] [CrossRef]
- Hurst, L. Assessing the competitiveness of the supply side response to China’s iron ore demand shock. Resour. Policy 2015, 45, 247–254. [Google Scholar] [CrossRef]
- Salisu, A.A.; Adediran, I.A. Assessing the inflation hedging potential of coal and iron ore in Australia. Resour. Policy 2019, 63, 101410. [Google Scholar] [CrossRef]
- Ministry of Natural Resources, PRC. China Mineral Resources. 2019. Available online: http://www.mnr.gov.cn/sj/sjfw/kc_19263/zgkczybg/201910/P020191022538918416752.pdf (accessed on 1 April 2022).
- Li, G. The Chinese Iron Ore Deposits and Ore Production. Available online: https://www.intechopen.com/chapters/61492 (accessed on 1 April 2022).
- Sun, Y.; Zhu, X.; Han, Y.; Li, Y.; Gao, P. Iron recovery from refractory limonite ore using suspension magnetization roasting: A pilot-scale study. J. Clean. Prod. 2020, 261, 121221. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, Y.; Wang, W.; Wen, S. Beneficiation of a low-grade, hematite-magnetite ore in China. Min. Metall. Explor. 2014, 31, 136–142. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, X.; Han, Y.; Parra-Álvarez, N.; Claremboux, V.; Kawatra, S.K. Flotation of Iron Ores: A Review. Miner. Process. Extr. Metall. Rev. 2021, 42, 184–212. [Google Scholar] [CrossRef]
- Filippov, L.O.; Severov, V.V.; Filippova, I.V. An overview of the beneficiation of iron ores via reverse cationic flotation. Int. J. Miner. Process. 2014, 127, 62–69. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.; Wang, B.; Duan, H.; Peng, X.; Chen, X.; Zhao, Q. Novel hydroxy polyamine surfactant N-(2-hydroxyethyl)-N-dodecyl-ethanediamine: Its synthesis and flotation performance study to quartz. Miner. Eng. 2019, 142, 105894. [Google Scholar] [CrossRef]
- He, J.; Zhu, L.; Bu, X.; Liu, C.; Luo, Z.; Yao, Y. Intensification of waste gangue removal from 6–1 mm fine-sized iron ores based on density-based dry vibrated separation and upgrading. Chem. Eng. Process. Process Intensif. 2019, 138, 27–35. [Google Scholar] [CrossRef]
- He, J.; Liu, C.; Hong, P.; Yao, Y.; Luo, Z.; Zhao, L. Mineralogical characterization of the typical coarse iron ore particles and the potential to discharge waste gangue using a dry density-based gravity separation. Powder Technol. 2019, 342, 348–355. [Google Scholar] [CrossRef]
- Lima, R.M.F.; Abreu, F.d.P.V.F. Characterization and concentration by selective flocculation/magnetic separation of iron ore slimes from a dam of Quadrilátero Ferrífero—Brazil. J. Mater. Res. Technol. 2020, 9, 2021–2027. [Google Scholar] [CrossRef]
- Song, S.; Lu, S.; Lopez-Valdivieso, A. Magnetic separation of hematite and limonite fines as hydrophobic flocs from iron ores. Miner. Eng. 2002, 15, 415–422. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Y.; Wen, S.; Ma, M.; Sun, C.; Yin, W.; Ma, Y. Effect of carbonate minerals on quartz flotation behavior under conditions of reverse anionic flotation of iron ores. Int. J. Miner. Process. 2016, 152, 1–6. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, Z.; Yin, W.; Yang, B.; Qu, J.; Zhang, N.; Chen, S.; Yu, Y.; Chang, J.; Liu, L. Snap-in interactions between water droplets and hematite/quartz surfaces with various roughness after conditioning with soluble starch and DDA using a dynamic microbalance. Miner. Eng. 2022, 177, 107358. [Google Scholar] [CrossRef]
- Liu, W.B.; Sun, W.; Liu, W.G.; Dai, S.; Duan, H.; Zhou, S.; Qiu, J. An ion-tolerance collector AESNa for effective flotation of magnesite from dolomite. Miner. Eng. 2021, 170, 106991. [Google Scholar] [CrossRef]
