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Abstract: The Lower Urgen molybdenum deposit (44,856 t Mo @ 0.141%), situated in the northern
Great Xing’an Range, is a newly discovered porphyry molybdenum deposit. Mineralization is
characterized by veinlet-disseminated- and vein-type quartz–sulfide orebodies primarily occurring
in the cupola of the Early Cretaceous granite porphyry stock. In this study, we present a detailed
description of the ore geology, molybdenite Re-Os dating, H-O-S-Pb isotopic compositions, and
fluid inclusion (FI) analyses including petrography, laser Raman, and microthermometry to precisely
constrain the timing of ore formation, the origin of ore-forming fluids and materials, as well as the
metal precipitation mechanism. Molybdenite Re-Os dating yielded two model ages of 141.2 ± 1.5
and 147.7 ± 1.7 Ma, coeval with the regional Late Jurassic–Early Cretaceous molybdenum metalloge-
nesis. The hydrothermal process can be divided into three stages: the quartz–molybdenite(–pyrite)
stage, quartz–polymetallic sulfide stage, and quartz–carbonate stage. Four types of FIs were distin-
guished for quartz, including two-phase liquid-rich (L-type), saline (S-type), CO2-rich (C1-type), and
CO2-bearing (C2-type) FIs. Microthermometric data showed that the homogenization temperatures
and salinities from the early to late stages were 240–430 ◦C, 5.0–11.9, and 30.1–50.8 wt% NaCl equiv.;
180–280 ◦C and 3.0–9.1 wt% NaCl equiv.; and 120–220 ◦C and 0.2–7.9 wt% NaCl equiv., respec-
tively, suggesting a decreasing trend. H-O isotopic compositions indicate that the ore-forming fluids
were initially of magmatic origin with the increasing incorporation of meteoric water. S-Pb isotopic
compositions indicate that the ore-forming materials originated from granitic magmas, and the
mineralization is genetically related to the ore-bearing granite porphyry stock in the deposit. Fluid
immiscibility and fluid–rock interaction are collectively responsible for the massive deposition of
molybdenite in stage 1, whereas fluid mixing and immiscibility played a critical role in the deposition
of polymetallic sulfide in stage 2.

Keywords: molybdenite Re-Os dating; fluid inclusions; H-O-S-Pb isotopes; lower urgen molybdenum
deposit; NE China
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1. Introduction

Porphyry deposits are commonly spatially, temporally, and genetically related to
intermediate–acid hypabyssal porphyry intrusions [1], and provide more than 75%, 50%,
and 20% of the world’s molybdenum, copper, and gold resources, respectively [2–5]. Miner-
alization mainly occurs as veinlets and disseminations concentrated in or near the cupolas
of porphyry intrusions, and is related to the hydraulic fracturing resulting from fluid exso-
lution from magmas [3,6,7]. Taking the economic importance of porphyry molybdenum
deposits into account, the study of the genesis and metallogenic models of these deposits
has always been an essential subject in ore deposit research [8–16].

China has the largest molybdenum resources worldwide, accounting for about 54% of
the world’s known economic molybdenum resources [17], which appear in six predominant
molybdenum metallogenic provinces, i.e., NE China, Qinling-Dabie, Yanliao, Sanjiang,
the middle-lower Yangtze River Valley, and South China [18]. NE China is situated in the
eastern Central Asian Orogenic Belt (CAOB) tectonically. A long-term tectonomagmatic
evolutionary history has made it a significant polymetallic metallogenic province around
the world [19–25] (Figure 1). More than 11.4 Mt of molybdenum has now been discovered
in NE China, including 4 super-large (>0.5 Mt Mo), 11 large (0.1–0.5 Mt Mo), 22 medium
(0.01–0.1 Mt Mo), and 18 small (<0.01 Mt Mo) molybdenum deposits, marking NE China as
the largest molybdenum metallogenic province in China [26] (Figure 1c).
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deposits in NE China (modified from [20]). Deposit locations: 1—Jiliuhe; 2—Fukeshan;
3—Taipingchuan; 4—Lower Urgen; 5—Badaguan; 6—Zishi; 7—Wunugetushan; 8—Chalukou;
9—Daheishan; 10—Yezhugou; 11—Taipinggou; 12—Baojiagou; 13—Nanxingan; 14—Jiazishan;
15–Diyanqinamu; 16—Aolunhua; 17—Banlashan; 18—Laojiagou; 19—Haolibao; 20—Hashitu;
21—Erbadi; 22—Yangchang; 23—Longtoushan; 24—Hongshanzi; 25—Xiaodonggou;
26—Liutiaogou; 27—Gangzi; 28—Tuohe; 29—Chehugou; 30—Nianzigou; 31—Yuanbaoshan;
32—Jiguanshan; 33—Baimashi; 34—Kulitu; 35—Huojihe; 36—Cuiling; 37—Luming; 38—Wudaoling;
39—Kanchuangou; 40—Jinchanggou; 41—Fuanpu; 42—Jidetun; 43—Dashihe; 44—Houdaomu;
45—Xingshan; 46—Daheishan; 47—Sangedingzi; 48—Sifangdianzi; 49—Xinhualong;
50—Liushengdian; 51—Sanchazi; 52—Dongfeng; 53—Shirengou.

The Lower Urgen deposit in Inner Mongolia, NE China, is a newly discovered por-
phyry molybdenum deposit, with estimated reserves of 44,856 t of molybdenum at an
average grade of 0.141% [30]. The geochronology, petrogenesis, and tectonic context of
the barren granites in the mining area have been the primary subjects of earlier investiga-
tions of the deposit [31]. Nonetheless, the direct timing of molybdenum mineralization,
ore-forming fluids and the metal source, and metallogenic processes remains enigmatic.
In accordance with a thorough field investigation and petrographic observations of thin
sections, we present comprehensive descriptions of the geology, mineralization stages,
and hydrothermal alteration in the Lower Urgen molybdenum deposit. The new molyb-
denite Re-Os geochronology, fluid inclusion (FI) study (petrography, laser Raman, and
microthermometry analyses), and isotope geochemistry (H-O-S-Pb) for the deposit are
investigated. By combining our results with available geochronology and geodynamic
research in the region, we aim to (1) restrict the timing of molybdenum mineralization in
the Lower Urgen molybdenum deposit; (2) determine ore-forming fluids and the metal
source; and (3) decipher fluid evolution processes and ore precipitation mechanisms. This
study not only contributes to the establishment of a plausible metallogenetic model for the
Lower Urgen molybdenum deposit, but also has important implications for the compre-
hension of regional molybdenum metallogenesis and the future molybdenum prospecting
and exploration.

