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Abstract: Multiple-input and multiple-output (MIMO) systems can be found in many industrial
processes, including mining processes. In practice, these systems are difficult to control due to the
interactions of their input variables and the inherent uncertainty of industrial processes. Depending
on the interactions in the MIMO process, different control strategies can be implemented to achieve
the desired performance. Among these strategies is the use of a decentralized structure that considers
several subsystems and for which a SISO controller can be designed. In this study, a methodology
based on global sensitivity analysis (GSA) to design decentralized control structures for industrial
processes under uncertainty is presented. GSA has not yet been applied for this purpose in process
control; it allows us to understand the dynamic behavior of systems under uncertainty in a broad
value range, unlike approaches proposed in the literature. The proposed GSA is based on the Sobol
method, which provides sensitivity indices used as interaction measures to establish the input–output
pairing for MIMO systems. Two case studies based on a semi-autogenous grinding (SAG) mill
and a solvent extraction (SX) plant are presented to demonstrate the applicability of the proposed
methodology. The results indicate that the methodology allows the design of 2 × 2 and 3 × 3
decentralized control structures for the SAG mill and SX plant, respectively, which exhibit good
performance compared to MPC. For example, for the SAG mill, the determined pairings were fresh
ore flux/fraction of mill filling and power consumption/percentage of critical speed.

Keywords: global sensitivity analysis; uncertainty; control structure; SX process; SAG mill

1. Introduction

Most industrial control systems are multiple-input and multiple-output (MIMO) sys-
tems, as the goal of multivariable control includes keeping multiple variables controlled
at independent set points. For instance, mining plants, oil refineries, biorefineries, and,
in general, chemical manufacturing plants contain MIMO processes. In these systems,
each manipulated variable (input) can affect several controlled variables (outputs) caus-
ing interactions between them and consequently generating coupling in the system. In
practice, such interactions result in difficulties in analyzing and controlling a given system.
Furthermore, the parameters used to define the input and output variables may present
uncertainty, vary with time, or be unknown [1]. For these reasons, the analysis of how to
control MIMO systems is often more complex compared to single-input and single-output
(SISO) systems.

Depending on the interactions in the MIMO process, different control strategies can
be applied to achieve the desired performance: decentralized, centralized, or decoupled
control. The centralized structure considers the design of a complete multivariate controller
to control n output variables using n manipulated variables, yielding that n2 number of
controllers prevail. However, these control systems are complex and lack integrity [2].
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The decentralized structure considers several subsystems for which a SISO controller is
designed. Thus, only n controllers prevail for each n output variable, since it uses single-
loop or diagonal controllers [3]. The decoupling structure uses separate elements, known
as decouplers, or simply controllers, to compensate for the strong interactions present in
the system [4]. Decoupling can be divided into static and dynamic decoupling according
to the characteristics of time, or can be classified into total and approximate decoupling
according to the degree of decoupling.

The decentralized control technique is still widely used in many industrial control
systems due to its simple implementation, proficient maintenance, simple tuning, and
robust performance even under model mismatches and uncertainties [5]. The key issue
when designing a decentralized control system is the control structure design (CSD), that
is, the selection of inputs and outputs and how they are paired [6]. The available literature
proposes several mathematical measures to quantify the degree of interaction between
input–output pairs. Probably the most widely used measure is relative gain array (RGA),
which was proposed by Bristol in 1966 and requires only the steady-state gain of the
plant model. This information can be obtained by step test methods. The simplicity of
RGA is the main reason for its popularity [7]. RGA has been studied and used by several
authors to propose new interaction measures. For example, Niederlinski [8] proposed
the use of an index based on the gain matrix to provide direct information on the ability
of a decentralized control to stabilize a 2 × 2 MIMO system. A variation of RGA was
reported by Zhu [9], known as relative interaction array (RIA). This is based on the concept
of viewing the interaction as an unmodeled term for a particular pairing. A dynamic
extension of RGA was proposed by Kinnaert [10] which can be applied to analyze plants
at any frequency. Mc Avoy et al. [11] also proposed a dynamic extension of RGA which
assumes the availability of a dynamic process model that is used to design an optimal
proportional output controller.

RGA provides limited knowledge; specifically, it does not indicate when to use mul-
tivariable controllers or how to carry out CSD. Therefore, some authors have proposed
alternative approaches. Salgado and Conley [12] considered observability and control-
lability Gramians in so-called participation matrices (PMs). Using a similar approach,
Wittenmark and Salgado [13] introduced the Hankel interaction index matrix (HIIA). These
Gramian-based interaction measures help to overcome most of the disadvantages of RGA.
Specifically, these measures seem to provide suggestions for designing controller structures.
Hanzon [14] showed that the PM is closely related to the direct Nyquist array, which was
introduced by Rosenbrock in 1970. Birk and Medvedev [15] proposed an alternative to
HIIA. They used theH2 andH∞ norms as the basis for new interaction measures. Mean-
while, Halvarsson et al. [16] proposed a different approach to obtain interaction measures
based on linear quadratic Gaussian (LQG) control. Moreover, many MIMO systems present
uncertainty, creating a set of possible systems for which the interaction measures may differ.
Consequently, the control structure design (CSD) may differ between models. For example,
Jain and Babu [17] analyzed the sensitivity of RGA to model uncertainty. Specifically, they
studied how the process dynamics can affect CSD decisions proposed by RGA in systems
under uncertainty.