- Quast, K. A review on the characterisation and processing of oolitic iron ores. Miner. Eng. 2018, 126, 89–100. [Google Scholar] [CrossRef]
- Matiolo, E.; Couto, H.J.B.; Lima, N.; Silva, K.; de Freitas, A.S. Improving recovery of iron using column flotation of iron ore slimes. Miner. Eng. 2020, 158, 106608. [Google Scholar] [CrossRef]
- Liu, W.; Peng, X.; Liu, W.; Wang, X.; Zhao, Q.; Wang, B. Effect mechanism of the iso-propanol substituent on amine collectors in the flotation of quartz and magnesite. Powder Technol. 2020, 360, 1117–1125. [Google Scholar] [CrossRef]
- Dong, L.; Tong, X.; Li, X.; Zhou, J.; Wang, S.; Liu, B. Some developments and new insights of environmental problems and deep mining strategy for cleaner production in mines. J. Clean. Prod. 2019, 210, 1562–1578. [Google Scholar] [CrossRef]
- Cui, X.; Geng, Y.; Li, T.; Zhao, R.; Li, X.; Cui, Z. Field application and effect evaluation of different iron tailings soil utilization technologies. Resour. Conserv. Recycl. 2021, 173, 105746. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Z.; Shirokoff, J. Study on Flotability and Surface Oxidation of Sulfide Minerals from the Tailing of an Iron-Copper Mine Using Electron Probe Microanalyzer. Miner. Process. Extr. Metall. Rev. 2021, 42, 213–221. [Google Scholar] [CrossRef]
- Uwadiale, G.G.O.O. Magnetizing Reduction of Iron Ores. Miner. Process. Extr. Metall. Rev. 1992, 11, 1–19. [Google Scholar] [CrossRef]
- Yu, J.; Han, Y.; Li, Y.; Gao, P.; Li, W. Mechanism and Kinetics of the Reduction of Hematite to Magnetite with CO–CO2 in a Micro-Fluidized Bed. Minerals 2017, 7, 209. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Han, Y.; Li, Y.; Gao, P. Recent Advances in Magnetization Roasting of Refractory Iron Ores: A Technological Review in the Past Decade. Miner. Process. Extr. Metall. Rev. 2019, 41, 349–359. [Google Scholar] [CrossRef]
- Roy, S.K.; Nayak, D.; Rath, S.S. A review on the enrichment of iron values of low-grade Iron ore resources using reduction roasting-magnetic separation. Powder Technol. 2020, 367, 796–808. [Google Scholar] [CrossRef]
- Jin, J.; Zhu, X.; Li, P.; Li, Y.; Han, Y. Clean Utilization of Limonite Ore by Suspension Magnetization Roasting Technology. Minerals 2022, 12, 260. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, Q.; Sun, Y.; Gao, P.; Han, Y. Pilot-scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation. Resour. Conserv. Recycl. 2021, 172, 105680. [Google Scholar] [CrossRef]
- Rana, A.; Kalla, P.; Verma, H.K.; Mohnot, J.K. Recycling of dimensional stone waste in concrete: A review. J. Clean. Prod. 2016, 135, 312–331. [Google Scholar] [CrossRef]
- Zhai, W.; Ding, J.; An, X.; Wang, Z. An optimization model of sand and gravel mining quantity considering healthy ecosystem in Yangtze River, China. J. Clean. Prod. 2020, 242, 118385. [Google Scholar] [CrossRef]
- Gavriletea, M.D. Environmental Impacts of Sand Exploitation. Analysis of Sand Market. Sustainability 2017, 9, 1118. [Google Scholar] [CrossRef] [Green Version]
- Patil, A.Y.; Banapurmath, N.R.; Shivangi, U.S. Feasibility study of epoxy coated Poly Lactic Acid as a sustainable replacement for river sand. J. Clean. Prod. 2020, 267, 121750. [Google Scholar] [CrossRef]
