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Abstract: Devonian magmatism is one of the most important tectonothermal events in the Central
Asian Orogenic Belt (CAOB). However, little is known regarding the petrogenesis and geodynamic
setting of the widely distributed Devonian granitoids in the eastern Southern Beishan Orogenic Belt
(SBOB). Early-Devonian granitic magmatism has been recognized from the Luotuoquan area, and the
granites were emplaced between 404.9 Ma and 399.4 Ma according to LA-ICPMS zircon U–Pb dating.
Geochemically, the granites exhibit high SiO2 and Al2O3 contents and are enriched in light rare earth
elements as well as Rb, Th, Nd, Zr, and Hf, while being depleted in heavy rare earth elements and Ba,
U, Sr, and Ti, with distinct rare earth element fractionation and pronounced negative Eu anomalies.
According to the comprehensive analysis, they closely resemble the features typically associated with
A-type granites. The zircons εHf(t) values are within the range of +0.90–+5.19 (averaged 3.23) for the
monzogranite and syenogranite, whereas their TDM2 values fall between 1.05 and 1.34 Ga, suggesting
that the magma source of the monzogranite–syenogranite originated from the partial melting of
the Mesoproterozoic crust dominated by metagreywackes. Furthermore, the monzogranite and
syenogranite exhibit high temperatures (average 782 ◦C), thin crustal thickness (average 30 km), and
A-type characteristics, suggesting their formation in post-collision extensional settings. We propose
the closure of the Beishan Ocean occurred before the early Devonian, followed by a transition in the
Southern Beishan Orogenic Belt from a compressional to an extensional setting.

Keywords: zircon U–Pb dating; geochemistry; A-type granite; Luotuoquan complex; Beishan
Orogenic Belt

1. Introduction

The Central Asian Orogenic Belt (CAOB) is formed by the sequential accretion of
multiple microcontinents, island arcs, seamounts, oceanic plateaus, and accretionary com-
plexes from the early Neoproterozoic to the late Paleozoic [1–3]. The Beishan Orogenic Belt
(BOB) connects the Tarim, Kazakhstan, and North China cratons [4–6] (Figure 1a) and is
considered a critical southern Central Asian Orogenic Belt segment, vital for understanding
crustal growth and tectonic evolution [5–16]. The Southern Beishan Orogenic Belt (SBOB),
primarily consisting of the Shuangyingshan and Huaniushan units (Figure 1), is thought to
record the collision and subduction among ancient microcontinents with Mesoproterozoic
to Neoproterozoic basements [17–21]. However, the tectonic and thermal evolution of the
SBOB remains unclear, particularly the timing of the Beishan Ocean closure during the
early Paleozoic. Current views suggest the closure occurred in the later Silurian–early
Devonian [22–25], Carboniferous [25], early Permian [26], or after the late Permian [27–29].
Thus, the Paleozoic crustal growth and geodynamics of the SBOB are rather controversial
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compared to those of the Mesozoic [11]. Further investigation of the tectonic and crustal
development of the SBOB during the early–late Paleozoic is needed.
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Figure 1. (a) Tectonic setting of the BOB (modified after [5]). (b) Simplified tectonic map of the Beishan
orogenic collage and its adjacent area showing the tectonic subdivisions (modified after [5,13]). The
zircon U-Pb age data of granitoids in (b) are from previous studies [4,6,10,30–35].

Herein, we present comprehensive whole-rock geochemical, in situ zircon U–Pb
geochronology, and Hf isotopic data of A-type granites from the Luotuoquan complex.
In addition to previously published findings, we discuss the genetic mechanism and
tectonic settings of the early Paleozoic granitoids of the SBOB, elucidating their significant
implications for understanding the tectonic evolution during this period in the BOB while
also providing valuable insights into Beishan Ocean closure.

2. Geological Setting

The BOB comprises a complex assemblage of blocks, magmatic arcs, and ophiolitic
mélanges that were formed through the subduction–accretion process of the Paleo–Asian
Ocean [5]. Based on the spatial and temporal distributions of the ophiolitic mélanges and
rock associations, the BOB is divided into several arcs [5], comprising (from north to south)
the Queershan, Heiyingshan, Hanshan, Mazongshan, Shuangyingshan, Huaniushan, and
Shibanshan arcs, which are separated by the Hongshishan, Shibanjing, Hongliuhe, and
Liuyuan ophiolitic mélanges, respectively (Figure 1b).

The SBOB is situated within the Hongliuhe and Liuyuan ophiolitic mélanges [10]
(Figure 1b) and comprises the Shuangyingshan and Huaniushan Units. In addition, the
southern Beishan has recorded the subduction and collision of several microcontinen-
tal fragments and is characterized by early Paleozoic volcanic–sedimentary formations
and intrusive plutons generated during early Paleozoic subduction [20,22,36,37]. Recent
geochronological studies in the region reveal three stages of pluton emplacement in the
Mid-Ordovician to late Silurian [6,23,38–40], early Devonian [4,6,40–42], and Late Devonian
to early Carboniferous [6,38].