As outlined above, there are currently many rigorous methods of CSD based on
process control theory. On the other hand, there is a large gap between research and
industrial application, which means process control engineers in industry today still use
a strongly empirical approach to CSD, basing their decisions on practical knowledge or
principles of common sense and experience [6]. For instance, in the milling process, input–
output pairing has been established based on practical knowledge or trial and error under
uncertainty [18–20], or not [21–23]. In solvent extraction (SX) [24], froth flotation [25], and
melting furnaces [26], input–output pairing was settled using classical RGA. These works
verify the need to have one methodology to help establish CDS under uncertainty for
devices implemented in mineral processing.
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Within this context, global sensitivity analysis (GSA) is proposed in this work as an
alternative to decide on the CSD. Sensitivity analysis (SA) is a commonly used method of
identifying the important input variables that determine the behavior of a model under
uncertain conditions. SA can be performed locally or globally, and according to Saltelli [27],
the latter is more robust and reliable even for nonlinear models. There are several methods
of performing GSA and among them, due to their versatility and efficiency, those based on
variance decomposition stand out [28]. Because these methods involve high computational
cost, Homma and Saltelli [29] introduced the concept of total sensitivity indices to overcome
this disadvantage. These indices indicate the average effect of a given input variable on a
specific output of the model, taking into account all possible interactions with the other
input variables of the system. A significant advantage of this method is that it can be used
in both steady-state and dynamic systems [27].

In this work, GSA is proposed to determine the CSD for nonlinear MIMO systems
under time-varying and uncertain conditions. GSA has not yet been applied to this purpose
in process control; it allows us to understand the dynamic behavior of systems under
uncertainty in a broad value range, unlike approaches proposed in the related literature.
The first order and total sensitivity indices provided by GSA are used as measures of input–
output interactions for the CSD. The methodology is illustrated with two case studies from
the mining industry: a semi-autogenous grinding (SAG) mill and an SX plant. The open-
loop modeling and simulation of these processes have been studied previously [30,31],
so in this work, the analysis of CSD based on GSA is presented first. Subsequently, for
the purpose of comparing control performance levels, several controllers were designed
based on different control structures (reported structures vs. CSD proposed in this work)
and control strategies (proportional–integral (PI) control and model predictive control
(MPC)). The results of the GSA in both cases studies were obtained using the Sobol–Jansen
method, which allowed quantification of the interactions of variables over time as well as
observation of the changes in the output variables due to the uncertainty of input variables.
The information generated by GSA allowed a reduction of the CSD of the SAG process
from a 3 × 3 to a 2 × 2 MIMO system, and that of the SX process from a 4 × 5 to a 3 × 3
MIMO system. Finally, these control structures were implemented for the control strategies
described above and better closed-loop performance was obtained when reduced CSDs
were implemented.

2. Materials and Methods
2.1. Uncertainty Analysis (UA)

Mathematical models are fundamental tools in decision-making and are developed
considering assumptions and sometimes little-known information, introducing uncertainty
in the modeling. Uncertainty can be classified as either stochastic or epistemic [32]. The for-
mer is also known as variability, inherent uncertainty, irreducible uncertainty, or uncertainty
due to chance and is related to variations inherent in a given system, usually as a result
of the random nature of model inputs. The latter is also known as reducible uncertainty,
subjective uncertainty, or uncertainty due to a lack of knowledge. This uncertainty type, as
a source of non-deterministic behavior, derives from a lack of knowledge of the system or
the environment. Uncertainty in numerical models has many origins: input data, model
simplification, algorithm structure, calibration process, calibration and validation data, and
equifinality. In this context, UA corresponds to determining the uncertainty in the output
variables as a result of the uncertainty in the input variables. UA can be addressed using
probability theory, imprecise probability, probability bound analysis, evidence theory, or
possibility theory [33]. In this work, UA is applied using probability theory, with a proce-
dure that includes four steps: first, the uncertain input variables are described using the
probability distribution function (PDF); second, a sample is generated from the PDF using
random sampling, such as the Monte Carlo method; third, the values of the model output
variables are determined for each element of the sample; fourth, the behavior of the model
output variables is characterized by graphs, descriptive statistics, and statistical tests.
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2.2. Sensitivity Analysis (SA)

According to Saltelli [34], SA can be defined as an examination of how the uncertainty
in the output of a model can be apportioned among different sources of uncertainty in the
model’s input variables. This analysis can be done locally or globally. The latter quantifies
the importance of model inputs and their interactions with respect to model outputs. GSA
provides an overall view of the influence of inputs on outputs, as opposed to the local
view based on partial derivatives, which has the disadvantage of depending on the choice
of the evaluation point. The general objectives of GSA are as follows [35]: to identify
significant and insignificant variables in a given model, aiming to reduce its dimension;
to improve the understanding of model behavior, specifically highlighting interactions
between input variables and finding combinations of input variables that result in high or
low values for the model output. GSA considers six steps [36]: (1) determine the objective
function, (2) select the input variables of the model, (3) assign a range and type of PDF
to the input variables, (4) apply a sampling design to generate samples, (5) assess the
model for the generated samples, and (6) implement the results of step 5 to perform GSA
and determine the importance of the input variables on the model outputs. The related
literature reveals that there are several methods of performing GSA and those based on
variance decomposition are used more often due to their versatility and efficiency [28]. In
this category, approaches based on the method of Sobol can be found. The latter considers a
squared-integrable function f on Ωm =

{
x/0 ≤ xj ≤ 1, j = 1, 2, . . . , m

}
that is represented

in terms of increasing dimensions [27]:

f = f0 + ∑j f j + ∑
j

∑
k>j

f jk + . . . + f1,2,...,m (1)

where f j = f j
(

xj
)
, f jk = f jk

(
xj, xk

)
, and so on; whereas f0 = E(Y), f j = E

(
Y/xj

)
,

f jk = E
(
Y/xj, xk

)
− f j − fk − E(Y), and so on. Here, Y = f (x1, x2, . . . , xm) and E repre-

sents the mathematical expectation. Note that these last expressions have the following
properties: Vj = V

