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Abstract: Kagem emerald mine in Zambia is deemed to the largest open-pit emerald mine with
extremely high economic value and market share in the world. To meet the market demand for tracing
the origin of emeralds, 30 emeralds from the region were tested, and some discoveries were made
compared to previous studies. This study provides a full set of data through standard gemological
properties, inclusions, color characteristics, advanced spectroscopic and chemical analyses, including
Raman, micro micro-UV-Vis-NIR, FTIR, and LA-ICP-MS. The most common inclusions in Kagem
emeralds are two-phase inclusions, which exhibit elongated, hexagonal, oval, irregular shapes or
appear as negative crystals with incomplete hexagonal prism. These inclusions consist of H2O or
H2O + CO2 (liquid) and CO2 + N2 or CO2 + N2 + CH4 (gas). Mineral inclusions typically include
actinolite, graphite, magnetite, and dolomite. Black graphite encased in actinolite in Kagem emeralds
is first reported. The FTIR spectrum of Kagem emeralds reveals that the absorption of type II H2O
is stronger than that of type I H2O, indicating the presence of abundant alkali metals, which was
confirmed through chemical analysis. Kagem emeralds contain high levels of Na (avg. 16,440 ppm),
moderate-to-high Cs (avg. 567 ppm), as well as low-to-moderate levels of K (avg. 185 ppm) and Rb
(avg. 14 ppm) concentrations.

Keywords: emerald; Kagem Mine; gemological characteristics; origin traceability

1. Introduction

Emerald is the green variety of beryl colored by chromium and vanadium, and its
ideal chemical formula is Be3Al2SiO18. The traditional classification system for emerald
deposits has been expanded upon by Giuliani et al. (2019) [1]. Emerald occurrences and
deposits were reclassified into two main types: tectonic magmatic-related (Type I) and
tectonic metamorphic-related (Type II), and further subdivided into seven sub-types based
on the host rock types. The Kafubu deposit in Zambia was classified as Type IA, associated
with mafic-ultramafic rocks.

Zambia is one of the most significant emerald sources worldwide, second only to
Colombia. Kagem emerald mine is located in the Ndola Rural Emerald Restricted Area
and lies south of Kitwe and west of Ndola, in Zambia’s Copperbelt Province (Figure 1).
Kagem Mine is considered the world’s largest single open-pit emerald mine, accounting for
approximately 25%–30% of global emerald production, with a potential mine life of 22 to
2044 years [2]. Besides the Kagem Mine, there are other larger mines in the Kafubu area,
including Kamakanga, Grizzly, and Chantete [3,4].

Bank (1974) [5] proposed that the necessary chromic element in emeralds, chromium,
comes from the magnetite in talc-magnetite schist. Koivula (1982) [6] was the first to
report on the presence of tourmaline as inclusion in Zambian emeralds. Sliwa & Nguluwe
(1984) [7] described the geological setting of Zambian emeralds. Seifert et al. (2004a) [8] first
provided quantitative geochemical, petrological, and mineralogical data on the major rock
types of the Kafubu emerald deposits. Seifert et al. (2004b) [9] conducted a comprehensive
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study of the environmental impact of the emerald mines in the Kafubu area. Zwaan et al.
(2005) [3] first reported the Musakashi area, a new emerald deposit initially worked by local
miners in 2002 [10]. In 2014, GIA Lab conducted a field exploration of the history, region
geology, mining methodology, processing, operation, and auction of the Kagem Mine and
published a detailed report [11]. However, detailed studies on the inclusion, spectroscopy,
and chemical composition of Kagem emerald still need to be completed [12].
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Figure 1. (a) Zambia is a landlocked country located in the southern part of Africa, the capital is
Lusaka. Kagem Mine (blue rectangle) is located in north-central Zambia, near the Kafubu River in
the Ndola Rural Emerald Restricted Area (NRERA); (b) There are three operating pits in the Kagem
Mine: Chama, Libwente, and Fibolele. Picture: Ran Gao.

We received a batch of emerald samples from the Kagem Mine, Zambia in September
2022. This article provides a brief overview of the history and region geology of the Kagem
Mine and a detailed research of gemological properties, inclusions, UV-Vis-NIR, FTIR, and
chemical composition analysis. These analyses can effectively differentiate our materials
from those sourced from other significant emerald localities.