The Luotuoquan complex is situated in the eastern segment of the SBOB (Figure 1b)
and intrudes into Silurian granitoids (Figure 2). It primarily consists of monzogranite,
syenogranite, and minor basic rock. Field observations reveal that the syenogranite exhibits
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weak mylonitization and has intruded into the monzogranite (Figure 2). The Devonian
samples are derived from the Luotuoquan granite complex, comprising five monzogran-
ite samples (PM03-2, PM03-26, PM03-41, PM12-20, and PM17-4 and three syenogranite
samples (D5195, D8373, and PM06-34). The monzogranite samples display medium- to
coarse-grained massive rocks, primarily composed of quartz (20–25 vol%), K-feldspar
(35–40 vol%), plagioclase (30–35 vol%), and orientated biotite and/or muscovite (5 vol%)
(Figure 3a,b). The syenogranite samples exhibit well-developed mylonitization and a
granoblastic texture. They predominantly consist of K-feldspar (55–60 vol%), plagioclase
(10–15 vol%, An = 5–10), and quartz (20–25 vol%) with minor biotite (5 vol%) (Figure 3c,d).

Minerals 2023, 13, 1411 3 of 18 
 

The Luotuoquan complex is situated in the eastern segment of the SBOB (Figure 1b) 
and intrudes into Silurian granitoids (Figure 2). It primarily consists of monzogranite, sy-
enogranite, and minor basic rock. Field observations reveal that the syenogranite exhibits 
weak mylonitization and has intruded into the monzogranite (Figure 2). The Devonian 
samples are derived from the Luotuoquan granite complex, comprising five monzogranite 
samples (PM03-2, PM03-26, PM03-41, PM12-20, and PM17-4 and three syenogranite sam-
ples (D5195, D8373, and PM06-34). The monzogranite samples display medium- to coarse-
grained massive rocks, primarily composed of quartz (20–25 vol%), K-feldspar (35–40 
vol%), plagioclase (30–35 vol%), and orientated biotite and/or muscovite (5 vol%) (Figure 
3a,b). The syenogranite samples exhibit well-developed mylonitization and a granoblastic 
texture. They predominantly consist of K-feldspar (55–60 vol%), plagioclase (10–15 vol%, 
An = 5–10), and quartz (20–25 vol%) with minor biotite (5 vol%) (Figure 3c,d). 

 
Figure 2. Geological map of the mafic–ultramafic intrusions and granite plutons in the Luotuoquan 
area. 

 

Figure 2. Geological map of the mafic–ultramafic intrusions and granite plutons in the Luotuoquan area.

Minerals 2023, 13, 1411 3 of 18 
 

The Luotuoquan complex is situated in the eastern segment of the SBOB (Figure 1b) 
and intrudes into Silurian granitoids (Figure 2). It primarily consists of monzogranite, sy-
enogranite, and minor basic rock. Field observations reveal that the syenogranite exhibits 
weak mylonitization and has intruded into the monzogranite (Figure 2). The Devonian 
samples are derived from the Luotuoquan granite complex, comprising five monzogranite 
samples (PM03-2, PM03-26, PM03-41, PM12-20, and PM17-4 and three syenogranite sam-
ples (D5195, D8373, and PM06-34). The monzogranite samples display medium- to coarse-
grained massive rocks, primarily composed of quartz (20–25 vol%), K-feldspar (35–40 
vol%), plagioclase (30–35 vol%), and orientated biotite and/or muscovite (5 vol%) (Figure 
3a,b). The syenogranite samples exhibit well-developed mylonitization and a granoblastic 
texture. They predominantly consist of K-feldspar (55–60 vol%), plagioclase (10–15 vol%, 
An = 5–10), and quartz (20–25 vol%) with minor biotite (5 vol%) (Figure 3c,d). 

 
Figure 2. Geological map of the mafic–ultramafic intrusions and granite plutons in the Luotuoquan 
area. 

 

Figure 3. Field and microscopic photos of the Luotuoquan monzogranite (a,b) and syenogranite (c,d).
Qtz-quartz; Pl-plagioclase; Kfs-potassium feldspar; Bt-biotite.



Minerals 2023, 13, 1411 4 of 18

3. Analytic Methods
3.1. Zircon Dating and CL Imaging

Zircons were separated from the granite samples PM06-34 and PM12-20 of the Luo-
tuoquan complex for laser ablation inductively coupled plasma mass spectrometry (LA-
ICP-MS) U–Pb dating. Zircon grains were extracted using standard density and magnetic
separation techniques. The selected zircon grains were handpicked under a stereoscopic
microscope and mounted in epoxy resin before being polished to dissect the crystals in half
for analysis. Cathodoluminescence (CL) and reflected-light photomicrographic analysis of
the prepared sample targets were utilized to image the morphology and internal structure
of the zircons to aid in selecting zircon grains for U–Pb dating. Zircon U–Pb dating analyses
were conducted on a quadrupole inductively coupled plasma mass spectrometer (ICP-MS)
(THERMO-ICAPRQ) coupled to a 193-nm ArF Excimer laser (Resolution-LR, Applied
Spectra, West Sacramento, CA, USA) at Hebei Key Laboratory of Strategic Critical Mineral
Resources. The laser spot size was set to 29 µm, the laser energy density was 3 J/cm2,

and the repetition rate was 8 Hz. Each analysis comprised a 10 s blank, a 40 s sampling
ablation, and a 20 s sample-chamber flushing after the ablation. The ablated material was
carried into the ICP-MS by the high-purity helium gas stream with a flux of 0.4 L/min. The
whole laser path was fluxed with argon (0.9 L/min) to increase energy stability. A zircon
91,500 standard was used for external age calibration, and a zircon GJ–1 standard was used
as a secondary standard to supervise the deviation of age calculation. Calibrations for trace
element concentration were carried out using NIST SRM610 as an external standard and Si
as the internal standard. ICPMSDataCal (Ver. 4.6) [43] and Isoplot 3.0 [44] programs were
used for data reduction.