2. Regional Geology

The tectonic components of NE China include the Erguna Block in the northwest,
the Xing’an and Songliao-Xilinhot blocks in the central part, the Khanka-Jiamusi Block in
the southeast, and the Liaoyuan Terrane in the south [28] (Figure 1). Major faults separat-
ing these tectonic units include the Hegenshan-Heihe, Solonker-Xar Moron-Changchun,
Xinlin-Xiguitu, and Mudanjiang faults [28,29] (Figure 1b). NE China has experienced a
multi-stage Phanerozoic tectonic evolutionary history, including the subduction and final
closure of the Palaeo-Asian Ocean (PAO) during the Paleozoic to Early Mesozoic [28,32–35],
the south-directed subduction and closure of the Mongol-Okhotsk Ocean (MOO), and
the west-directed subduction and subsequent rollback of the Palaeo-Pacific Ocean (PPO)
plate during the Mesozoic [29,36,37]. Due to the overprinting of multiple tectonic do-
mains, NE China experienced extensive tectonomagmatic events, accompanied by intense
metallogenesis [19–25]. Three episodes of Mesozoic molybdenum mineralization are recog-
nized in the region, including the Triassic, Early–Middle Jurassic, and Late Jurassic–Early
Cretaceous [18,24]. The major location of the Triassic molybdenum deposits is along the
Solonker-Xar Moron-Changchun Fault (SXCF), with minor occurrences in the northern
and central Great Xing’an Range (NCGXR). The Triassic molybdenum deposits near the
SXCF were formed in a syn-collision compressional to post-collision extensional environ-
ment induced through the tectonic evolution of the PAO [18,38–43], whereas the Triassic
molybdenum deposits in the NCGXR were formed in a subduction-dominated compres-
sional environment induced through the SE-directed subduction of the MOO plate [44–48].
The Early–Middle Jurassic molybdenum deposits are concentrated in the Lesser Xing’an-
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Zhangguangcai Range (LXZR) and sparsely distributed in the NCGXR, which were formed
in a compressional environment controlled by the overprinting influence of the SE-directed
subduction of the MOO plate in the west and the NW-directed subduction of the PPO
plate in the east [49–64]. Molybdenum deposits from the Late Jurassic to Early Cretaceous
are mostly concentrated in the GXR, with sporadic occurrences in the LXZR, which were
formed in a post-orogenic extensional environment triggered by the PPO and MOO tectonic
domains [56,63,65–88].

The NCGXR comprises two main units, i.e., the Erguna and Xing’an blocks (Figure 1c).
The amalgamation of the Erguna and Xing’an blocks occurred along the Xinlin-Xiguitu Fault
in the Early Palaeozoic induced by the closure of the PAO [28,89–92]. Volcanic-sedimentary
rocks of the Xinghuadukou, Ergunahe, Jiageda, and Luomahu groups; Neoproterozoic
magmatic rocks; and minor Palaeoproterozoic gneisses compose the basement of the Er-
guna Block [29,93,94]. Multiple Late Palaeozoic–Late Mesozoic episodes of accretion and
collision occurred on the Erguna Block, resulting in the formation of tremendous intru-
sions, volcanics, and volcaniclastic rocks [95,96]. Widespread Mesozoic igneous rocks;
Early Palaeozoic basement rocks composed of the Wolegen, Xinkailing, Zalantun, and
Fengshuigouhe groups; together with the Xinhuadukou Complex and dispersed Palaeo-
zoic plutons and sediments constitute the Xing’an Block, the primary component of the
GXR [29]. Neoproterozoic granite is locally distributed in the western region [97]. Mesozoic
volcanics are categorized by the Tamulangou, Manketouebo, Manitu, Baiyingaolao, and
Meiletu Formations (Fms), from oldest to youngest [93]. The Palaeozoic strata were exten-
sively emplaced through substantial Palaeozoic to Mesozoic granitic intrusions. The latest
geochronological evidence indicates that the magmatism within the NCGXR took place
in two periods: the Palaeozoic granites consisting of granite, monzogranite, granodiorite,
quartz diorite, and syenogranite mainly distributed in the northeastern part with zircon U-
Pb ages of 517–420 and 359–250 Ma; and the Mesozoic granites, comprising monzogranite,
syenogranite, granodiorite, granite porphyry, quartz porphyry, and quartz monzogranite,
which are more widespread than the Palaeozoic intrusions and yielded a zircon U-Pb age
of 250–118 Ma [29,98–104] (Figure 1c).

3. Ore Deposit Geology

The Lower Urgen molybdenum deposit (120◦27′30′′ E, 50◦22′42′′ N), situated in the
central NCGXR, discovered in 2017, is still in exploration and not in production (Figure 1c).
The strata exposed in the mining area comprise the Tamulangou Fm of the Middle Jurassic,
Manketouebo Fm of the Upper Jurassic, Baiyingaolao Fm of the Lower Cretaceous, and
Quaternary [30] (Figure 2). The Tamulangou Fm comprises intermediate–basic volcanics
including trachyandesite, andesite, and basaltic-trachyandesite. The Manketouebo Fm
comprises felsic volcanics including volcanic breccia, rhyolite, and volcanic agglomerate.
The Baiyingaolao Fm is locally dispersed in the northwestern part, which is composed of
rhyolite, rhyolitic breccia lava, and tuff [30]. Mesozoic granitoids include quartz monzonite
porphyry, syenite porphyry, and granite porphyry. The Middle Jurassic quartz monzonite
porphyry outcrops are scattered in the western and central regions. The Early Cretaceous
syenite porphyry locally occurs in the western region, while the Early Cretaceous granite
porphyry outcrops are mostly distributed in the eastern region [30] (Figure 2). Zhang
et al. [31] obtained precise zircon U-Pb ages of the barren quartz monzonite porphyry and
syenite porphyry of 165.0 ± 2.5 Ma and 125.5 ± 1.9 Ma, respectively. Mineralization is
characterized by concealed veinlet-disseminated- and vein-type quartz–sulfide orebodies
mostly hosted in the cupola of the Early Cretaceous granite porphyry (Figures 2c and 3).
Ore minerals are mainly molybdenite and pyrite, as well as subordinate chalcopyrite,
sphalerite, arsenopyrite, and galena (Figure 3). K-feldspar, quartz, and sericite are the pre-
dominant gangue minerals, accompanied by epidote, biotite, and calcite (Figures 3g and 4).
Molybdenite occurs as medium-coarse grained (1.2–7 mm) crystals with platy and leaf-like
forms in ore-bearing quartz veins and granite porphyry (Figure 3a–c). Pyrite is present
as euhedral to subhedral octahedral–dodecahedral crystals, and usually coexists with
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molybdenite, chalcopyrite, sphalerite, and galena in granular aggregate forms (Figure 3).
Sphalerite occurs as medium-coarse grained (1.5–7 mm) anhedral crystals, and is often
intergrown with galena, chalcopyrite, and pyrite (Figure 3e,f,i). Chalcopyrite appears as
fine-medium grained (0.4–1.3 mm) irregular crystals. It often coexists with pyrite and oc-
curs in small amounts with galena and sphalerite (Figure 3d,e,i). Arsenopyrite is observed
as rhomboid euhedral crystals (Figure 3d). Galena is observed as fine-medium-grained
(0.6–4.5 mm) irregular crystals, and is often coeval with sphalerite, pyrite, and chalcopyrite
in quartz veins (Figure 3e,f,i). Superposition mineralization in the cupola of the granite
porphyry is ubiquitous, and no obvious metallogenic zonation is observed.
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of no. 0 exploration line (modified after [30]).