2. Geological Setting

The Kagem emerald concession covers an area of approximately 46 square kilometers
within a 200-square-kilometer productive zone and comprises the current operating Chama
open pit mine and the bulk sampling pits at Libwente and Fibolelem [3].

The Kafubu area is located geologically at the center of the transcontinental Pan-
African belts in central-southern Africa. The Crustal evolution is thought to be related to
three successive orogenic events: the Ubendian, Irumide and Lufilian (Pan-African) [13–15].
The Kafubu emerald deposits occur within metamorphic rocks of the Muva Supergroup
that date back to around 1700 Ma [million years ago] [16,17]. Muva Supergroup overlays
the basement granite gneisses, consisting of footwall mica schist, talc-magnetite schist,
amphibolite, and quartz-mica schist from bottom to top. The entire crustal domain subse-
quently underwent folding, thrusting, and metamorphism during the Pan-African orogeny,
peaking at 530 Ma [18].

Emerald mineralization of the Kagem Mine is hosted by the talc-magnetite schist,
which contains talc-chlorite-actinolite-magnetite schists (Figure 2) [7,14]. These schists were
identified as metamorphosed komatiites—Mg-rich ultramafic rocks [9]. During the late
stages of the Pan-African orogeny, the talc-magnetite schist was intruded by beryllium-rich
pegmatite dykes (typically 2–10 m thick) [19,20]. These pegmatites appear as feldspar-
quartz-muscovite bodies or as minor quartz-tourmaline veins and are believed to be related
to neighbouring granitic rocks [7]. The steeply inclined pegmatite dykes and quartz
tourmaline veins typically trend north to south or northwest to southeast.

The emerald mineralization in the Kagem Mine results from the interaction between
metabasites and pegmatites and their accompanying hydrothermal fluids [9,19]. Emer-
alds are found in the phlogopite reaction zone (typically 0.5–3 m wide) between the talc-
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magnetite schist and the pegmatites and in the quartz-tourmaline veins, which produces
gem-quantity emeralds, but only a tiny percentage [3]. In the reaction zone, talc-magnetite
schist provided the important chromophore of chromium, while the pegmatites provided
the beryllium. Emerald was formed under the proper pressure, temperature conditions
(400–600 MPa and 590–630 ◦C) and chemical environment around 500 Ma [9,21]. The area
subsequently underwent intense shearing and folding during the Lufilian orogeny, which
may account for the fracturing and opacity of many emerald crystals [7].
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3. History

There are two major emerald areas in Zambia, including Musakashi and Kafubu areas. The
Musakashi area was first reported in 2005. The emeralds from this area were characterized by
their intense bluish-green color and multiphase inclusions, which were similar to the emeralds
found in Muzo, Colombia [3,10,23]. Beryl was first discovered in the Kafubu area in 1928 by two
geologists named Dicks and Baker. Some small exploration works were carried out during the
1940s and 50s’ [7]. Zambia’s Geological Survey Department mapped the Miku area and verified
the deposit in 1971 [13,14]. After new occurrences were discovered in the 1970s, the Kafubu area
became a significant producer of fine-quality emeralds. Because of the dramatic expansion of
production and extensive illegal mining, the Government relocated the local population and
established a restricted zone called the Ndola Rural Emerald Restricted Area [9]. In 1980, Kagem
Mining Ltd. (55% owned by the Zambian Government) was authorized to explore and mine
the Kafubu area in the same year [9].

In 2004, the British public-listed Gemfields Resources PLC began systematic explo-
ration near the Pirala mine, south of the Ndola River, and discovered significant emerald
deposits. Gemfields was awarded a management contract there in 2007. In the following
year, Gemfields acquired 75% ownership of the mine, the remainder being held by the
Government [11].

Kagem is primarily an open-pit mine, which presents the advantage of providing
accessibility to every carat of emerald (Figure 3). After the surrounding rock is removed,
miners utilize hammers and chisels to recover the emeralds. Any extracted production
goes into a red production box (Figure 4). Since 2010, the Kagem Mine has been responsible
for approximately 50% of emerald production in Zambia. Despite the high production
volume, only a small portion of gem-quality emeralds are available for exportation In 2022,
the Kagem Mine produced a total of 37.2 million carats of emeralds and beryl, including
259,500 carats of premium emeralds [24].
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(b) The collected emeralds were in a secure box. Photo by Xiangjie Xiao.