3.2. In Situ Lu-Hf Isotopes

In situ zircon Lu–Hf isotopic analyses were performed using a Neptune Plus MC–
ICP–MS (Thermo Fisher Scientific, Brunswick, Germany) equipped with a Geolas 2005
excimer ArF laser ablation system (LambdaPhysik, Göttingen, Germany). All data on
zircon were acquired in a single-spot ablation mode at a spot size of 44 µm. The energy
density of laser ablation used in this study was ~7.0 J/cm−2. Each measurement consisted
of a 20-s acquisition of the background signal, followed by a 50-s acquisition of ablation
signals. Instrumental conditions and data acquisition were as described by Wu et al.
(2006) [45]. Zircon 91,500 was used as the reference standard. The chondritic ratios of
176Hf/177Hf = 0.282772 and 176Lu/177Hf = 0.0332 were used in our calculation of εHf(t)
values [46]. Single-stage model ages (TDM1) were calculated by reference to depleted
mantle with a present day 176Hf/177Hf ratio of 0.28325 and 176Lu/177Hf ratio of 0.0384 [47].
The two-stage Hf model age (TDM2), also interpreted as crust formation age, was calculated
by projecting the zircon 176Hf/177Hf (t) back to the depleted mantle model growth curve,
assuming a mean crustal value for Lu/Hf (176Lu/177Hf = 0.015) [48].

3.3. Whole-Rock Geochemical Analysis

Whole-rock geochemical analyses were performed at the Institute of Regional Geology
Survey of Hebei Province. Fresh chips of whole-rock samples were powdered to 200 mesh
using a tungsten carbide ball mill. Major and trace elements were analyzed by X-ray
fluorescence (Axios X; PANalytical B.V.) and inductively coupled plasma mass spectrometry
(XSeries II; Thermo Fisher Scientific), respectively. The analytical precision is generally
better than 2% for major elements. For trace element analyses, sample powders were
digested using HF + HNO3 mixture in high-pressure Teflon bombs at 190 ◦C for 48 h or
longer. The analytical precision is generally better than 5% for trace elements.

4. Result
4.1. Zircon U-Pb Dating and Lu-Hf Isotope Compositions

The zircons from monzogranite (PM12-20) and syenogranite (PM06-34) are similar
in crystal morphology with sizes ranging from 80 to 200 µm and aspects ratios of 2:1–3:1.
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The CL images reveal oscillatory zoning and rare inherited cores (Figure 4). The Th/U
ratios are >0.1, indicating magmatic origin (Table 1). Sixteen analyses from sample PM12-34
(monzogranite) were concordant and yielded a weighted mean age of 404.9 ± 1.4 Ma
(Figure 4a). Sixteen spots were analyzed for dating from sample PM06-12, apart from
six spots (RZ7, RZ9-11, RZ13, and RZ15), which represent the age of the inherited core, the
remaining ten analyses yielded a weighted mean age of 399.4 ± 5.1 Ma (Figure 4b).
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The analytical results are presented in Table 2, including εHf(t) values and model
ages calculated using 206Pb/238U ages. The 32 spots from the Luotuoquan granites exhibit
initial 176Hf/177Hf ratios ranging from 0.282205 to 0.282415 and positive εHf(t) values of
+0.90–+5.19. Furthermore, the TDM2 model ages range from 1.05 to 1.34 Ga.

4.2. Major and Trace Elements

The whole-rock major and trace element compositions of the five monzogranite sam-
ples and three syenogranite samples were analyzed, and the results are presented in Table 3.

4.2.1. Major Elements

The samples possess high SiO2 (71.04–76.00 wt.%), K2O (4.02–5.59 wt.%), and K2O + Na2O
(7.04–8.62 wt.%); however, they possess low Al2O3 (12.10–14.30 wt.%), MgO (0.07–0.63 wt.%),
and CaO (0.76–2.53 wt.%). In the SiO2 versus K2O + Na2O diagram (Figure 5a), the
samples are plotted within the granitoid fields, which is consistent with the petrographic
observations. They further display low A/CNK values (molar Al2O3/(CaO + Na2O + K2O))
ranging from 0.85 to 1.08 and exhibit peraluminous and high K characteristics (Figure 5).

4.2.2. Trace Elements

In the chondrite-normalized rare earth element patterns, the samples exhibit relative
enrichment of light rare earth elements (LREE)([La/Yb]N = 2.63–16.87) and significant
negative Eu anomalies (Eu/Eu* = 0.23–0.45), while the REE abundances range from 161.2
to 459.7 ppm (Figure 6a). All samples are depleted in Ba, U, Sr, P, and Ti and enriched in
Rb, Th, Nd, Zr, and Hf relative to the primitive mantle (Figure 6b).
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Table 1. LA-ICP-MS zircon U–Pb dating results of the Luotuoquan granites.