Intensive hydrothermal alteration is a defining characteristic of the Lower Urgen
molybdenum deposit. There are three alteration zones recognized according to field ob-
servations and thin-section petrography: an intense potassic alteration zone at depth, a
phyllic alteration zone at mid-shallow depths, and a propylitic alteration zone near the
surface and periphery of the deposit. The potassic and phyllic alteration zones are all
distributed in the granite porphyry, while the propylitic alteration zone mainly occurs
in the intermediate–mafic volcanics around the granite porphyry. The spatial relation-
ship of the three alteration zones is delineated in Figure 2c. The potassic alteration has
a high temperature and is featured by a mineral assemblage of K-feldspar, biotite, and
quartz [1,3] (Figure 4a). Quartz–molybdenite veinlets are distributed in the granite por-
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phyry with intense potassic alteration (Figure 4a). The phyllic alteration is distinguished
by the replacement of primary K-feldspar and plagioclase in the granite porphyry with
quartz and sericite (Figure 4e). Quartz–pyrite–chalcopyrite, quartz–galena–sphalerite, and
quartz–molybdenite(–pyrite) veins are usually developed in the phyllic alteration zone
(Figure 4b,c). The propylitic alteration generally represents low-temperature hydrothermal
alteration, which is featured by plagioclase replaced by epidote [1,3] (Figure 4d,f).
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Figure 3. Representative photographs (a–g) and photomicrographs (h,i) of the mineralization in the
Lower Urgen molybdenum deposit. (a) Quartz–molybdenite vein of stage 1 in the granite porphyry.
(b) Quartz–molybdenite–pyrite vein of stage 1 in the granite porphyry. (c) Molybdenite occurs
as disseminations. (d) Quartz–pyrite–chalcopyrite–arsenopyrite ore of stage 2. (e) Quartz–pyrite–
chalcopyrite–galena–sphalerite ore of stage 2. (f) The brecciated fragments of granite porphyry
containing quartz–molybdenite stockworks of stage 1 hosted by a quartz–pyrite–galena–sphalerite
vein of stage 2. (g) Quartz–calcite vein of stage 3. (h) Molybdenite. (i) Galena intergrown with
sphalerite. Sphalerite replacing chalcopyrite along crystal margins. Abbreviations: Mol, molybdenite;
Py, pyrite; Ccp, chalcopyrite; Gn, galena; Sp, sphalerite; Apy, arsenopyrite; Qtz, quartz; Cal, calcite.

There are three main stages of hydrothermal processes in the Lower Urgen molybde-
num deposit according to crosscutting relationships and mineral paragenetic sequences,
including the quartz–molybdenite(–pyrite) stage (stage 1), quartz–polymetallic sulfide
stage (stage 2), and quartz–carbonate stage (stage 3).

Stage 1 is the main molybdenum mineralization stage. Molybdenite, pyrite, quartz,
and sericite are developed in this stage. Various types of veins were formed, including
quartz–molybdenite veins and veinlets (Figures 3a and 4a), quartz–molybdenite stockworks
(Figure 3f), and quartz–molybdenite–pyrite veins (Figures 3b and 4b). Disseminated
molybdenite ores can also be found (Figure 3c).

Stage 2 is featured by an assemblage of chalcopyrite, sphalerite, arsenopyrite, pyrite,
galena, quartz, sericite, and epidote. The most common sulfide is pyrite, which ap-
pears as fine-medium-grained euhedral to subhedral crystals and aggregates, which
often form quartz–sulfide veins with chalcopyrite, galena, sphalerite, and quartz, i.e.,
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quartz–pyrite–chalcopyrite–arsenopyrite veins (Figure 3d), quartz–chalcopyrite–pyrite
veins (Figure 4c), quartz–pyrite–chalcopyrite–sphalerite–galena veins (Figure 3e), and
quartz–pyrite–sphalerite–galena veins (Figure 3f). Galena and sphalerite are often inter-
grown, and they form quartz–galena–sphalerite veins and veinlets (Figure 4b,d). The
brecciated fragments of granite porphyry containing stage 1 quartz–molybdenite stock-
works can be found in stage 2 quartz–pyrite–sphalerite–galena veins (Figure 3f). Addition-
ally, stage 2 quartz–galena–sphalerite veins cut stage 1 quartz–molybdenite–pyrite veins
(Figure 4b).

Stage 3 represents the termination of the hydrothermal activity in the Lower Urgen
molybdenum deposit. During this stage, quartz and calcite make up the majority of the
veins, and sulfides are no longer found in this veins’ stage (Figure 3g).
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Figure 4. Representative hand specimen (a–d) and photomicrographs (crossed-polarized light) (e,f) of
gangue minerals from the Lower Urgen molybdenum deposit. (a) Quartz–molybdenite veinlets of
stage 1 occur in the granite porphyry with potassic alteration. (b) Quartz–molybdenite–pyrite veins of
stage 1 cut by quartz–galena–sphalerite of stage 2. These ore veins occur in the granite porphyry with
phyllic alteration. (c) Quartz–pyrite–chalcopyrite vein of stage 2 occurs in the granite porphyry with
phyllic alteration. (d) Quartz–galena–sphalerite veinlets of stage 2 are spatially related to silicification
and propylitic alteration. (e) Phyllic-altered granite porphyry is characterized by quartz and sericite
replacing plagioclase along fractures and crystal margins. (f) Propylitic-altered andesite is featured
with epidote replacing plagioclase. Abbreviations: Qtz, quartz; Kfs, K-feldspar; Pl, plagioclase; Ser,
sericite; Ep, epidote; Mol, molybdenite; Py, pyrite; Gn, galena; Sp, sphalerite; Ccp, chalcopyrite.
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4. Sampling and Analytical Methods
4.1. Samples