(
f j
(
xj
))

= V
(
E
(
Y/xj

))
, Vjk = V

(
f jk
(

xj, xk
))

= V
(
E
(
Y/xj, xk

))
−

V
(
E
(
Y/xj

))
−V(E(Y/xk)), and so on. Here, V represents the variance. The square integra-

tion of Equation (1) on Ωm allows us to obtain the so-called ANOVA-HDMR decomposition
or its normalized equivalent:

V(Y) = ∑j Vj + ∑
j

∑
k>j

Vjk + . . . + V1,2,...,m (2)

1 = ∑j

Vj

V(Y)
+ ∑

j
∑
k>j

Vjk

V(Y)
+ . . . +

V1,2,...,m

V(Y)
(3)

In Equation (3), j = 1, 2, . . . , m, V(Y) represents the model variance, Vj represents the
first order effect for each input variable xj, and Vjk to V1,2,...,m represent the interactions of
the m input variables. The calculation of Equation (3) has a high computational cost that can
be overcome by calculating total sensitivity indices [29]. These indices allow us to determine
the average effect of a given input variable, considering all possible interactions of the
respective variable with all other input variables. In this work, the Sobol–Jansen method
was used, which allows calculation of the first order sensitivity index (Sj) and the total
sensitivity index (ST

j ) for input variable xj of the mathematical model. The Sobol–Jansen
method has been used to analyze flotation circuits [37,38], heap leaching [31], grinding [30],
and the lithium supply chain [39]. In addition, it exhibits high performance when analyzing
chemical processes [40]. This method considers 5 steps [28]: first, choose an integer N;
second, generate a matrix of size (N, 2r) of quasi-random numbers from the sampling of
input variables of their respective PDF (r represents the number of input variables); third,
divide the matrix into 2 submatrices, A and B, of size (N, k); fourth, form matrix Dj from
the columns of matrix A, except the jth column, which is taken from matrix B, and similarly,
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form matrix Cj from the columns of matrix B, except the jth column, which is taken from
matrix A; fifth, assess the model output in matrices A, B, Cj, and Dj, obtaining YA = f (A),
YB = f (B), YCi = f (Ci), and YDi = f (Di), and subsequently use the following equations:

Sj =
V
(
E
(
Y/xj

))
V(Y)

=
V(Y)− 1

2N ∑N
i=1

(
Y(i)

B −Y(i)
Dj

)2

V(Y)
, j = 1, 2, . . . , m (4)

and

ST
j = 1−

V
(
E
(
Y/xj

))
V(Y)

=

1
2N ∑N

i=1

(
Y(i)

A −Y(i)
Dj

)2

V(Y)
, j = 1, 2, . . . , m (5)

Other expressions to estimate the sensitivity indices can be found elsewhere [28,36,40];
these use one or another matrix defined earlier, e.g., the Sobol–Jansen method uses matrices
A, B, and D. The interpretation of the indices is straightforward: the higher the sensitivity
index of an input variable, the greater its influence on the model output. The first order
index allows us to determine the most important input variable, while the total sensitivity
index allows us to identify the input variables that do not influence the model outputs. In
this sense, if input variable xj of the model does not interact with the other input variables,
the sensitivity indices satisfy Sj ≈ ST

j , otherwise Sj < ST
j . If ST

j ≈ 0, input variable
xj does not influence the model output and can be fixed at its nominal operating value
and consequently the dimension of the mathematical model can be reduced [27]. Note
that, ideally, UA precedes SA, as before uncertainty can be apportioned, it needs to be
estimated [41].

2.3. Solving the Model in MATLAB–Simulink

The models were implemented as a Mask subsystem in MATLAB–SimulinkTM.
SimulinkTM (R2020a-Academic Version) is a programming system that uses blocks, i.e.,
graphical programming, to solve differential equations. In this work, such equations were
solved using the ode4 solver based on the fourth order Runge–Kutta formula. In addition,
SimulinkTM allows users to program their own blocks across functions. This feature and
the possibility to use specific toolboxes, such as PID control and MPC, provide a powerful
platform for the development of prototypes.

2.4. Methodology for Control Structure Design (CSD)

A computational method of developing control structures is proposed and presented
in Figure 1. In the first step, the multivariable system is modeled using mathematical
and computational tools, such as differential equations and MATLAB software (R2020a-
Academic Version), respectively. In the second step, the process variables are classified as
manipulated, controlled, supervised, or disturbed. Furthermore, the variables manipulated
under uncertainty are characterized by distribution functions after determining the type
of uncertainty. In the third step, GSA is carried out using methods based on variance
decomposition, such as the Sobol–Jansen method, after carrying out UA. Here, the GSUA
toolbox [42] is implemented, and the sample size for each uncertain manipulated variable
is defined as one thousand. According to [43], this value allows us to obtain robust results
from UA and GSA. Subsequently, the input–output pairing is selected according to the total
sensitivity indices provided by GSA. Here, it was important to analyze the behavior of total
sensitivity indices over the simulation time to establish such pairing, which allowed us to
obtain a decentralized structure whose SISO subsystems can be controlled using PID or PI
controls. In the fourth step, the designed control structure is evaluated through simulations
and experiments. Specifically, the control structure is subject to different set points and
compared with other approaches proposed in the related literature. If the control structure
provides satisfactory results, it is considered robust; otherwise, we return to the second
step. The latter considers changing the nominal operating conditions or parameters used
to define the distribution functions.
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Figure 1. Methodology used for CSD using GSA and UA.