No
Pb U Isotopic Ratios Isotopic Age (Ma)

(ppm) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ

PM12-20: monzogranite
RZ1 75 294 0.0529 0.0028 0.4754 0.0234 0.0654 0.0011 324 120 395 16.1 409 7.2
RZ2 101 457 0.0556 0.0026 0.4958 0.0213 0.0645 0.0009 439 104 409 14.5 403 6.1
RZ3 84 420 0.0539 0.0020 0.4851 0.0179 0.0647 0.0010 365 88 402 12.3 404 6.5
RZ4 69 360 0.0540 0.0021 0.4845 0.0178 0.0648 0.0009 372 87 401 12.2 405 6.3
RZ5 120 529 0.0554 0.0020 0.5026 0.0188 0.0654 0.0011 428 81.5 413 12.7 408 6.6
RZ6 72 296 0.0551 0.0028 0.4922 0.0244 0.0646 0.0012 417 115 406 16.6 403 7.1
RZ7 74 300 0.0557 0.0026 0.4939 0.0214 0.0647 0.0010 443 99.1 408 14.6 404 6.4
RZ8 110 486 0.0549 0.0020 0.492 0.0172 0.0645 0.0009 406 81.5 406 11.7 403 6.2
RZ9 60.6 330 0.0510 0.0028 0.4651 0.0257 0.0651 0.0012 239 130 388 17.8 406 7.1

RZ10 233 900 0.0559 0.0022 0.5074 0.0188 0.0646 0.0010 456 82.4 417 12.7 403 6.3
RZ11 56.3 231 0.0548 0.0026 0.4878 0.0211 0.0645 0.0010 467 106 403 14.4 403 6.4
RZ12 34.4 149 0.0551 0.0048 0.4974 0.0408 0.0651 0.0015 413 193 410 27.7 406 9.4
RZ13 127 530 0.0544 0.0019 0.4882 0.0171 0.0644 0.0010 387 81.5 404 11.7 402 6.8
RZ14 86 388 0.0545 0.0022 0.4912 0.0189 0.0651 0.0009 391 90.7 406 12.8 407 5.2
RZ15 76 326 0.0550 0.0032 0.4988 0.0289 0.0654 0.0011 413 131 411 19.6 408 7.3
RZ16 82 360 0.0524 0.0021 0.4729 0.0184 0.0651 0.0009 306 92.6 393 12.7 407 6.1

PM06-34: syenogranite
RZ1 48.3 213 0.0554 0.0025 0.4770 0.0221 0.062 0.0011 428 104 396 15.2 387 6.4
RZ2 51.2 227 0.0549 0.0029 0.4719 0.0234 0.0627 0.0012 406 117 392 16.1 392 7.3
RZ3 46.1 192 0.0567 0.0031 0.4925 0.0255 0.0635 0.0013 480 114 407 17.4 397 8.1
RZ4 114 422 0.0546 0.0022 0.4798 0.0198 0.0623 0.0010 394 90.7 398 13.6 390 6.1
RZ5 123 585 0.0537 0.0021 0.4785 0.0182 0.0637 0.0010 367 88.9 397 12.5 398 6.2
RZ6 92 305 0.0574 0.0026 0.5068 0.0212 0.0637 0.0012 506 100 416 14.3 398 7.2
RZ7 77 337 0.0565 0.0028 0.5297 0.0266 0.0668 0.0011 472 105 432 17.7 417 7.0
RZ8 61.6 384 0.0585 0.0022 0.5046 0.0190 0.0620 0.0012 550 83.3 415 12.8 388 7.1
RZ9 85 398 0.0623 0.0026 0.5750 0.0235 0.0660 0.0011 687 88.9 461 15.1 412 7.2

RZ10 98 447 0.0570 0.0022 0.5192 0.0193 0.0656 0.0011 500 83.3 425 12.9 410 6.1
RZ11 54.2 278 0.0547 0.0025 0.5056 0.0227 0.0672 0.0012 398 99 415 15.3 419 7.5
RZ12 52.6 241 0.0547 0.0025 0.4720 0.0204 0.0630 0.0011 398 102 393 14.1 394 7.2
RZ13 39.9 168 0.0654 0.0038 0.5996 0.0377 0.0661 0.0014 787 122 477 23.9 412 8.1
RZ14 75 267 0.0557 0.0027 0.4814 0.0214 0.0634 0.0012 439 107 399 14.7 396 7.2
RZ15 95 424 0.0557 0.0023 0.5192 0.0233 0.0670 0.0012 439 94.4 425 15.6 418 7.3
RZ16 45.2 220 0.0564 0.0027 0.4873 0.0226 0.0622 0.0013 478 103 403 15.4 389 8.0
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Table 2. In situ zircon Hf isotopic results of the Luotuoquan granites.