Samples for this study were all collected from drillholes, containing three granite
porphyry samples, twenty-nine sulfide samples, and twenty-eight quartz samples. The
sample locations are indicated in Figure 2c. All granite porphyry samples (T0a1-1, T0a1-2,
and T16-1) were fresh and used for whole-rock Pb isotope analyses. Twenty-nine sulfide
samples comprised sixteen molybdenite samples, seven pyrite samples, four chalcopyrite
samples, and two galena samples. Sixteen molybdenite samples were obtained from stage
1 molybdenite(–pyrite)-bearing quartz veins, while the other sulfide samples were all
collected from stage 2 sulfide-bearing quartz veins. Two molybdenite samples (G5 and
LE-1) were used for Re-Os isotope analyses. Six molybdenite samples (LU16-1, LU16-2,
LU16-3, LU16-4, LU16-5, and LU16-6), two pyrite samples (LU16-7 and LU16-8), two
chalcopyrite samples (LU16-9 and LU16-10), and one galena sample (LU16-11) were used
for S isotope analyses. Eight molybdenite samples (D17-2, D17-3, D17-4, D17-5, D17-7,
D0A1-1, D0A1-2, and D0a1-1), five pyrite samples (G10-2, G11-2, G13, G14, and D17-1),
two chalcopyrite samples (D17-2 and G8-2), and one galena sample (G8-3) were used for
Pb isotope analyses. The quartz samples were obtained from veins of all stages, including
seven samples from stage 1 molybdenite(–pyrite)-bearing quartz veins, nine samples from
stage 2 sulfide-bearing quartz veins, and five samples from stage 3 quartz–carbonate veins.
Seven quartz samples of stage 1 veins (B16-1, B16-2, B16-3, B16-4, B16-5, B16-6, B16-7),
seven quartz samples of stage 2 veins (D14-1, D16-1, D16-4, D16-6, D16-7, D16-8, and
D16-9), and three quartz samples of stage 3 veins (G8-1, G10-1, and G11-1) were used for
H-O isotope analyses. Seven quartz samples of stage 1 veins (BG16-1, BG16-2, BG16-3,
BG16-4, BG16-5, BG16-6, and BG16-7), two quartz samples of stage 2 veins (BG8-1 and
BG14-1), and two quartz samples of stage 3 veins (BG8-2 and BG8-3) were used for the FI
study. For investigations of FIs in quartz cores, thirty-six double-polished thin sections
(200 µm thick) were prepared.

4.2. Molybdenite Re-Os Isotope Dating

Re-Os isotope analyses were carried out at the State Key Laboratory of Ore Deposit
Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences in Guiyang, China.
A TJA PQ ExCell ICP-MS was applied to measure the contents of Re, 187Re, and 187Os.
We followed the analytical procedures reported in [105,106]. The Re-Os model ages were
calculated using the formula t = 1/λ [ln (1 + 187Os/187Re)], where λ is the decay constant
for 187Re (1.666 × 10−11 year−1) [107].

4.3. FIs Laser Raman Spectroscopy

A Renishaw inVia laser Raman probe at the Beijing Createch Testing Technology Co.,
Ltd. in Beijing, China, was applied to examine the vapor and liquid components of quartz-
hosted FIs at room temperature. For detection, a laser power of 20 mW and an argon ion
laser with a wavelength of 514.5 nm were used. The spectrum was measured from 1000 to
4000 cm−1 with a counting time of 20 s for each scan. Detailed analytical procedures are
consistent with those in [108].

4.4. FIs Microthermometry

FI microthermometry was conducted using a Linkam THMS 600 heating-freezing
stage with a stage of –195 to 600 ◦C mounted on a Zeiss microscope at the Beijing Createch
Testing Technology Co., Ltd., Beijing, China. The accuracy of temperature observations is
0.2 ◦C through cooling, ±0.2 ◦C for 0–100 ◦C, and ±2 ◦C for 100–450 ◦C. To properly record
the phase transformation process, the heating rate was decreased to 0.1 ◦C/min close to the
freezing point and 0.2 ◦C/min close to the homogenization temperature. To prevent unin-
tentional deviations, FI results were only collected on FI assemblages (FIAs) [109]. During
heating, seven different temperature types were recorded, including CO2-ice melting tem-
peratures (TmCO2 ), first ice melting temperatures (Tfmice), final ice melting temperatures
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(Tmice), final clathrate melting temperatures (Tmclath), CO2 homogenization temperatures
(ThCO2 ), halite dissolution temperatures (TmH), and final homogenization temperatures
(Th). Tmclath was used to determine the salinities of the fluid system composed of NaCl,
CO2, and H2O [110]. Tmice and TmH were used to obtain the salinities of the fluid system
composed of NaCl and H2O [111,112]. Using the Flincor program, the bulk molar volume
of FIs, the density of the bulk fluids and carbonic liquid, and mole fractions of compositions
were acquired [113–115].

4.5. Quartz H-O Isotopes

H-O isotope analyses were carried out using a MAT253 mass spectrometer at the
Beijing Research Institute of Uranium Geology in Beijing, China. The accuracies of the
H and O isotopic measurements are better than ±2‰ and ±0.2‰, respectively. The
fractionation formula 1000 lnαquartz water = 3.38 × 106 T−1–3.40 was applied to calculate the
δ18OH2O of fluids, where T is the Kelvin temperature [116]. The average FI homogenization
temperature for each stage was used to determine the δ18OH2O values.

4.6. S-Pb Isotopes

The sulfide S-Pb isotope measurements were performed at the State Key Laboratory of
Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences.
A Delta V Plus mass spectrometer was used to analyze the S isotopic compositions of
sulfides with an analytical accuracy of ±2‰. Sulfide δ34S values were calculated on sulfur
dioxide produced via the traditional extraction method described in [117]. The δ34S results
were recorded using the Canyon Diablo Troilite (CDT).

Thermal ionization mass spectrometry using an ISOPROBE–T mass spectrometer was used
to analyze the Pb isotopic compositions of sulfides and granite porphyry. The accuracy for 1µg of
208Pb/206Pb and 207Pb/206Pb was greater than 0.005% (2σ). The Pb isotopic analyses are reported
with respect to Pb standard reference NBS-981 values, as follows: 206Pb/204Pb = 16.934 ± 0.007,
207Pb/204Pb = 15.486 ± 0.012, and 208Pb/204Pb = 36.673 ± 0.033 [118].

5. Results
5.1. Molybdenite Re-Os Ages

Table 1 lists the results of Re and Os isotope compositions of two molybdenite samples
from the Lower Urgen deposit. The 187Re and 187Os contents of the samples vary from
19,468 to 27,503 ppb and 47.958 to 64.540 ppb, respectively. The Re contents of the samples
are 31,202–43,934 ppb. The two Re-Os model ages are 141.2 ± 1.5 and 147.7 ± 1.7 Ma.

Table 1. Re–Os isotopic data for molybdenite from the Lower Urgen molybdenum deposit.

Sample
No.