Colored gemstone auctions have become a major source of revenue for the Gemfields
Group. The company established its proprietary grading system to assess each gem
according to its individual characteristics (size, color, shape and clarity) and implemented
a pioneering auction and trading platform. The auctions were divided into two quality
ranges: one for higher quality (HQ) emeralds and one for commercial quality (CQ, formerly
known as lower-quality before 2016) emeralds [2]. The auctions are held in multiple cities,
including Jaipur, Johannesburg, Lusaka, London, Dubai and Singapore [24]. Gemfields
had held 43 auctions of emerald and beryl mined at Kagem up to November 2022 and
generated $899 million in aggregate revenues [24]. The per-carat price for HQ and CQ
emeralds in 43 auctions has been recorded (Figure 5a,b). The specific auction mix and
the quality of the lots offered at each auction vary in characteristics such as size, color
and clarity due to changes in mined production and market demand. Overall, the price
of emeralds showed a clear upward trend, with HQ emeralds increasing from an initial
$4.40 per-carat (July 2009) to a peak of $155.90 (May 2022) per-carat and CQ emeralds rising
from an initial $0.31 per-carat (January 2010) to a highest $9.37 per-carat (April 2022). The
value and demand for emeralds are rising steadily.
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2010. Auction data from [24].

4. Materials and Methods

A total of 30 transparent faceted emeralds (K1-30) were acquired from a gem trader
who had visited the Kagem Mine and collected them (Figure 6). According to the GIA’s
classification scheme, the emeralds we obtained belong to E-type samples [25]. There was
no visible color zoning in the speciments although few contained some dark inclusions,
and a few dark inclusions were visible, and five crystals were treated with oil and wax
fillings.

Standard gemological properties were obtained on all the samples. Refractive indices
and birefringence were obtained with a gem refractometer (FGR-003A, FABLE, Shenzhen,
China). UV fluorescence was examined under a UV lamp with long-wave (365 nm) and
short-wave (254 nm) light in a darkened box. We also tested their reaction under the Chelsea
filter (FCF-25, FABLE, Shenzhen, China). Dichroism was observed and photographed under
a polarizing film (FID-1, FABLE, Shenzhen, China). Specific gravity was determined by the
hydrostatic method. Internal features were observed and photographed by a Leica M205A
microscopic system. In some cases, a polarizing microscope was used as well.

Inclusions were identified using a JASCO NRS-7500 Series Confocal Raman Micro-
scope (JASCO, Tokyo, Japan) with 532 nm and 457 nm lasers at the Gemmological Insti-
tute, China University of Geosciences, Wuhan. Solid inclusions were identified in the
2000–100 cm−1 range with the 532 nm laser using a grating of 600 grooves/mm. Two-phase
inclusions were identified in the 4000–100 cm−1 range with the 457 nm laser using a grating
of 600 grooves/mm. The laser power was around 10 mW. Three scans with 15 s integration
time for each scan were taken for a single spectrum. The Raman shift was calibrated with
monocrystalline silicon (at 521 cm−1).
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UV-Vis-NIR spectra were recorded by a Jasco MSV–5200 micro-spectrometer (JASCO,
Tokyo, Japan) in the range of 300–900 nm, at a scan speed of 200 nm/min at the Gemmo-
logical Institute, China University of Geosciences, Wuhan. The optical aperture was set at
100 nm and 0.5 nm data interval. The black cross center of the faceted sample, when viewed
through a polarizing mirror, indicates the C-axis. Polarized spectra of each oriented sample
were collected to obtain ordinary ray (o-ray) and extraordinary ray (e-ray) absorption
spectra.

Fourier-transform infrared spectroscopy (FTIR) was performed using a Bruker VER-
TEX 80 FTIR spectrometer (BRUKER OPTICS, Billerica, MA, USA), using 32 scans and
4 cm−1 spectral resolution at the Gemmological Institute, China University of Geosciences,
Wuhan. The scanning ranges were 9000–4000 cm−1 in transmission mode.