3. Results

The methodology proposed for CSD is illustrated considering grinding and SX pro-
cesses to demonstrate the methodology’s capacity to address systems with different degrees
of freedom.

3.1. Semi-Autogenous Grinding (SAG)

Step 1. Modeling
From an energy point of view, mineral milling is decisive in the evaluation of operating

cost, representing 50–80% of the total operating cost of a mineral concentrator plant. Various
modeling trends are proposed in the literature based on the principles that govern the
grinding phenomenon; this is how the models based on population models stand out,
which were used for this case study. The milling model presented by Austin et al. [44,45]
was considered. The SAG mill model is generally divided into two zones, the grinding
chamber and the sorting zone, as shown in Figure 2. The F particles entering the mill are
introduced into the grinding chamber. The product obtained, P*, faces the classification
zone, where, according to a classification probability ci, the particles can return to the
crushing chamber or become part of product P of the SAG mill.

Figure 2. Schematic representation of a SAG mill, adapted from [30].

It is commonly assumed that the SAG mill behaves like a perfectly mixed reactor,
with a mass retained (W) in the volume (V) of the mill and first order kinetics. Some
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authors indicate that second order kinetics might be able to model the breakage of coarse
particles better than first order kinetics [46,47]. However, computational experiments were
carried out under conditions where first order kinetics provided reliable estimations [48,49].
According to Austin et al. [44], F is the fresh ore flux fed to mill and the ith size fraction in F
is KiwiW. In this expression, wi is the weight fraction of retained mass in the mill and Ki is
the specific breakage rate of the ith size fraction. When a fraction of size i breaks, a fraction
bij of the broken material is sent to size j. The dynamic mass balance in each size i is:

d[wi(t)·W]
dt = Fi − Pi + W

i−1
∑

j=1
i>j

bijKjwj − KiwiW,

wi(0) = wi0, i = 1, 2, . . . , n; n ≥ i ≥ j ≥ 1

(6)

where n is the number of species present in the fresh feed, Fi is the fraction of ore
flux (F) fed to the mill, Pi is the fraction of flux discharged (P), and ci is the classifica-
tion efficiency of the internal grid, which affects the mass flow recirculated internally
(C∗ = ∑

i
ciwi/ ∑

i
wi(1− ci)). The complete model equations and parameter values can be

found in Appendix A and [30]. In the appendix, the reader can see the expressions used to
model the cumulative breakage distribution function and its implementation to determine
bij, as well as expressions used to estimate the classification efficiency of the internal grid
mill, which is required to calculate recirculated mass flow. In [30], the reader can find
comminution-specific energy, mill power consumption, and the fraction of mill filling
expressions, among other equations.

The design of the grinding process by Magne et al. [49] is considered in this work.
Here, a SAG mill was implemented to process copper sulfide ore 1.83 m in diameter (D)
and 0.61 m in length (L). The operating conditions of the SAG mill were as follows: ore
flux fed (F) at 3.45 t/h with granulometry of 12% for 4”, 8% between 4” and 2”, and
80% below 2”; mill volume occupied by the discharge mill (Jb) equal to 8.5% by volume;
percentage of solids in the discharge mill (Yd) equal to 74%; operating speed equal to 72%
of critical speed (ϕc); flow of water fed (Fa) equal to 1.2 m3/h; a classification grill with an
opening of 1

2 ”. The SAG mill model was simulated using Simulink, obtaining fraction of
mill filling (J), power consumption (Mp), and retained mass (W) equal to 0.22, 9.8 kW, and
0.41 t/h, respectively.

Step 2. UA and GSA
For the MIMO system (see Figure 3a), the main output variables are J, Mp, and W,

while the possible manipulated input variables are F, Fa, ϕc, F1, F2, and F3. The manip-
ulated input variables were described using distribution functions that allow the effect
of uncertainty in the system to be included. In this context, the SAG mill feed fractions
exhibit stochastic uncertainty due to geological uncertainty, while the other SAG mill in-
put variables exhibit epistemic uncertainty due to insufficient measurements, as reported
in [49]. Considering that the particle size distribution of the feed to the mill can be repre-
sented by a normal distribution [50] and that the particle fragmentation exhibits a fractal
nature [51], the fractions in the SAG mill feed are described using the normal distribution.
According to the principle of indifference, a uniform distribution should be implemented
to describe epistemic uncertainty in the absence of information [52]. Then, manipulated
input variables were described as follows: F ∼ U[3.24, 3.65] t/h, Fa ∼ U[1.02, 1.39] m3/h,
ϕc ∼ U[0.7, 0.74], F1 ∼ N[12, 0.70]%, F2 ∼ N[8, 0.80]%, and F3 ∼ N[80, 0.73]%.

The MIMO system for the SAG mill is shown in Figure 3a, and Figure 3b–d show
the UA results considering a sample of 6000 instances of operation. Here, it can be ob-
served that J, Mp, and W present values around the responses obtained using nominal
operating conditions (red line) when the SAG mill was simulated under operational un-
certainty, which is consistent with previously reported results [30,49]. Thus, the grinding
model provides robust estimates under uncertainty; subsequently, the uncertainty must be
apportioned. The GSA results using the Sobol–Jansen method are shown in Figure 4.
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Figure 3. (a) SAG mill as MIMO system, and UA results using (b) mill filling, (c) power consumption,
and (d) mass retained as output variables.