Re (ppb) Os (ppb) 187Re (ppb) 187Os (ppb) Model Age (Ma)

Re 1σ Os 1σ 187Re 1σ 187Os 1σ Age 1σ

G5 43,934 1558 0.083 0.008 27,503 975 64.540 0.698 141.2 1.5
LE-1 31,202 528 0.128 0.015 19,468 231 47.958 0.523 147.7 1.7

5.2. FI Petrography

Primary and secondary FIs were identified based on the criteria suggested by [109,119].
All descriptions strictly follow the concept of FIAs [109]. An FIA only applies to FI vacuoles
that developed along the identical growth bands in an individual crystal, as well as within
the same T-P circumstances. Nonetheless, extremely few FIs are dispersed within or along
the growth bands, and the bulk is too small to be quantified (<5 µm). Most FIs that are
suitable for measurement appear as isolated, clustered, or randomly distributed (Figure 5).
As suggested by [109,119–121], FIs that are away from apparent cracks and appear as
isolated, clustered, or randomly distributed forms are considered as primary FIs, and these
FIs are selected for further investigation. In contrast, FIs along healed fractures that have
apparent secondary causes are not considered. Four different types of FIs are recognized
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based on phase components at room temperature and phase changes due to variations in
temperature, including the two-phase (L + V) liquid-rich (L-type), saline (S-type), CO2-rich
(C1-type), and CO2-bearing (C2-type) FIs. The descriptions of the petrographic features of
each FI type are as follows.
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Figure 5. Representative photomicrographs of FIs in quartz veins of different stages at Lower Urgen.
(a) Phase separation recorded by L- and C1-type FIs at stage 1. (b) An immiscibility FIA consisting
of L-, S-, C1-, and C2-type FIs at stage 1. (c) Coexistence of L- and S-type FIs at stage 1. (d) Isolate
S-type FI at stage 1. (e) Isolate C1-type FI at stage 1. (f) An FIA containing many primary L-type FIs
at stage 1. (g) Phase separation recorded by L-, C1-, and C2-type FIs at stage 2. (h) An FIA containing
many primary L-type FIs at stage 2. (i) An FIA containing four L-type FIs at stage 3. Abbreviations:
H, halite; LCO2 , liquid CO2; VCO2 , vapor CO2; LH2O, liquid H2O; VH2O, vapor H2O.

L-type FIs are ubiquitous in all stages of quartz. At room temperature, they have a
vapor phase and a liquid phase with LH2O/(LH2O + VH2O) ratios of 65–90 vol% (Figure 5).
With diameters ranging from 5 to 15 µm, these FIs can be ellipsoidal, rectangular, negative-
crystal, or irregular in shape. L-type FIs occur alongside S-, C1-, and C2-type FIs in stage 1
as immiscibility FIAs (Figure 5a–c). They are also intergrown with C1- and C2-type FIs and
form immiscibility FIAs in stage 2 quartz crystals (Figure 5g). In quartz veins of stages 1
and 2, L-type FIs are abundant and make up around 50% of all FIs; however, stage 3 veins
solely contain L-type FIs.

Only stage 1 quartz veins have S-type FIs, which exhibit high salinities and densities. S-
type FIs are composed of a cubic halite daughter mineral, a liquid phase, and a vapor bubble
(3–10 vol%). They are elliptical, negative-crystal, or irregular in shape, with diameters of 7
to 15 µm. S-type FIs can exist alone or with L-, C1-, and C2-type FIs to form immiscibility
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FIAs in stage 1 (Figure 5b–d). In abundance, S-type FIs account for about 10% of all FIs in
stage 1 veins.

C1-type FIs occur as ellipsoidal, circular, or negative-crystal shapes, and have a di-
ameter of 5 to 13 µm. The CO2 phase content ranges from 60 to 85 vol%. Usually, 60 to
80 vol% of the entire CO2 phase is made up of vapor CO2. C1-type FIs commonly appear
in the three-phase form (VCO2 + LCO2 + LH2O), with a small amount of the two-phase
form (VCO2 + LH2O) (Figure 5a,b,e,g). The two-phase FIs are regarded as CO2-rich FIs
as clathrates were observed during freezing runs. In abundance, C1-type FIs frequently
coexist as immiscibility FIAs with L-, S-, and C2-type FIs (Figure 5a–c,g), and account for
about 25 vol% and 30 vol% of all FIAs in veins of stages 1 and 2, respectively.

At room temperature, C2-type FIs exist in the three-phase (VCO2 + LCO2 + LH2O) state,
and minor FIs display a two-phase (VCO2 + LH2O) form (Figure 5b,g). During freezing,
clathrates are also observed in these two-phase C2-type FIs and can therefore be distinguished
from L-type FIs. Typically, vapor CO2 makes about 60–80 vol% of the total CO2 phase, and
the amount of CO2 phase varies from 15 to 45 vol%. These FIs are irregular or nearly
ellipsoidal in shape with a diameter of 5–15 µm. C2-type FIs are intergrown with L- and
C1-type FIs (Figure 5g), together with small quantities of S-type FIs (Figure 5b), and account
for approximately 15 vol% and 20 vol% of all FIAs in veins of stages 1 and 2, respectively.

5.3. FI Laser Raman Spectroscopy

Figure 6 illustrates the components of typical FIs from quartz veins of all stages. A
substantial volume of H2O and a negligible amount of CO2 (1385 cm−1, 1283 and 1388 cm−1,
respectively) were detected in both the liquid and vapor phase in L-type FIs of stage 1
(Figure 6a). C1-type FIs of stage 1 contain CO2 as the only species in both the vapor and
liquid CO2 phases (1284 and 1388 cm−1, 1282 and 1386 cm−1, respectively) (Figure 6b).
C2-type FIs of stage 1 have a similar vapor and liquid phase composition to stage 1 C1-type
FIs, with CO2 as the only component of the CO2 phase (1283 and 1388 cm−1, 1281 and
1386 cm−1, respectively) (Figure 6c). Analogous liquid and vapor phase components, which
are predominately made of H2O and include a little amount of CO2 (1385 cm−1, 1284 and
1388 cm−1, respectively), are present in S-type FIs of stage 1 (Figure 6d). Consequently, a
NaCl–H2O–CO2 system is represented by the fluids in the quartz–molybdenite(–pyrite)
stage. C1-type FIs of stage 2 show typical CO2 spectra (1282 and 1387 cm−1) in the vapor
CO2 phase (Figure 6e). The compositions of the vapor and liquid CO2 phase of C2-type FIs
in stage 2 only contain CO2 (1281 and 1386 cm−1) (Figure 6f). H2O is the predominant gas
species in the vapor phase of L-type FIs in stage 2 quartz, with only trace amounts of CO2
(1387 cm−1). In contrast, only H2O was detected in the liquid phase of L-type FIs in stage
2 quartz (Figure 6g). Thus, a NaCl–H2O–CO2 system is represented by the fluids in the
quartz–polymetallic sulfide stage. L-type FIs of stage 3 lack CO2 detection and only have
H2O for the compositions of the liquid and vapor phases, demonstrating the characteristic
of a NaCl–H2O system (Figure 6h).