Trace element contents were analyzed by laser ablation-inductively coupled plasma-
mass spectrometry (LA-LCP-MS) using an Agilent 7700 ICP-MS combined with a GeoLas
193 nm laser (Agilent, Singapore) at Wuhan SampleSolution Technology Co., Ltd., Wuhan,
China. We set the laser fluence at 9 J/cm2 with a 6 Hz repetition rate and the laser
spot size at 44 µm diameter. Each analysis incorporated a background acquisition time of
approximately 20–30 s, followed by 50 s of ablation. Element concentrations were calibrated
against multiple reference materials (BCR-2G, BHVO-2G, and BIR-1G) without using an
internal standard, and Al was chosen as the normalizing element [26]. Standard reference
material NIST 610 glass was also applied to time-drift correction. The standard for LA-ICP-
MS measurements is that the calibration values of the monitored reference materials agree
within the error range within the recommended values. Quality control deviations: Major
elements within 5% uncertainty and trace elements within 10% uncertainty. Two to three
spots per sample were analyzed.

5. Results
5.1. Gemological Properties

The gemological properties of emeralds from the Kagem Mine are summarized in
Table 1. The emeralds ranged from green to blueish green, and some displayed an at-
tractive saturated bluish-green color. The refractive indices varied from 1.578–1.591 for
ne and 1.589–1.597 for no with birefringence between 0.004 and 0.008. These values are
higher than most of the significant emerald deposits. Specific gravity values ranged from
2.67 to 2.86. The emeralds from the Kagem Mine were typically inert to long- and short-
wave UV radiation. The emeralds showed no reaction under the Chelsea filter. Dichroism
was medium to strong yellowish green (o-ray) and bluish green (e-ray).
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Table 1. Gemological properties of emeralds from Kagem Mine, Zambia.

Color Light to medium bluish green; typically, a saturated green with a
medium tone

Clarity Very slightly to heavily included
Refractive indices no = 1.589–1.597; ne = 1.578–1.591
Birefringence 0.004–0.008
Specific gravity 2.67–2.86
Pleochroism Medium to strong yellowish green (o-ray) and bluish green (e-ray)
Fluorescence Inert to long- and short-wave UV radiation
Chelsea filter No reaction
Visible Spectrum Distinct lines at~680 nm; and complete absorption <430 nm

Internal features Two-phase inclusions with a gas bubble, display elongated, hexagonal,
oval, or irregular shapes, were common
Densely distributed black mineral crystals, usually with a hexagonal or
rectangular outline
Colorless transparent crystals
Strong iridescent colors in fissures
Mineral inclusions: needle-like actinolite; clusters of black magnesite;
colorless dolomite; jagged or oval graphite encased in actinolite

5.2. Microscopic Characteristics

Two-phase inclusions with a gas bubble were commonly found in the Kagem emeralds,
displaying various shapes: rectangular, elongated, hexagonal, oval, or irregular shapes
(Figure 7a). Some two-phase inclusions occurred as isolated negative crystals along a
healed fissure plane, with an incomplete hexagonal prism shape (Figure 7b). At room
temperature, the gas bubbles typically occupy approximately one-third of the volume of the
cavity hosting the two-phase inclusions. Raman analysis confirmed that the liquid phase
of the two-phase inclusions primarily consisted of water or a liquid mixture of H2O and
CO2. The gas components included CO2 + N2 or CO2 + N2 + CH4 (Figure 8). There was a
two-phase inclusion with liquid and solid phases, and the latter was identified as dolomite
(peaks at 174, 296, and 1095 cm−1) by Raman analysis (arrow 1 in Figure 7a). It is worth
noting that a hexagonal multi-phase inclusion, containing a gas bubble and an obvious
solid phase in an aqueous solution, is rare in Kagem emeralds (arrow 2 in Figure 7a).
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Various mineral inclusions were observed in Kagem emeralds under the standard
gemological microscope. Colorless needle-like minerals of varying lengths were seen in
many samples and identified as actinolite through Raman analysis (Figure 9a). Black
jagged minerals, identified by Raman analysis as graphite, were visible in the actinolite
needles (Figure 9a). Occasionally, graphite appeared in oval or irregular shapes. Densely
distributed black mineral crystals (Figure 9b), which appeared hexagonal or rectangular
under high magnification, were identified using Raman spectroscopy as magnetite. Similar
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magnetite inclusions were also found in emeralds from Davdar, China [27]. A colorless
transparent crystal was identified as dolomite via Raman spectroscopy (Figure 9c). Partly
healed fissures displayed intense iridescent colors (Figure 9d).
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5.3. UV-Vis-NIR Spectroscopy