No Age (Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(0) εHf(t) 2σ TDM1 (Ma) f(Lu/Hf) TDM2 (Ma)

PM12-20: monzogranite
RZ1 409 0.014856 0.000530 0.282242 0.000015 −18.7 3.72 0.51 894 −0.98 1160
RZ2 403 0.031534 0.001173 0.28240 0.000017 −13.2 2.96 0.59 927 −0.96 1204
RZ3 404 0.025478 0.000856 0.28238 0.000018 −13.9 3.82 0.64 876 −0.97 1150
RZ4 405 0.041885 0.001418 0.282381 0.000014 −13.8 3.39 0.49 895 −0.96 1178
RZ5 408 0.030106 0.001031 0.282337 0.000015 −15.4 3.51 0.51 887 −0.97 1173
RZ6 403 0.040490 0.001374 0.282318 0.000015 −16.1 3.71 0.54 873 −0.96 1156
RZ7 404 0.048124 0.001711 0.282350 0.000017 −14.9 4.12 0.59 884 −0.95 1131
RZ8 403 0.034757 0.001174 0.282334 0.000014 −15.5 2.32 0.51 934 −0.96 1244
RZ9 406 0.028390 0.000962 0.282279 0.000014 −17.4 3.12 0.51 902 −0.97 1196
RZ10 403 0.032415 0.001107 0.282360 0.000015 −14.6 2.66 0.54 914 −0.97 1223
RZ11 403 0.033578 0.001125 0.282319 0.000014 −16.0 3.30 0.50 889 −0.97 1182
RZ12 406 0.054288 0.001987 0.282317 0.000014 −16.1 3.88 0.49 879 −0.94 1148
RZ13 402 0.008480 0.000266 0.282205 0.000016 −20.1 3.58 0.55 907 −0.99 1164
RZ14 407 0.029075 0.000976 0.282415 0.000014 −12.6 4.34 0.49 873 −0.97 1119
RZ15 408 0.054699 0.001828 0.282399 0.000015 −13.2 3.74 0.54 875 −0.94 1158
RZ16 407 0.029610 0.001011 0.282348 0.000016 −15.0 4.57 0.58 847 −0.97 1105

PM06-34: syenogranite
RZ1 387 0.032029 0.001097 0.282317 0.000018 −16.1 2.96 0.64 890 −0.97 1192
RZ2 392 0.011210 0.000352 0.282254 0.000018 −18.3 5.19 0.64 814 −0.99 1054
RZ3 397 0.045344 0.001502 0.282343 0.000015 −15.2 2.52 0.54 914 −0.95 1227
RZ4 390 0.028869 0.000986 0.282321 0.000019 −15.9 4.66 0.67 831 −0.97 1086
RZ5 398 0.031534 0.001173 0.282400 0.000015 −13.2 2.39 0.51 922 −0.96 1236
RZ6 398 0.025478 0.000856 0.282380 0.000017 −13.9 2.31 0.59 928 −0.97 1241
RZ7 417 0.041885 0.001418 0.282381 0.000016 −13.8 0.95 0.58 998 −0.96 1341
RZ8 388 0.030106 0.001031 0.282337 0.000014 −15.4 2.92 0.51 893 −0.97 1195
RZ9 412 0.040490 0.001374 0.282318 0.000014 −16.1 1.81 0.51 958 −0.96 1283

RZ10 410 0.048124 0.001711 0.282350 0.000014 −14.9 0.90 0.50 993 −0.95 1339
RZ11 419 0.034757 0.001174 0.282334 0.000014 −15.5 4.30 0.49 862 −0.96 1131
RZ12 394 0.028390 0.000962 0.282279 0.000014 −17.4 2.11 0.50 927 −0.97 1250
RZ13 412 0.032415 0.001107 0.282360 0.000013 −14.6 2.98 0.46 910 −0.97 1209
RZ14 396 0.033578 0.001125 0.282319 0.000013 −16.0 4.68 0.47 833 −0.97 1090
RZ15 418 0.054288 0.001987 0.282317 0.000017 −16.1 2.91 0.61 922 −0.94 1218
RZ16 389 0.008480 0.000266 0.282205 0.000016 −20.1 3.12 0.58 884 −0.99 1183
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Table 3. Major and trace element compositions of the Luotuoquan granites.

Samples
Monzogranirte Syenogranite

PM03-2 PM03-26 PM03-41 PM12-20 PM17-4 D5195 D8373 PM06-34

SiO2 71.04 71.80 74.95 72.80 74.10 71.60 76.00 72.30
TiO2 0.29 0.32 0.14 0.29 0.12 0.49 0.18 0.17

Al2O3 14.20 14.30 13.20 13.60 14.10 13.30 12.10 12.10
TFe2O3 2.41 2.61 1.11 2.57 1.08 3.63 1.70 1.86
MnO 0.06 0.06 0.01 0.05 0.01 0.03 0.01 0.03
MgO 0.55 0.63 0.27 0.41 0.30 0.62 0.07 0.63
CaO 2.16 1.98 0.76 1.33 1.29 2.00 1.03 2.53

Na2O 3.45 3.49 3.03 3.10 3.51 3.01 2.46 2.69
K2O 4.29 4.02 5.59 4.93 4.87 4.03 4.89 4.89
P2O5 0.12 0.12 0.03 0.09 0.04 0.11 0.04 0.29
LoI 1.52 0.77 0.76 0.92 0.51 1.23 1.43 2.48

Total 100.07 100.07 99.85 100.03 99.99 100.06 99.93 99.99
Rb 211.0 132.0 167.0 177.0 215.0 112.0 114.0 134.0
Ba 406.0 444.0 398.0 345.0 466.0 556.0 499.0 755.0
Th 28.60 11.50 11.30 20.70 16.70 29.20 21.20 24.80
U 4.81 2.41 2.23 2.95 1.76 2.10 1.30 1.90
Ta 1.10 0.76 0.90 1.08 0.80 0.81 0.40 0.72
Nb 14.00 9.53 9.56 11.50 10.10 15.10 5.13 12.40
Sr 90.50 50.10 60.40 65.80 84.50 86.00 59.00 79.00
Zr 333.0 202.0 245.0 259.0 236.0 365.0 147.0 275.0
Hf 10.90 6.98 8.40 8.90 8.01 12.50 6.10 9.50
Y 55.52 57.88 58.64 43.61 44.51 47.40 43.40 37.70