Figure 4. GSA results using (a) mill filling, (b) power consumption, and (c) mass retained as
output variables.
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Figure 4 shows the normalized total sensitivity indices of the input variables for
each output variable of the SAG mill. Here, the first-order indices are not shown because
the total sensitivity indices provide more relevant information for the purpose of this
work. According to these results, it can be concluded that all output variables

(
J, Mp, W

)
strongly depend on F and ϕc, and there is a negligible effect of Fa, F1, F2, and F3. Then,
the input–output pairing is selected using this information. These results suggest that
the manipulated input variables should be F and ϕc, while the disturbances should be
Fa, F1, F2, and F3.

Step 3. CSD
Now, the process variables can be classified as manipulated, controlled, supervised,

or disturbed, allowing the SAG mill model to be expressed in a standard control notation
(Figure 5) as follows:

.
x = f (x, u, d, p), x(0) = x0 ; dim(x) = 3 , dim(u) = nu (7)

y = h(x) ; dim(y) = ny (8)

where the vector-valued function of time f , defined by the right-hand side of Equation (6),
depends on vectors of states (x), manipulated input variables (u), disturbances (d), and
model parameters (p). For the SAG mill, the states (x) correspond to the weight fraction of
the mill retention (wi), while the outputs (y) in Equation (8) are the variables to be regulated
at desired values (controlled variables).

Figure 5. General control system.

For the MIMO system of the SAG mill (see Figure 3a), and for comparison purposes,
two structures are defined for the CSD:

(a) A traditional structure (3 × 3) previously reported for the SAG mill [53], with
nu = ny = 3:

u =

 F
Fa
ϕc

 , y =

 J
Mp
W

 , d =

F1
F2
F3

 , x =

w1
w2
w3

 (9)
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(b) A reduced structure (2 × 2) obtained in step 2 (considering W as a supervised vari-
able, which is kept in a range depending on grinding design capacity [54]), with
nu = ny = 2:

u =

[
F
ϕc

]
, y =

[
J

Mp

]
, d =


F1
F2
F3
Fa

 , x =

w1
w2
w3

 (10)

In addition to the two control structures designed using total sensitivity indices,
two other control strategies are considered to evaluate performance and robustness: a
conventional proportional–integral–derivative (PID) controller and an advanced MPC. So,
in the next step, three control schemes are evaluated and analyzed, as shown in Figure 6:
2 × 2 PID control, 2 × 2 MPC, and 3 × 3 MPC.

Figure 6. Control systems for SAG mill: (a) 2 × 2 PID control, (b) 2 × 2 MPC, (c) 3 × 3 MPC.

Step 4. Closed-loop validation
Subsequently, the designed control systems were implemented in MATLAB and com-

pared with their corresponding open-loop dynamics, as shown in Figure 7. It is important
to note that the tuning parameters for the PID and MPC controllers were determined using
the automatic tuning tool included in Simulink. It can be seen in Figure 7a,b that the
SAG mill load and energy consumption responses for a step change in the set point are
satisfactory. To quantify the quality of these results, the integral absolute error (IAE) was
calculated using the formula IAE =

∫
|e(t)|dt, where e(t) is the difference between the set

point and the controller response [55]. Table 1 shows a summary of IAE values obtained
for the three controllers.

In the case of J, Table 1 shows that the 2× 2 PID, 3× 3 MPC, and 2× 2 MPC controllers
provide IAE values of 0.001, 0.020, and 0.075, respectively. Thus, the PID control designed
using the pairing J/F proposed by the CSD methodology provides high performance
compared to the other controllers. In the case of Mp, Table 1 shows that the 3 × 3 MPC,
2 × 2 MPC, and 2 × 2 PID controllers provide IAE values of 0.111, 0.299, and 0.630,
respectively. Therefore, the PID control designed using the pairing Mp/φc proposed by
the CSD methodology demonstrates sufficient performance compared to the others. In the
first case, the high performance might be based on the strong influence of the feed flux on



Minerals 2022, 12, 736 11 of 23

mill load, regardless of time and uncertainty (approximately 0.95; see Figure 4a). In the
second case, the percentage of critical velocity and feed flux influence power consumption
0.75/0.25 regardless of time and uncertainty, this feed flux effect could explain the sufficient
performance of the 2 × 2 PID controller. This could also explain the offset observed in the
behavior of manipulated variables (Figure 7d).

Figure 7. Dynamic responses of controlled variables: (a) SAG mill load (J); (b) power consumption
(Mp) and manipulated variables; (c) feed (F); (d) percentage of critical speed (ϕc).

Table 1. Analysis and interpretation of results obtained by controllers, SAG mill.

Control

IAE

Controlled Variables Manipulated Variables

J Mp F φc

High performance PID 2 × 2 MPC 3 × 3 PID 2 × 2 PID 2 × 2
0.001 0.111 6.437 0.793

Good performance MPC 3 × 3 MPC 2 × 2 MPC 3 × 3 MPC 3 × 3
0.020 0.299 6.081 0.240

Sufficient performance MPC 2 × 2 PID 2 × 2 MPC 2 × 2 MPC 2 × 2
0.075 0.630 9.594 0.995

Reference
Open-loop

0.255 11.536
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3.2. Solvent Extraction (SX) Process

Step 1. Modeling
The SX process includes an extraction and a re-extraction system (Figure 8), which can

be located in different configurations, both in parallel and in series. The model proposed by
Komulainen et al. [56] consists of four units, three for extraction and one for re-extraction.
The flow input to the process comprises pregnant leach solutions (PLS) with mineral to
be recovered, F1a and F2a; solution with a copper concentration, c0a; poor electrolyte flow,
F1e, with a concentration of c0e; the flow of the loaded organic (LO) solution, FLO. The LO
solution is recycled in the process, but the flow can be managed through the organic storage
tank, c3o. The results of the process are rich copper concentration, c1e, and refined copper
concentrations, c1a and c3a.