5.4. FI Microthermometry

Only primary FIs were chosen for microthermometry to prevent interpretation errors
brought by the post-ore modification. Using the FIA concept, the reliability of microthermo-
metric results has been assessed [109]. Large disparities in homogenization temperatures in
spatially close FIs prevent them from being unequivocally classified as an FIA; instead, they
are thought to be the result of necking, stretching, or heterogeneous entrapment [120]. The
microthermometry data for isolated FIs are considered, barring a significant discrepancy
with surrounding FIs [121]. If the homogenization temperature variation within a cluster
of a single FI type is below 15 ◦C, the possibility of post-entrapment modification, genera-
tional overlap, or heterogeneous trapping of FIs is ruled out, and it is argued that these FIs
represent a uniform fluid entrapment. We thus suggest that those results are trustworthy
and that the overall average of a cluster is adequate for additional research [120]. An
immiscibility FIA is a group of FIs of various types that possess comparable ranges of ho-
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mogenization temperature (variation below 15 ◦C) but distinct homogenization processes.
In this case, the complete FIA was represented for statistical analysis by the average of
several types of FIs.
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(a) Raman spectra of stage 1 L-type FI reflect the presence of H2O and minor amounts of CO2.
(b) Raman spectra of stage 1 C1-type FI indicate the presence of CO2 in the CO2 phase (VCO2 + LCO2 ).
(c) Raman spectra of stage 1 C2-type FI reflect the existence of CO2 in the CO2 phase (VCO2 + LCO2 ).
(d) Raman spectra of stage 1 S-type FI indicate the presence of H2O and minor amounts of CO2.
(e) Raman spectra of stage 2 C1-type FI reflect the occurrence of CO2 in vapor CO2. (f) Raman spectra
of stage 2 C2-type FI indicate the existence of CO2 in the CO2 phase (VCO2 + LCO2 ). (g) Raman spectra
of stage 2 L-type FI reflect the presence of H2O and minor amounts of CO2. (h) Raman spectra of
stage 3 L-type FI indicate the existence of H2O.

In this investigation, microthermometric results for 320 FIAs of three stages are listed
in Table S1 (see the Supplementary Materials) and illustrated in Figure 7. The Tfmice
for L-type FIs of all stages ranges from –21.6 to –20.8 ◦C, consistent with the eutectic
temperature of the H2O–NaCl system, indicating that most of the dissolved salts are
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NaCl [111,122]. As mentioned in Section 5.3, the L- and S-type FIs sometimes display
weak CO2 signals, but the CO2 characteristics cannot be observed during the petrography
observation and microthermometry of these FIs. The detection limit of CO2 through laser
Raman spectroscopy can be as low as 1 bar, while the phase transition of CO2 can be
observed in microthermometry with a CO2 pressure of at least 10.4 bar (the melting of CO2
clathrate can be observed) or 45 bar (solid phase of CO2 melting can be observed) [123]. In
summary, the amount of CO2 in the S-type FIs of stage 1 and L-type FIs of stages 1 and 2
is extremely low and almost negligible, and thus the salinities of these FIs were obtained
using the TmH and Tmice, respectively.
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from the Lower Urgen molybdenum deposit according to the concept of FIAs.

The entrapped fluid characteristics are often dramatically changed through post-
entrapment modification (dismemberment and/or migration) in quartz-hosted FIs [124,125].
Euhedral quartz crystals that are naturally formed frequently exhibit these modifications in
addition to quartz phenocrysts and veins. Although not verified, a satisfactory FI preserva-
tion state is recommended if the FIs display constant phase ratios, develop in clear trails or
growth bands, and provide densely concentrated microthermometric values [125]. On the
contrary, regular negative-crystal forms are neither necessary nor indicative of the preser-
vation of syn-entrapment characteristics of FIs. Unless they adhere to specified growth
bands, clusters of randomly scattered FIs often reflect secondary or pseudosecondary FI
trails that have dissolved. Audétat [124] demonstrated that the decline in FI volume caused
by post-entrapment modification results in a decrease in the homogenization temperature,
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a steepening of the isochore, and an increase in fluid density. By contrast, in magmatic–
hydrothermal systems, water loss from FIs seldom surpasses twenty percent; consequently,
the fluid salinities that are determined should, in most instances, be almost accurate. In the
current research, FIs inside or along the growth zones of euhedral quartz occur incredibly
seldom, and the bulk of them are too small to investigate (<5 µm). Post-entrapment modifi-
cation may have occurred to varied degrees in clustered, isolated, and randomly dispersed
FIs, but it seems inescapable. However, to guarantee that the chosen FIAs only had slight
effects of post-entrapment modification, FIAs that displayed obvious post-entrapment
modification features, e.g., deformation, movement tracks, stretching, shrinkage, or deteri-
orating halos, have been excluded [119,124–126]. Nonetheless, the genuine densities and
homogenization temperatures of the examined FIs are slightly lower and higher than the
calculated data, respectively. Comparatively, FI salinities are frequently less influenced,
and most of them tend to have maintained their original salinities. As a result, we primarily
concentrate on the salinities of the examined FIs, while the homogenization temperatures
are used as a reference.

Stage 1 veins contain L-, S-, C1-, and C2-type FIs. The Th of L-type FIs ranges from
240 to 400 ◦C, and the Tmice varies between –8.2 and –5.1 ◦C (corresponding to 8.0–11.9 wt%
NaCl equiv.). The disappearance of the vapor bubbles indicates complete homogenization.
The TmH of S-type FIs is between 160 and 428 ◦C (corresponding to 30.1–50.8 wt% NaCl
equiv.). Halite dissolution or the disappearance of vapor bubbles is an indicator that
S-type FIs homogenize between 245 and 428 ◦C. The TmCO2 of C1-type FIs ranges from
–59.8 to –57.0 ◦C. C1-type FIs have a Tmclath of 5.9–7.4 ◦C and calculated salinities of
5.0–7.5 wt% NaCl equiv. At 14.5–21.5 ◦C, the CO2 phase homogenizes to the vapor CO2
phase. At 240–397 ◦C, the liquid H2O phase disappears, signifying the completion of the
homogenization. C2-type FIs have a TmCO2 of –59.8 to –57.0 ◦C and Tmclath of 5.1–6.8 ◦C,
corresponding to salinities of 6.0–8.8 wt% NaCl equiv. At 20.3–25.9 ◦C, CO2 homogenizes
to the vapor CO2 phase, and at 241–395 ◦C, C2-type FIs finally homogenize to the liquid
phase (Figure 7a,b).