Representative UV-Vis-NIR absorption spectra of the emeralds from the Kagem Mine
are illustrated in Figure 10. Although the intensities varied among the samples, all exhibited
the same bands for the ordinary and extraordinary rays. Specifically, the ordinary ray
(o-ray) showed bands at 372, 430, 610, 637, and 840 nm, as well as a doublet at 681 and
684 nm. The bands at 430, 610, and 840 nm were broad and the positions were estimated.
The extraordinary ray (e-ray) displayed bands at 372, 427, 625, 640, 662, 684, and 840 nm,
the absorbance of a peak at 372 nm was weaker than its o-ray counterpart.

The bands at 430 and 610 nm (o-ray) and 427, 625 and 640 nm (e-ray), as well as the
peak at 684 nm (e-ray), indicated the presence of Cr3+, which causes the green color in
emerald [30,31]. Additional, weaker peaks at 637, 662 and the doublet at 681 and 684 nm
were also associated with the presence of Cr3+. The broad absorption bands from 600 to
750 nm were possibly linked to Fe3+-Fe2+ charge transfer [32]. Moreover, the peak at 372 nm
indicated the presence of Fe3+, and the band at 840 nm was caused by Fe2+ [3,10,30,33],
showing weaker intensity than the bands caused by Cr3+. The UV-Vis-NIR spectra feature
differs from some previous [10,34,35], but is similar to other scholars’ findings [3,36].
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Figure 9. Various mineral inclusions were observed in Kagem emeralds. (a) Black jagged graphites
were wrapped inside a colorless needle-like growth tube, identified using Raman spectroscopy as
actinolite; (b) Cluster of black magnetite appeared in the form of hexagons or rectangles under high
magnification; (c) An isolated colorless crystal was consistent with the Raman spectrum of dolomite;
(d) Obvious iridescent colors in partly healed fissures. Photomicrographs by Ran Gao.
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Figure 10. Representative UV-Vis-NIR spectra were collected on sample K-3, which has 2652 ppm
Cr, 267 ppm V, and 8759 ppm Fe. The spectra indicate the presence of Cr3+, Fe2+, and Fe3+. The
intensities or positions of the Chromophore elements varied in different spectral orientations. The
spectra are offset vertically for clarity.

5.4. Infrared Spectrometry

The near-infrared (NIR) spectrum of the emeralds was mainly related to the existing
mode of H2O molecules in the channel (Figure 11). H2O molecules in the c-channels have
been mainly classified as type I or type II water with their twofold axis perpendicular or
parallel to the crystal c-axis, respectively [37].

In the NIR range of 8000–4000 cm−1, the absorption spectrum bands of emeralds are
predominantly attributed to the combined frequency and double-frequency vibration of
structural water [38]. The most obvious band at 5274 cm−1 was caused by the combined
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frequency of bending (ν2) and antisymmetric stretching (ν3) modes of type I or II H2O
molecules [38,39]. The sharp bands at 7097–7075 cm−1 doublet, slightly weak bands at
6840 and 7268 cm−1, and two small shoulder bands at 5340 and 5205 cm−1 near the
5274 cm−1 band were assigned to type II H2O molecules, which were associated with alkali
ions in the channels of the emerald structure. The relatively strong band at 7140 cm−1 was
related to the overtone frequency absorption of type I water, whereas other spectral bands
of type I water, such as 7275 and 6820 cm−1 [38,40], were too weak to be discernible.
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Figure 11. The representative FTIR spectrum of Kagem emeralds shows some significant bands
caused by the vibrations of type I or type II H2O molecules in the channels of the emerald structure.
This graph displays that the spectral band intensities of type II H2O molecules are higher than those
of type I H2O molecules in Kagem emeralds.

5.5. Trace Element Analysis

Twenty faceted emeralds from the Kagem Mine were analyzed by LA-ICP-MS, three
spots for each sample and calculated their average values. The results are shown in Table 2.

Table 2. Chemical composition (in ppm) of Kagem emeralds, obtained by LA-ICP-MS.