Figure 8. Schematic representation of SX process, adapted from [24].

In the extraction, the copper is transferred from the aqueous to the organic phase.
Each of the three extraction units is modeled using dynamic mass balances for organic (cio),
aqueous (cia), and electrolyte (cie) phases:

dci,phase(t)
dt =

Fi,phase(t)
Vmix,i(t)

[
ci−1,phase(t− t0)− ci,phase(t)

]
+ Ki

[
ci,phase(t)− c∗i,phase(t)

]
ci,phase(0) = ci,phase,0

i = 1, . . . , 4 f or phase = o; i = 1, 2, 3 f or phase = a; i = 1 f or phase = e

(11)

where ci represents concentrations, Fi represents flow rates, Vmix represents the mixing
volumes, Ki represents the mass transfer coefficients, and the settler, always following the
mixer, is described by a pure time delay, ti. The complete model equations and parameter
values can be found in Appendix B and Komulainen et al. [56]. Here, the SX process con-
siders the following operating conditions: organic flow (FLO) of 17.83 m3/min, electrolyte
flow (F1e) of 6.26 m3/min, aqueous flow (F1a) of 16.88 m3/min with concentration (coa) of
1.53 g/L, and aqueous flow (F2a) of 16.88 m3/min with concentration (c2a) of 3.37 g/L. The
SX process model was simulated using Simulink (see Figure 9b–f), obtaining c1e, c1a, c3a,
c3o, and c4o values of 51.58, 0.254, 1.38, 6.62, 1.01 and 3.532 g/L, respectively.
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Figure 9. (a) SX plant as a MIMO system, and UA results using (b) c1a, (c) c4o, (d) c1e, (e) c3o, and
(f) c3a as output variables.

Step 2. UA and GSA
For the MIMO system (see Figure 9a), the main output variables are c1e, c1a, c3a, c3o, and

c4o, and the possible manipulated input variables are FLO, F1a, F2a, F1e, c0a1, c0a2 , and c0e.
The manipulated input variables of the SX process exhibit epistemic uncertainty due to
insufficient information collected from the related literature. Again, according to the
principle of indifference, a uniform distribution must be implemented to describe the
epistemic uncertainty in the absence of information. In this way, manipulated input vari-
ables were described as follows: FLO ∼ U[16.04, 19.6] m3/h, F1a ∼ U[15.19, 18.56] m3/h,
F2a ∼ U[14.19, 18.56] m3/h, F1e ∼ U[5.63, 6.88] m3/h, c0a1 ∼ N[1.53, 0.5] %, and c0a2 ∼
N[3.37, 0.5]%.

Figure 9b–f shows the SX plant responses when subjected to UA, considering a sample
of 7000 instances of operation. Here, it can be observed that c1a and c4o present values
similar to those obtained using nominal operating conditions despite the uncertainty, while
c1e, c3o, and c3a exhibit lower values than the responses obtained using nominal operating
conditions (red line), which indicates the influence of operating uncertainty on SX plant
responses. The estimates provided by the SX model under uncertainty are consistent with
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the related literature [24,56]. The next step is to study the uncertainty apportion using the
Sobol–Jansen method.

Figure 10 shows the normalized total sensitivity indices of the input variables for each
output variable of the SX plant. According to this figure, FLO, F1a, and F1e have an influence
on c1o, c1a, and c1e, respectively, and they should be selected as manipulated input variables,
while c0a1, c0a2 , and c0e should be selected as disturbances.

Figure 10. GSA using (a) c1a, (b) c1e, (c) c3a, (d) c3o, and (e) c4o as output variables.

Step 3. CSD
In this step, the variables of the process are classified as manipulated, controlled,

supervised, or disturbed, allowing the SX model to be expressed in a standard control
notation (Figure 3) as follows:

.
x = f (x, u, d, p) , x(0) = x0 ; dim(x) = 8, dim(u) = nu

y = h(x) ; dim(y) = ny
(12)
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where the vector-valued function of time, f , is defined by the right-hand side of Equation (11).
For the SX process, the states (x) correspond to concentrations c10, c20, c30, c40, c1a, c2a, c3a,
and c1e, while the manipulated input variables (u) are selected according to the output
variables (y) to be regulated at desired values.

For the MIMO system of the SX process (see Figure 11a), and again for comparison
purposes, the two structures are defined as follows:

(a) A traditional structure (4 × 5) reported previously [24], with nu = 4 and ny = 5:

u =


FLO
F1a
F2a
F1e

, y =


c1e
c1a
c3a
c3o
c4o

, d =

c0a1
c0a2
c0e

 (13)

(b) A reduced structure (3 × 3) obtained in step 2, with nu = ny = 3:

u =

FLO
F1a
F1e

, y =

c1e
c1a
c3o

, d =

c0a1
c0a2
c0e

 (14)

These two CSDs are proposed using total sensitivity indices, and again, two control
strategies are considered to evaluate performance and robustness: a conventional controller
(PID) and an advanced controller (MPC). In the next step, three control systems for the
SX plant are evaluated and analyzed, as shown in Figure 11: 3 × 3 PID, 3 × 3 MPC, and
4 × 5 MPC.

Figure 11. Control systems for SX plant: (a) 3 × 3 PID, (b) 3 × 3 MPC, (c) 4 × 5 MPC.

Step 4. Closed-loop validation
The designed control systems were implemented in MATLAB and compared with

their corresponding open-loop dynamics, as shown in Figure 11. Again, the parameters
of the PID and MPC controllers were determined via the automatic tuning tool included
in Simulink. In Figure 12, it can be seen that the dynamic responses of all variables for
the 3 × 3 PID and 3 × 3 MPC are satisfactory, while the performance of the 4 × 5 MPC
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controller is poor. To quantify the quality of these results, IAE was calculated, and the
values are given in Table 2.