- Ren, Z.; Jiang, M.; Chen, D.; Yu, Y.; Li, F.; Xu, M.; Bringezu, S.; Zhu, B. Stocks and flows of sand, gravel, and crushed stone in China (1978–2018): Evidence of the peaking and structural transformation of supply and demand. Resour. Conserv. Recycl. 2022, 180, 106173. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Y.; Zhang, Z.; Wang, H. Recycled sand from sandstone waste: A new source of high-quality fine aggregate. Resour. Conserv. Recycl. 2022, 179, 106116. [Google Scholar] [CrossRef]
- Liu, W.B.; Peng, X.Y.; Liu, W.G.; Zhang, N.; Wang, X.Y. A cost-effective approach to recycle serpentine tailings: Destruction of stable layered structure and solvent displacement crystallization. Int. J. Min. Sci. Technol. 2022, in press. [CrossRef]
- Yellishetty, M.; Karpe, V.; Reddy, E.H.; Subhash, K.N.; Ranjith, P.G. Reuse of iron ore mineral wastes in civil engineering constructions: A case study. Resour. Conserv. Recycl. 2008, 52, 1283–1289. [Google Scholar] [CrossRef]
- Xu, W.; Wen, X.; Wei, J.; Xu, P.; Zhang, B.; Yu, Q.; Ma, H. Feasibility of kaolin tailing sand to be as an environmentally friendly alternative to river sand in construction applications. J. Clean. Prod. 2018, 205, 1114–1126. [Google Scholar] [CrossRef]
- Vargas, F.; Lopez, M.; Rigamonti, L. Environmental impacts evaluation of treated copper tailings as supplementary cementitious materials. Resour. Conserv. Recycl. 2020, 160, 104890. [Google Scholar] [CrossRef]
- Loginova, E.; Schollbach, K.; Proskurnin, M.; Brouwers, H.J.H. Municipal solid waste incineration bottom ash fines: Transformation into a minor additional constituent for cements. Resour. Conserv. Recycl. 2021, 166, 105354. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Y.; Sun, Y.; Li, Y. Innovative utilization of refractory iron ore via suspension magnetization roasting: A pilot-scale study. Powder Technol. 2019, 352, 16–24. [Google Scholar] [CrossRef]
- Zhu, X.; Han, Y.; Sun, Y.; Gao, P.; Li, Y. Thermal Decomposition of Siderite Ore in Different Flowing Atmospheres: Phase Transformation and Magnetism. Miner. Process. Extr. Met. Rev. 2022, 1–8. [Google Scholar] [CrossRef]
Composition | Fe | FeO | SiO2 | MgO | Al2O3 | CaO | P | S |
---|---|---|---|---|---|---|---|---|
Content (wt.%) | 24.91 | 2.75 | 46.90 | 0.95 | 2.02 | 2.13 | 0.047 | 0.072 |
Products | Yield | SiO2 Grade | Fe Grade | Fe Recovery |
---|---|---|---|---|
Pre-concentration concentrate | 70.99 | 32.74 | 32.35 | 92.20 |
Pre-concentration tailing | 29.01 | 81.55 | 6.70 | 7.80 |
Products | Composition and Content (wt.%) | |||||||
---|---|---|---|---|---|---|---|---|
Fe | FeO | SiO2 | Al2O3 | CaO | MgO | S | P | |
Iron concentrate | 62.16 | 25.47 | 5.38 | 1.19 | 1.88 | 1.11 | 0.052 | 0.036 |
Pre-concentration tailing | 6.70 | 0.59 | 81.55 | 1.72 | 1.55 | 0.33 | 0.032 | 0.049 |
Magnetic tailing | 4.90 | 0.85 | 79.57 | 2.35 | 3.07 | 1.00 | 0.009 | 0.055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Qin, Y.; Han, Y.; Li, Y. Novel Technology for Comprehensive Utilization of Low-Grade Iron Ore. Minerals 2022, 12, 493. https://doi.org/10.3390/min12040493
Zhu X, Qin Y, Han Y, Li Y. Novel Technology for Comprehensive Utilization of Low-Grade Iron Ore. Minerals. 2022; 12(4):493. https://doi.org/10.3390/min12040493
Chicago/Turabian StyleZhu, Xinran, Yonghong Qin, Yuexin Han, and Yanjun Li. 2022. "Novel Technology for Comprehensive Utilization of Low-Grade Iron Ore" Minerals 12, no. 4: 493. https://doi.org/10.3390/min12040493
APA StyleZhu, X., Qin, Y., Han, Y., & Li, Y. (2022). Novel Technology for Comprehensive Utilization of Low-Grade Iron Ore. Minerals, 12(4), 493. https://doi.org/10.3390/min12040493