L-, C1-, and C2-type FIs can be found in stage 2 quartz veins. Compared to stage 1
FIs, these FIs have a lower Th and lower salinities (Figure 7c,d). L-type FIs have a Tmice
of –5.9 to –3.7 ◦C, corresponding to 6.0–9.1 wt% NaCl equiv. At 182–278 ◦C, L-type FIs
homogenize and are characterized by the vapor bubbles‘ disappearance. C1-type FIs yield
a TmCO2 of –59.8 to –57.0 ◦C, Tmclath of 6.8–8.5 ◦C, and calculated salinities of 3.0–6.0 wt%
NaCl equiv. At 14.6–22.5 ◦C, the CO2 phase homogenizes to the vapor CO2 phase, and at
181–277 ◦C, the liquid H2O phase is eliminated, indicating complete homogenization. C2-
type FIs contain a TmCO2 that varies between –59.8 and –56.8 ◦C and a Tmclath of 6.2–7.9 ◦C
(corresponding to 4.1–7.1 wt% NaCl equiv.). The homogeneity of the CO2 phase is featured
by the elimination of the liquid CO2 phase, and the ThCO2 has a range of 21.9–25.9 ◦C. Total
homogenization occurs when the vapor CO2 phase is eliminated, and the Th of C2-type FIs
has a range of 180–277 ◦C (Figure 7c,d).

L-type FIs are the only FIs found in quartz–carbonate veins of stage 3, which have
Tmice values between –5.0 and –0.1 ◦C and NaCl equivalent salinities between 0.2 and
7.9 wt%. At 120–218 ◦C, these FIs ultimately homogenize to the liquid phase (Figure 7e,f).

5.5. Quartz H-O Isotopic Compositions

The hydrogen and oxygen isotopic compositions of analyzed quartz samples are
presented in Table 2 and shown in Figure 8. Seven quartz samples of stage 1 veins have δD
and δ18O values ranging from –141.8 to –136.5‰ and 7.2–8.0‰, respectively. The δ18Ofluid
values are determined to be between 1.1 and 1.9‰. The δD values of seven quartz samples
collected from stage 2 veins are –144.1 to –129.9‰, the δ18O values range between 7.3 and
8.1‰, and the calculated δ18Ofluid values are –2.7 to –1.9‰. The δD and δ18O values in
three quartz samples from stage 3 veins are –146.6 to –142.6‰ and 5.8–7.7‰, respectively,
and the calculated δ18Ofluid values are between –8.0 and –6.1‰.
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Table 2. Hydrogen and oxygen isotopic compositions of quartz from the Lower Urgen molybde-
num deposit.

Sample No. Stage Mineral δD (‰) δ18Oquartz (‰) T (◦C) δ18Ofluid (‰)

B16-1 Stage 1 Quartz –140.2 7.6 323 1.5
B16-2 Stage 1 Quartz –138.3 7.2 323 1.1
B16-3 Stage 1 Quartz –136.5 7.4 323 1.3
B16-4 Stage 1 Quartz –140.9 7.9 323 1.8
B16-5 Stage 1 Quartz –139.0 8.0 323 1.9
B16-6 Stage 1 Quartz –141.8 8.0 323 1.9
B16-7 Stage 1 Quartz –139.1 7.6 323 1.5
D14-1 Stage 2 Quartz –142.7 7.9 229 –2.1
D16-1 Stage 2 Quartz –135.5 7.6 229 –2.4
D16-4 Stage 2 Quartz –142.5 7.7 229 –2.3
D16-6 Stage 2 Quartz –135.4 7.9 229 –2.1
D16-7 Stage 2 Quartz –129.9 8.1 229 –1.9
D16-8 Stage 2 Quartz –142.7 7.6 229 –2.4
D16-9 Stage 2 Quartz –144.1 7.3 229 –2.7
G8-1 Stage 3 Quartz –146.6 7.7 170 –6.1
G10-1 Stage 3 Quartz –143.9 5.8 170 –8.0
G11-1 Stage 3 Quartz –142.6 7.5 170 –6.3
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5.6. Sulfide S Isotopic Compositions

In Table 3 and Figure 9, the S isotopic compositions of molybdenite, pyrite, chal-
copyrite, and galena collected from the Lower Urgen molybdenum deposit are displayed.
Sulfide δ34S values range from 3.9 to 5.5‰, with an average value of 5.2‰. Six molybdenite
samples contain δ34S values of 5.4–5.5‰. Two pyrite samples and two chalcopyrite samples
have δ34S values of 5.4‰ and 4.8–5.4‰, respectively. One galena sample has a δ34S value
of 3.9‰.

Table 3. Sulfur isotopic compositions of sulfides from the Lower Urgen molybdenum deposit.

Sample No. Stage Mineral δ34S (‰)

LU16-1 Stage 1 Molybdenite 5.5
LU16-2 Stage 1 Molybdenite 5.4
LU16-3 Stage 1 Molybdenite 5.5
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Table 3. Cont.

Sample No. Stage Mineral δ34S (‰)

LU16-4 Stage 1 Molybdenite 5.5
LU16-5 Stage 1 Molybdenite 5.5
LU16-6 Stage 1 Molybdenite 5.5
LU16-7 Stage 2 Pyrite 5.4
LU16-8 Stage 2 Pyrite 5.4
LU16-9 Stage 2 Chalcopyrite 5.4

LU16-10 Stage 2 Chalcopyrite 4.8
LU16-11 Stage 2 Galena 3.9
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5.7. Sulfides and Whole-Rock Pb Isotopic Compositions

The Pb isotopic compositions of molybdenite, pyrite, chalcopyrite, galena, and granite
porphyry are given in Table 4 and Figure 10. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb
ratios for eight molybdenite samples are 18.340–18.412, 15.540–15.546, and 38.130–38.212, re-
spectively. Five pyrite samples contain 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of
18.336–18.510, 15.542–15.569, and 38.131–38.312, respectively. The 206Pb/204Pb, 207Pb/204Pb,
and 208Pb/204Pb ratios of two chalcopyrite samples are 18.336–18.340, 15.541–15.547,
and 38.131–38.143, respectively. One galena sample has 206Pb/204Pb, 207Pb/204Pb, and
208Pb/204Pb ratios of 18.343, 15.550, and 38.149, respectively. The 206Pb/204Pb, 207Pb/204Pb,
and 208Pb/204Pb ratios of three molybdenum-bearing granite porphyry samples range from
18.535 to 18.599, 15.571 to 15.574, and 38.419 to 38.583, respectively.

Table 4. Pb isotopic composition of sulfide and granite porphyry samples from the Lower Urgen
molybdenum deposit.

Sample
No. Stage Mineral 206Pb/204Pb 2σ 207Pb/204Pb 2σ 208Pb/204Pb 2σ µ

D17-2 1 Molybdenite 18.340 0.0004 15.542 0.0003 38.137 0.0008 9.36
D17-3 1 Molybdenite 18.340 0.0005 15.543 0.0005 38.153 0.0011 9.36
D17-4 1 Molybdenite 18.355 0.0004 15.544 0.0004 38.164 0.0009 9.36
D17-5 1 Molybdenite 18.343 0.0004 15.540 0.0004 38.135 0.0009 9.35
D17-7 1 Molybdenite 18.340 0.0004 15.540 0.0004 38.130 0.0009 9.35

D0A1-1 1 Molybdenite 18.412 0.0004 15.546 0.0004 38.212 0.0009 9.36
D0A1-2 1 Molybdenite 18.387 0.0004 15.544 0.0004 38.183 0.0010 9.36
D0a1-1 1 Molybdenite 18.363 0.0004 15.543 0.0003 38.170 0.0009 9.36
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Table 4. Cont.