Ga 19.10 18.20 14.30 17.00 20.60 25.40 21.70 17.20
La 40.28 25.93 19.75 47.56 42.23 93.60 48.60 68.20
Ce 93.30 56.65 45.19 108.9 83.71 189.0 89.60 140.0
Pr 10.97 7.51 5.87 14.30 11.20 25.60 12.90 19.20
Nd 43.77 31.14 24.06 55.80 44.47 94.90 50.90 74.00
Sm 9.62 7.69 6.25 11.46 9.12 17.20 11.50 14.10
Eu 1.13 0.96 0.86 1.37 1.00 1.22 1.18 1.20
Gd 7.84 6.18 5.11 9.07 7.45 15.10 9.35 11.50
Tb 1.61 1.44 1.33 1.62 1.42 2.11 1.53 1.80
Dy 9.84 9.66 9.57 8.49 8.51 9.62 8.13 9.20
Ho 1.87 1.89 1.89 1.50 1.53 1.64 1.50 1.70
Er 4.68 4.72 4.75 3.75 3.81 4.56 4.35 4.00
Tm 0.84 0.93 0.96 0.63 0.69 0.66 0.73 0.60
Yb 4.87 5.52 5.38 3.57 4.11 3.98 4.67 3.70
Lu 0.85 0.96 0.89 0.66 0.75 0.54 0.64 0.50

∑REE 231.5 161.2 131.9 268.7 220.0 459.7 245.6 349.7
LREE/HREE 6.14 4.15 3.41 8.17 6.78 11.00 6.95 9.57

δEu 0.39 0.41 0.45 0.40 0.36 0.23 0.34 0.27
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4.2.2. Trace Elements 
In the chondrite-normalized rare earth element patterns, the samples exhibit relative 

enrichment of light rare earth elements (LREE)([La/Yb]N = 2.63–16.87) and significant neg-
ative Eu anomalies (Eu/Eu* = 0.23–0.45), while the REE abundances range from 161.2 to 
459.7 ppm (Figure 6a). All samples are depleted in Ba, U, Sr, P, and Ti and enriched in Rb, 
Th, Nd, Zr, and Hf relative to the primitive mantle (Figure 6b). 

Figure 5. (a) Total alkalis (Na2O + K2O) vs. SiO2 diagram [49]; (b) K2O vs. SiO2 diagram [50];
(c) A/NK vs. A/CNK diagram [51]. Published data of the early Devonian granitoids in the Beishan
area are from [4,6,30,31,42,52,53].
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5. Discussion
5.1. Devonian Magmatism in the Southern Beishan Orogenic Belt

The LA–ICP–MS zircon U–Pb ages obtained in this study (404–399 Ma) are consistent
with the timing of pluton emplacement in the SBOB, including the Liuyuan monzogranite
(397 ± 7 Ma) [40], Shuangfengshan A-type granites (415 ± 3 Ma) [4], Huitongshan K-
feldspar granite (397 ± 3 Ma) [42], and Shijinpo granitoid (404 ± 2 Ma) [53]. Previous
studies have established that the Silurian–Devonian was a crucial period of magmatism in
the BOB (Figure 1a), with age peaks of 440, 420, and 400 Ma. The Luotuoquan granites, as
products of Devonian magmatism, offer valuable insights into the geodynamic evolution
of the BOB during the mid-Paleozoic.

5.2. Petrogenesis and Magma Sources

The syenogranite samples in this study have undergone mylonitization, as evidenced
by petrographic observation (Figure 2d). Therefore, it is imperative to evaluate the impact
of alteration on both major and trace elements before discussing their petrogenesis [55]. Our
samples demonstrate differentiated correlations between “immobile alteration” elements
(e.g., Zr) and the other trace elements (Figure 7), where Nb, Ta, Th, and Hf display a
stronger correlation with Zr than Rb and Ba, suggesting that this alteration has less effect
on these elements. Consequently, the subsequent discussion will primarily focus on more
immobile elements such as Nb, Ta, Zr, and REEs.

The Luotuoquan monzogranite and syenogranite exhibit similar geochemical charac-
teristics and are discussed together. They have high SiO2 (71.04–76.00 wt.%) and K2O + Na2O
(7.04–8.62 wt.%) but low Al2O3 (mean of 13.36 wt.%), MgO (mean of 0.03 wt.%), and CaO
(mean of 1.64 wt.%), indicating A-type granite geochemical characteristics. Nevertheless,
highly fractionated I-type and S-type granites also share similarities with A-type granites.
Highly fractionated S-type granites tend to exhibit higher P2O5 (mean of 0.14 wt.%) and
lower Na2O (mean of 2.81 wt.%) than A-type granites [56]. The monzogranite–syenogranite
displays low P2O5 (mean of 0.11 wt.%) and high Na2O (mean of 3.09 wt.%), indicating it
does not belong to the highly fractionated S-type granite. Compared with highly fraction-
ated I-type granite, A-type granite shows iron enrichment and magnesium depletion with
higher Fe2O3