Figure 12. Dynamic response of controlled variables (a) c1e, (c) c3o, and (e) c1a and manipulated
variables (b) FLO, (d) F1e, and (f) F1a.

In the case of c1e, Table 2 shows that the 3 × 3 PID, 3 × 3 MPC, and 4 × 5 MPC
controllers provide IAE values of 0.008, 0.096, and 0.112, respectively, for a step change in
the set point. In other words, the PID controller designed using total sensitivity indices
exhibits high performance compared to the other controllers, which is related to the strong
influence of F1e on c1e. In the case of c1a, Table 2 shows that the 3 × 3 PID, 3 × 3 MPC, and
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4 × 5 MPC controllers provide IAE values of 0.072, 0.090, and 2.234, respectively. Again, the
controller designed using total sensitivity indices shows high performance compared to the
other controllers, even though FLo and F1e have a side effect on c1a. In the case of c3o, Table 2
shows that the 3× 3 PID, 3× 3 MPC, and 4× 5 MPC controllers provide IAE values of 0.001,
0.060, and 2.636, respectively. Here, the controller designed using total sensitivity indices
exhibits high performance compared to MPC despite the secondary influence of F2a on c3o.
The good and sufficient performance of MPC could be explained by the cross-influence of
some input variables on the SX plant responses detected in the GSA (Figure 10).

Table 2. Analysis and interpretation of results obtained by controllers, SX plant.

Control

IAE(10−3)

Controlled Variables Manipulated Variables

c1e c1a c3o F1e F1a FLo

High performance PID 3 × 3 PID 3 × 3 PID 3 × 3 MPC 3 × 3 MPC 3 × 3 MPC 3 × 3
0.008 0.072 0.001 2.300 9.088 9.365

Good performance MPC 3 × 3 MPC 3 × 3 MPC 3 × 3 PID 3 × 3 PID 3 × 3 PID 3 × 3
0.096 0.090 0.060 2.545 10.230 10.660

Sufficient performance MPC 4 × 5 MPC 4 × 5 MPC 4 × 5 MPC 4 × 5 MPC 4 × 5 MPC 4 × 5
0.112 2.234 2.636 21.598 85.689 110.112

Reference
Open-loop

2.180 0.099 0.605

4. Conclusions

A methodology was presented to design decentralized control structures. This method-
ology considers the use of GSA based on the Sobol–Jansen method to establish the control
structure design (input–output pairing) for MIMO systems operating under uncertainty
conditions. These control structures are made using total sensitivity indices provided by the
Sobol–Jasen method, and their behavior depends on the dynamics of the studied process
and the magnitude of the uncertainty. In this sense, the Sobol–Jansen method provides
graphical results that help in understanding the dynamic behavior of systems under un-
certainty. The methodology was illustrated using a SAG mill and an SX plant operating
under uncertainty. For the SAG mill, the methodology allowed us to design a 2 × 2 de-
centralized control structure whose pairings J/F and Mp/φc exhibited high and sufficient
performance, respectively, compared to MPC. For the SX plant, the methodology allowed
us to design a 3 × 3 decentralized control structure whose pairings c1o/FLO, c1a/F1a, and
F1e/c1e exhibited high performance compared to MPC. The proposed methodology for the
design of the control structure using GSA was illustrated with mineral processes, and it can
be applied to any other process that operates under uncertainty; therefore, it could provide
satisfactory results for a wide range of operating conditions.
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Nomenclature

For SAG model:
A ore impact breakage parameter
a parameter of specific breakage rate model
aS parameter of specific breakage rate model
Bij cumulative breakage distribution function
B values of input variables that provide desired behavior of output milling model
B− values of input variables that provide unwanted behavior of output milling model
bij ore impact breakage parameter
n breakage distribution function
C∗ number of species present in fresh feed
ci mass flow recirculated internally by grill
c f classification efficiency of internal grid mill
c f solid weight percentage in mill charge
D mill diameter
Ecs comminution specific energy (kWh/t)
F fresh ore flux fed to mill, t/h
fi fraction of fresh ore flux fed to mill
J fraction of mill filling
Jb percentage of mill volume occupied by steel balls
Ki specific breakage rate
L mill length
M parameter of classification efficiency model
Mp mill power consumption
m total number of input variables in model Y
R total number of simulations
Sj first-order sensitivity index for input variable xj
ST

j total sensitivity index for input variable xj

V mill volume
R total number of simulations
V(Y) variance of model Y
W mass retained in mill
Wa water in mill charge
wa ratio between ore mass and water mass retained inside mill
wi weight fraction of retained mass in mill
Yd percentage of solids in discharge mill
x0 parameter of specific breakage rate model
xi particle size of species present in fresh feed
x50 parameter of classification efficiency model
Z parameter of classification efficiency model
α characteristic parameter of material
α1 parameter of specific breakage rate model
αs parameter of specific breakage rate model
β fraction of fines produced in a single fracture event
β1 parameter of classification efficiency model
γ parameter of cumulative breakage distribution function
µ parameter of specific breakage rate model
Ψ parameter of specific breakage rate model
Λ parameter of cumulative breakage distribution function
∅j percentage of critical speed
∅c parameter of classification efficiency model
For SX model:
F1a flow inputs to process, pregnant leach solution (PLS)
F2a flow inputs to process, pregnant leach solutions (PLS)
c0a solution with a copper concentration
F1e poor electrolyte flow
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Appendix A. SAG Model