Samples Element Min–Max Average (SD) Median LOD

Kagem emeralds
30 samples

Li 105.2–250.1 164.4 (31.46) 165.6 1.05
Na 13,810–17,410 16,440 (730.0) 16,640 23.89
Mg 13,350–17,230 15,650 (725.3) 15,730 4.17
K 121.0–283.9 184.9 (35.83) 179.2 25.99
Sc 96.78–1534 435.8 (298.6) 340.0 0.49
Ti 3.967–51.28 16.17 (8.190) 14.75 1.07
V 196.8–528.8 307.2 (77.95) 293.1 0.25
Cr 539.6–4844 2034 (1010) 1758 6.26
Fe 4822–14,160 9713 (2181) 9875 59.31
Ni 6.845–37.43 19.49 (6.771) 20.22 5.61
Zn BDL–15.86 3.766 (3.608) 3.225 2.02
Ga 2.916–50.49 31.15 (10.02) 34.10 0.40
Rb 9.381–20.78 14.29 (2.246) 14.29 0.75
Cs 128.4–1052 567.3 (268.6) 503.6 0.37

Data was rounded to 4 Significant Figures; SD = standard deviations; LOD = limit of detection; BDL = below
detection limit.

The Kagem emeralds for this study tended to have abundant alkali metals Li, Na, K,
Rb, and Cs. Total alkali element concentrations ranged from 14,227 to 18,634 ppm (avg.
17,405 ppm). The dominant alkali metal was Na, which ranged from 13,812 to 17,408 ppm,
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averaging 16,437 ppm. The emeralds also contained a significant amount of Mg and Fe,
ranging from 13,348 to 17,225 ppm (avg. 15,645 ppm) and from 4822 to 14,159 ppm (avg.
9713 ppm), respectively. Compared to the concentrations of Sc we measured (97–1534 ppm,
avg. 436 ppm), analyses of emeralds by Saeseaw et al. (2014) [10] display relatively low
Sc (12–75 ppm, avg. 31 ppm) in emeralds from Kafubu area. Cr (540–4844 ppm, avg.
2034 ppm), the most crucial chromophore in emeralds, was higher than V (197–529 ppm,
avg. 307 ppm).

6. Discussion
6.1. Inclusion Characteristics of Kagem Emeralds

The rectangular and hexagonal shapes of the two-phase inclusions found in Kagem
emerald were consistent with the multi-phase inclusion characteristics observed in schist-
hosted emerald deposits, such as those found in Brazil, Russia, and most African deposits.
We updated the component of the gas phase in two-phase inclusions. It is not monolithic
and can contain not only CO2 but also occasionally N2 and CH4. Multi-phase inclusions
with a solid phase were rare. H2O-NaCl-CO2 type inclusions were not found in our
samples. Black graphite encased in actinolite was first observed in Kagem emeralds. The
occurrence of abundant black magnetite and transparent dolomite further demonstrates a
direct association between the internal characteristics of gemstones and their geological
background. The talc-magnetite schist contained high concentrations of Fe and Mg.

6.2. Fe2+ Absorption Band in UV-Nis-NIR Spectroscopy

The Fe content in Table 2 represents the total Fe acquired by LA-ICP-MS, including
Fe3+ and Fe2+. Kagem emeralds showed the weaker Fe2+-related absorption band in the
NIR region compared to the bands caused by Cr3+. However, a lack of correlation was
found between the intensity of the Fe2+-related band and the total Fe content [41]. Divalent
metal ions (Me2+), such as Mg2+ and Fe2+, can substitute for Al3+ in the emerald structure.
In order to maintain charge balance, the channels must be occupied by alkali ions such as
Na+, K+, Rb+, and Cs+ (mainly Na+) [1,42], as follows:

Al3+ = Me2+ + Na+, (1)

Moreover, the linear positive correlation between Na+ content and the sum of divalent
cations is approximately 1:1 [41], thereby Fe2+ concentration can be calculated by the
following equations:

Na+
ppma = Fe2+

ppma + Mg2+
ppma, (2)

Xppma = Xppm
Eam

Xam
(3)

To clarify, ppma represents parts per million by atom, Eam represents the average
atomic mass of emerald chemical formula, and Xam represents the atomic mass of elements
(Na, Mg and Fe).