T/MgO ratios. The Fe2O3
T/MgO value of Luotuoquan granite ranges from

2.95 to 24.28 (mean of 6.95), which is significantly greater than that of highly fractionated
I-type granite (2.27) and S-type granite (2.38) [57,58]. Additionally, typical A-type granites
are enriched in trace elements such as Th, Nb, Ta, Zr, Hf, Ga, and Y while being depleted
in Sr, Ti, P, Cr, Co, Ni, V, etc., with obvious negative Eu anomaly [57,59]. All samples
exhibit high Th, Zr, K, Ga, Y, and Yb but low Sr, P, Eu, and Ti, which also implies that
Luotuoquan granite had A-type geochemical features. Previous studies suggested that
A-type granitoids share similar geochemistry characteristics of high 10,000× Ga/Al values
(>2.6) and Zr + Nb + Ce + Y (>350 ppm) [57]. The discrimination diagrams (Figure 8)
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demonstrate that the majority, if not all, of the samples are plotted within the A-type granite
field. We, therefore, conclude that the Luotuoquan monzogranite–syenogranite pluton are
typical A-type intrusions.
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melts derived from greywackes or igneous sources (CaO/Na2O = 0.3–1.5) [72]. High-tem-
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The monzogranite–syenogranite is characterized by high CaO/Na2O ratios (mean of 0.53) 
and low Al2O3/TiO2 ratios (mean of 63.73), suggesting a source of metagreywackes or met-
amorphic igneous rock. The samples are all plotted within the field of partial melts de-
rived from metagreywackes in the molar Al2O3/(MgO + FeOT) vs. molar CaO/(MgO + 
FeOT) and molar K2O/Na2O vs. molar CaO/(MgO + FeOT) diagrams (Figure 9). Therefore, 
the granitic magma source is likely related to partial melts from metagreywackes. 

The Hf isotope analysis of U-Pb dated zircon grains can trace the original magma 
sources and distinguish between the reworking of continental crust and the remelting of 
juvenile crust [74,75]. In this study, the early Devonian Luotuoquan monzogranite–sye-
nogranite has considerably positive zircon εHf(t) of +0.9–+5.2 (Figure 10) and slightly 
young two-stage Hf model ages of 1.05–1.34 Ga (Figure 10). The SBOB is thought to have 
developed abundant Mesoproterozoic to Neoproterozoic basement complex, which is a 
suite of metamorphosed clastic rock [17,18,20,37]. The significantly positive εHf(t) values 
and relatively young two-stage Hf model ages suggest that the granitic rocks originated 
from either the depleted mantle or through partial melting of recently accreted juvenile 
crustal material within the depleted mantle. Relevant mafic rocks are rarely contempora-
neous, and the absence of mafic microgranular enclaves suggests limited direct involve-
ment of newly derived mantle magma in granite formation. Therefore, the early Devonian 
granitoids from the SBOB primarily originated from partial melting of the overlying Mes-
oproterozoic crust facilitated by the underplating of mantle-derived magma. 
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Various petrogenetic models have been proposed for A-type granites: (1) high crys-
tallization differentiation of mantle-derived basaltic magma [60–63]; (2) mixing of mantle-
derived and crustal materials [64–67]; (3) Partial melting of lower crustal material: partial
melting of granulite facies remnants after granitic magma extraction [55,56,59,68], and par-
tial melting of calc-alkaline tonalite-granodiorite [69]; (4) the melting of lower crustal rocks
due to heating by mantle magma underplating [58,70,71]. Mafic rocks contemporaneous
with A-type granite are rare in the study area, and no mafic microgranular enclaves are
found in the granites, indicating little crust–mantle mixing. Experimental petrology shows
residual granulite facies in the lower crust are low in K, Si and high in Ca, Al, and Mg [69],
which cannot explain the production of Luotuoquan A-type granite rich in Si, alkali, low in
Al and Mg by partial melting.

The CaO/Na2O ratios distinguish between pelite-derived melts (CaO/Na2O < 0.5)
and melts derived from greywackes or igneous sources (CaO/Na2O = 0.3–1.5) [72]. High-
temperature melts generally exhibit lower Al2O3/TiO2 ratios than low-temperature melts [73].
The monzogranite–syenogranite is characterized by high CaO/Na2O ratios (mean of 0.53)
and low Al2O3/TiO2 ratios (mean of 63.73), suggesting a source of metagreywackes or meta-
morphic igneous rock. The samples are all plotted within the field of partial melts derived
from metagreywackes in the molar Al2O3/(MgO + FeOT) vs. molar CaO/(MgO + FeOT)
and molar K2O/Na2O vs. molar CaO/(MgO + FeOT) diagrams (Figure 9). Therefore, the
granitic magma source is likely related to partial melts from metagreywackes.