The mathematical expression used to model the breakage distribution function bij is
based on Bij, the cumulative breakage distribution function, given by:

Bij = φj

(
xi−1

xj

)γ

+
(
1− φj

)( xi−1

xj

)β

(A1)

where φj and γ are parameters with values ranging from 2.5 to 5 and 0.5 to 1.5, respectively,
and β represents the fraction of fines produced in a single fracture event. Considering that
Bij is a cumulative distribution, this can be expressed as:

Bi,j = bn,j + bn−1,j + . . . + bi,j =
n

∑
k=i

bkj (A2)

so that
Bi,j − Bi+1,j = bij (A3)

The classification efficiency of the internal grid mill, ci, is calculated with the following
expression:

ci = ψβ(xi M)(β−1)exp
(
−ψ(xi M)β

)
+

1

1 +
(

x50
xi

)Z (A4)

where ψ, Z, M, x50, and β are parameters of the model. In the case of specific breakage rate
Ki, related theory suggests that this parameter varies with particle size; the typical form
of specific breakage rate has three regions. Magne et al. [48,49] proposed the following
equation to estimate the specific breakage rate in the three regions:

Ki = a
(

xi
x0

)α 1

1 +
(

xi
µ

)Λ + as

(
xi
x0

)αs

(A5)

where α, µ, Λ, a, as, x0, and αs are parameters of the model.

Appendix B. SX Model

The mass balances of the SX process are given below.
Organic–aqueous balance in E1P:

dcorg
1 (t)
dt

=
Forg

1 (t)
Vmix,1(t)

·
[
corg

4 (t− t0)− corg
1 (t)

]
+ K1

[
corg

1 (t)− corg∗
1 (t)

]
(A6)

dcaq
1 (t)
dt

=
Faq

1 (t)
Vmix,1(t)

·
[
caq

0 (t)− caq
1 (t)

]
− K1

[
corg

1 (t)− corg∗
1 (t)

]
(A7)

Organic–aqueous balance in E1S:

dcorg
2 (t)
dt

=
Forg

2 (t)
Vmix,2(t)

·
[
corg

1 (t− t1)− corg
2 (t)

]
+ K2

[
corg

2 (t)− corg∗
2 (t)

]
(A8)

dcaq
3 (t)
dt

=
Faq

2 (t)
Vmix,2(t)

·
[
caq

2 (t)− caq
3 (t)

]
− K2

[
corg

2 (t)− corg∗
2 (t)

]
(A9)

Organic–aqueous balance in E2S:

dcorg
3 (t)
dt

=
Forg

3 (t)
Vmix,3(t)

·
[
corg

2 (t− t2)− corg
3 (t)

]
+ K3

[
corg

3 (t)− corg∗
3 (t)

]
(A10)
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dcaq
2 (t)
dt

=
Faq

2 (t)
Vmix,3(t)

·
[
caq

0 (t)− caq
2 (t)

]
− K3

[
corg

3 (t)− corg∗
3 (t)

]
(A11)

Organic–electrolyte balance in S1H:

dcorg
4 (t)
dt =

Forg
4 (t)

Vmix,4(t)
·
[
corg

3 (t− t3)− corg
4 (t)

]
− K4

[
cel

1 (t)− cel∗
1 (t)

]
dcel

1 (t)
dt =

Fel
1 (t)

Vmix,4(t)
·
[
cel

0 (t)− cel
1 (t)

]
+ K4

[
cel

1 (t)− cel∗
1 (t)

] (A12)

From the described balance equations, the following relationships are established:

FLO = Forg
1 = Forg

2 = Forg
3 = Forg

4 (A13)

c(RE) = cel
1 (t− t4) (A14)

c(Ra f f P) = caq
1 (t− t1) (A15)

c(Ra f f S) = caq
3 (t− t2) (A16)

c(LO) = corg
3 (t− t3) (A17)

c(BO) = corg
4 (t− t4) (A18)

Theoretical equilibrium values for extraction and re-extraction are determined from
the McCabe–Thiele diagram, presented in Figure A1. Isotherms assume that extraction
and re-extraction are constant, while the operating lines are constantly changing according
to the organic/aqueous volume ratio in each tank. The equilibrium value in a tank is the
point of coincidence of the equilibrium isotherm and the inverse operating line, weighted
by the efficiency coefficient α.

In extraction, the equilibrium isotherm is not linear:

corg = Acaq/(B + caq) (A19)

and in re-extraction it is linear:
corg = C·caq + D (A20)

In extraction, the theoretical equilibrium point (100% efficiency) is determined by:

y = 1/2a
(
−(Ba− A + b)−

√
(Ba− a + b)2 − 4aBb

)
(A21)

Figure A1. McCabe–Thiele diagram: two extraction stages and one re-extraction stage (adapted
from [56]).
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The equilibrium value for aqueous and organic concentrations is the weighted effi-
ciency of the theoretical value:

caq∗ = αix∗ + (1− αi)·c
aq
0 (A22)

corg∗ = αy∗ + (1− α)·corg
0 = α·(ax∗ + b) + (1− α)·corg

0 (A23)

Here, a and b are parameters of the equilibrium isotherm, where the slope a of the
operating line is:

a = −Faq/Forg (A24)

while b is the linear term that combines the input concentrations of the organic and
aqueous phases:

b = corg
0 − a·caq

0 (A25)

In re-extraction, the isotherm parameters are C and D and a and b; in the same way,
the equilibrium point is solved by:

y = Cx + D = ax + b (A26)

resulting in the theoretical equilibrium concentration of the aqueous phase x*:

x∗ = (b− D)/(C− a) (A27)
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