The proportion of Fe2+ in the total Fe we calculated varied from 5.37% to 59.33%. A
part of Fe2+ generated intervalence charge transfer with Fe3+, and this portion of Fe2+ did
not affect the band in the NIR region. Additionally, the content of Cr3+ was a crucial factor
to consider. We found a positive relationship between the Fe2+ to Cr3+ content ratio and the
intensity ratio of the Fe2+-related band at 840 nm to the Cr3+-related band at 610 nm (o-ray).
We speculated that the weaker band of Fe2+ in our samples was due to the low Fe2+ to Cr3+

value ratio. The concentration of Fe2+ can be roughly determined based on the content of
bivalent cations and alkali metals. However, when discussing the relative strength of the
Fe2+-related absorption band, the concentration of Cr3+ and V3+ should also be considered.
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6.3. Channel Water Types of Kagem Emerald

Alkali metal ions, water and other macromolecules that exist within the structural
channel of emeralds can maintain the charge balance and structural stability of minerals.
The concentration of alkali metal ions affects the type of emerald channel water. In the
presence of alkali ions, the axis of symmetry of adjacent H2O molecules is changed from
perpendicular to parallel to the c-axis due to the electrostatic attraction between the charged
cation and the oxygen of the H2O molecule [39].

Kagem emeralds, dominated by Na, contain abundant alkali metal ions (avg. 17,405 ppm).
The NIR spectra of Kagem emeralds (Figure 11) revealed that the bands for type II H2O at
7097–7075 cm−1 doublet were more intense than those for type I H2O at 7140 cm−1. Moreover,
the shoulder bands at 5340 and 5205 cm−1 were closer to 5274 cm−1 and were more obvious
with higher proportions of type II H2O. As mentioned above, Kagem emeralds dominate type II
H2O and the Kagem Mine belongs to one of three mineralization environment types—alkali-rich
type (other types include alkali-poor and transition) [38]. Similar emeralds were found in Swat
Valley, Pakistan, Goias, Brazil, and most African deposits.

6.4. Origin Traceability Analysis

A log-log plot of Rb versus Cs content can separate the Kagem mine from emeralds
of all other significant deposits (Figure 12). Kagem emeralds exhibit low-to-moderate Rb
values and moderate-to-high Cs, with a slight overlap with emeralds from Ural, Russia.
Emeralds from Malipo, China, and Chitral, Pakistan display high Cs content, while Zim-
babwean and Madagascan samples exhibit high Rb value. The emeralds from Colombia
show very low Rb and Cs values. The plotted points of the two China deposits can be
easily separated by their Cs content.
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A better separation between the Kagem Mine and other significant emerald localities
can be made by plotting Na versus K (Figure 13). Kagem emeralds display high Na values
combined with low-to-moderate K, despite a slight overlap with emeralds from Sandawana,
Zimbabwe and Shakisso, Ethiopia, which have relatively high K. Emeralds from Madagas-
car, Ethiopia, Zimbabwe, and India, all of which belong to Type IA occurrences [1], contain
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high Na value over 10,000 ppm. The emeralds from Panjshir, Afghanistan exhibit a broad
range of Na and K values in this plot. A log-log plot of Fe versus Zn was created to better
distinguish our samples from those in Zimbabwe and Ethiopia (Figure 14). The samples
from Kagem show relatively low Zn value.
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7. Conclusions

The origin tracing of emeralds requires sufficient samples as support, and new features
have been discovered with the advancement of research methods. On the basis of previous
research, this study provides new discoveries on Kagem emeralds, including the inclusion,
spectral characteristics and chemical analyses.

Two-phase inclusions are common in Kagem emeralds, with the fluid phase containing
H2O or liquid mixtures of H2O + CO2, and the gas phase consisting of combinations of
CO2 + N2 or CO2 + N2 + CH4. A special two-phase inclusion with a solid phase has been
identified as dolomite. Raman spectroscopy analysis revealed that Kagem emeralds contain
a variety of solid inclusions, including actinolite, graphite, magnetite, and dolomite. Kagem
emeralds typically show a conspicuous band caused by Fe2+ in the NIR region, and its rela-
tive intensity is affected by various elements. Kagem emeralds contain moderate-to-high
Cs content (avg. 567 ppm) and low-to-moderate Rb (avg. 14 ppm) content. Additionally,
they tend to exhibit high Na values (avg. 16,440 ppm) combined with low-to-moderate
K (avg. 185 ppm). The projection diagram of Rb vs. Cs, Na vs. K, and Fe vs. Zn can
distinguish the Kagem Mine from other significant emeralds deposits.
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