The Hf isotope analysis of U-Pb dated zircon grains can trace the original magma
sources and distinguish between the reworking of continental crust and the remelting
of juvenile crust [74,75]. In this study, the early Devonian Luotuoquan monzogranite–
syenogranite has considerably positive zircon εHf(t) of +0.9–+5.2 (Figure 10) and slightly
young two-stage Hf model ages of 1.05–1.34 Ga (Figure 10). The SBOB is thought to
have developed abundant Mesoproterozoic to Neoproterozoic basement complex, which
is a suite of metamorphosed clastic rock [17,18,20,37]. The significantly positive εHf(t)
values and relatively young two-stage Hf model ages suggest that the granitic rocks
originated from either the depleted mantle or through partial melting of recently accreted
juvenile crustal material within the depleted mantle. Relevant mafic rocks are rarely
contemporaneous, and the absence of mafic microgranular enclaves suggests limited direct
involvement of newly derived mantle magma in granite formation. Therefore, the early
Devonian granitoids from the SBOB primarily originated from partial melting of the
overlying Mesoproterozoic crust facilitated by the underplating of mantle-derived magma.
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5.3. Geodynamic Evolution

Recent research suggests that the BOB is an accretionary orogen with multiple island
arcs and mélange belts that experienced subduction–collision during the Paleozoic [5,12,
28,30,37]. The zircon U–Pb age of the ophiolite complexes in the central part of the BOB is
536–519 Ma [7,79–81], and the lower Cambrian Shuangyingshan Formation unconformable
overlies the Neoproterozoic Xichangjing Formation [38], indicating the Beishan Ocean was
formed before the Cambrian. Previous studies have proposed that the magmatic effects of
slab windows vary dramatically during ridge subduction, forming adakitic magmas due
to slab melting and A-type magmas resulting from asthenosphere upwelling through the
slab window [54,82]. Widespread early Paleozoic magmatic rocks (464–424 Ma) [6,10,16,
32,37,40,83,84] and ophiolitic mélange (462–420 Ma) [9,13,39,85] in the BOB indicate slab
subduction setting during the Ordovician to Devonian.

The A-type granite has garnered significant attention due to its distinctive tectonic
background. The Luotuoquan A-type granites fall within the volcanic arc and within-
plate granites on tectonic discrimination diagrams (Figure 11a,b) rather than pertaining
to ocean ridge granites. The studied granites are generally plotted within the A2 field
(Figure 11c,d). The A2-type granitoids represent magmas sourced from the underplated
crust or continental crust that has experienced a cycle of island-arc magmatism or continent-
continent collision [86]. We propose that their potential origins were associated with
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island-arc magmatism. The monzogranite in the Hongliuhe ophiolite has a weighted age of
412.4 ± 2.9 Ma, indicating that the closure of the oceanic basin was completed prior to this
event [41]. The granites from the Liuyuan area, with ages ranging from 436-423 Ma [40],
415 Ma [42], and 397 Ma [4,40], represent post-collision background products that are
possibly associated with subduction plate detachment. Moreover, recent discoveries have
revealed the presence of early Devonian post-collision granites in the middle of BOB. U–Pb
dating has determined that these granites range in age from 402 to 387 Ma [15,31,35,52].
The aforementioned evidence suggests that the formation of Luotuoquan A-type granites
can be attributed to a post-collision tectonic setting.
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Figure 11. Nb vs. Y (a), Ta vs. Yb (b), Nb-Y-Ce (c), Nb-Y-3Ga (d) tectonic discriminant diagrams of
the early Devonian granitoids from BOB ((a,b) modified after [56], (c,d) modified after [86]). Syn-
COLG-syn-collision granites; VAG-volcanic arc granites; WPG-within plate granites; ORG-ocean
ridge granites; post-COLG-post collision granites. Published data are from the same references as in
Figure 5.

Whole-rock geochemical data of 460–390 Ma granites from the SBOB were collected to
calculate zircon saturation temperatures (ln DZr = (10,108 ± 32)/T(K) − (1.16 ± 0.15)(M − 1)
− (1.48 ± 0.09)) [87], M = (Na + K + 2Ca)/(Al × Si)(mol)) [88] and crustal thickness
(H = [Sr/Y + (42.03 ± 6.28)]/(1.49 ± 0.15)) [89,90]. During the early Paleozoic, a significant
increase in crustal growth occurred due to the melting of subducting oceanic crust, resulting
in the emplacement of large amounts of granitoids in the SBOB from 452 to 424 Ma [6]. This
process was accompanied by a gradual decrease in zircon saturation temperatures and an
increase in crustal thickness (Figure 11). The A-type granites, which were formed between
415 and 397 Ma [4,42], exhibit a higher Zr saturation temperature range of 755–831 ◦C and
a thinner crust thickness ranging from 32 to 28 km (Figure 12). These findings suggest that
the SBOB had already transitioned into an extensional setting during the early Devonian.
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In summary, the Luotuoquan A-type granites yield U-Pb ages of approximately 404–
399 Ma, indicating post-collision extensional setting during the early Devonian. This
evidence indicates a post-collision extension setting in the early Devonian and implies the
closure of the Beishan Ocean prior to this time.

6. Conclusions

(1) The zircon U–Pb ages of the Luotuoquan monzogranite and syenogranite are
399.4 ± 5.1 Ma and 404.9 ± 1.4 Ma, respectively.

(2) The petrographic and geochemical signatures of the Luotuoquan monzogranite
and syenogranite indicate they are A-type granites and were emplaced in a post-collision
extensional setting. Furthermore, these granites are the result of partial melting primarily
from Mesoproterozoic crusts composed mainly of metagreywackes.

(3) The occurrence of early Devonian granitoids suggests that SBOB had already
undergone extensional tectonics following the closure of the Beishan Ocean during this
period.
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