Sample
No. Stage Mineral 206Pb/204Pb 2σ 207Pb/204Pb 2σ 208Pb/204Pb 2σ µ

G10-2 2 Pyrite 18.373 0.0005 15.549 0.0004 38.174 0.0010 9.37
G11-2 2 Pyrite 18.510 0.0004 15.557 0.0004 38.249 0.0010 9.37
G13 2 Pyrite 18.471 0.0004 15.569 0.0003 38.312 0.0008 9.40
G14 2 Pyrite 18.341 0.0003 15.549 0.0003 38.148 0.0008 9.37

D17-1 2 Pyrite 18.336 0.0003 15.542 0.0002 38.131 0.0006 9.36
D17-2 2 Chalcopyrite 18.336 0.0005 15.541 0.0004 38.131 0.0011 9.36
G8-2 2 Chalcopyrite 18.340 0.0004 15.547 0.0003 38.143 0.0008 9.37
G8-3 2 Galena 18.343 0.0004 15.550 0.0004 38.149 0.0009 9.37

T0a1-1 – Granite
porphyry 18.599 0.0005 15.574 0.0005 38.583 0.0013 9.40

T0a1-2 – Granite
porphyry 18.565 0.0005 15.573 0.0004 38.515 0.0012 9.40

T16-1 – Granite
porphyry 18.535 0.0004 15.571 0.0004 38.419 0.0010 9.39
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6. Discussion
6.1. Timing of Molybdenum Metallogenesis

From both scientific and economic perspectives, it is crucial to constrain the length and
time of magmatic–hydrothermal systems [130]. Precise isotopic dating of hydrothermal min-
erals is an essential technique for determining the geochronology of hydrothermal processes
in relation to intrusive magmatism and for constructing genetic models of hydrothermal de-
posits. As the primary product of hydrothermal mineralization, molybdenite obtained from
ore-bearing quartz veins in molybdenum deposits is suggested as a Re-Os geochronometer
for directly dating molybdenum mineralization events. In this contribution, two Re-Os
model ages of 141.2 ± 1.5 and 147.7 ± 1.7 Ma were obtained. The wide range of Re-Os
model ages could be attributed to Re and Os isotope decoupling, the considerable spatial
Re heterogeneity, the post-ore deformation, and the analytical procedure [130–136]. For in-
stance, many explanations based on post-crystallization diffusion of 187Os are proposed to
answer the Re and Os decoupling mechanism. ReS2 inclusions or 3R polytype molybdenite
formed during the crystallization of molybdenite would, over time, result in a chemical
gradient for 187Os that may homogenize during a thermal event. Decoupling could also
result from the exsolution of Os-rich sulfides or diffusion of Os to crystal dislocations within
the molybdenite during metamorphism [133,134]. The heterogeneous distribution of Re in
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molybdenite samples could also lead to the discrepancy of Re-Os model ages, which may
be related to the overall abundance of Re in the hydrothermal fluids [136], compositional
changes in the hydrothermal fluid with time [132], or partitioning of Re between liquid
and vapor [130]. Additionally, a relatively wide range of molybdenite Re-Os model ages
has been reported in numerous magmatic–hydrothermal deposits, such as the Haigou
Au deposit (311.3–306.7 Ma; [131]), Lala Fe-Cu deposit (1097–1081 Ma; [137]), Kenge Mo
deposit (1957–1950 Ma; [138]), Porcupine Mo deposit (1896–1882 Ma; [138]), Kedengjian
Cu deposit (99.1–95.7 Ma; [139]), Mada Mo deposit (150.9–136.9 Ma; [140]), Meiziwo W
deposit (165.6–156.2 Ma; [141]), Yaoling W deposit (165.9–156.2 Ma; [141]), Banlashan Mo
deposit (142.7–131.8 Ma; [26]), Huashandong W deposit (827.8–795.3 Ma; [142]), Jiguanshan
Mo deposit (156.2–151.7 Ma; [143]), and Dongbeigou Mo deposit (132.6–127.1 Ma; [144]).
Zhang et al. [31] reported that the barren quartz monzonite porphyry and syenite por-
phyry stocks were emplaced at 165.0 ± 2.5 and 125.5 ± 1.9 Ma, respectively. Our recent
geochronology study yielded a zircon U-Pb age of 142.3 ± 0.5 Ma for molybdenum-bearing
granite porphyry stock (unpublished data). In recent decades, advances in high-precision
dating, numerical simulation, and diffusion modeling mostly argue for short-lived (<1 Ma)
timescales for the lifetime of magmatic–hydrothermal systems [7,145–152]. The Re-Os
model age of molybdenite sample G5 (141.2 ± 1.5 Ma) is highly consistent with the em-
placement time of the molybdenum-bearing granite porphyry stock within the analytical
uncertainty. Spatially, the molybdenum mineralization in the deposit is characterized by
veinlet-disseminated- and vein-type quartz–sulfide orebodies hosted in the cupola of the
ore-bearing granite porphyry stock (Figure 2c). Geochemically, the metal sulfides obtained
in this study have similar lead isotopic compositions to those of the ore-bearing granite
porphyry stock (discussed in Section 6.3). This evidence collectively demonstrates that
the molybdenum mineralization at Lower Urgen was temporally, spatially, and genet-
ically associated with the molybdenum-bearing granite porphyry stock, supporting an
intrusion-related origin during the Early Cretaceous. In contrast, the barren quartz mon-
zonite porphyry and syenite porphyry stocks record pre-ore and post-ore magmatic events,
respectively. Our findings also indicate that accurate and precise molybdenite Re-Os ages
representing the true timing of ore formation need an integrated combination of careful
geology, geochemistry, and multiple dating methods.

Considering the Mesozoic intense and widespread molybdenum mineralization in NE
China, molybdenum mineralization at Lower Urgen is not a singular instance. By collecting
published molybdenite Re-Os ages for Mesozoic molybdenum deposits within NE China,
we determine three periods of molybdenum metallogenesis events in the region: Middle–
Late Triassic (245–225 Ma), Early–Middle Jurassic (200–165 Ma), and Late Jurassic–Early Cre-
taceous (160–130 Ma) (Table S2 and Figure 11). The Middle–Late Triassic molybdenum de-
posits are primarily located in the southern GXR (SGXR) and along the SXCF, with minor oc-
currences in the NCGXR, including the Laojiagou (234.9 Ma; [41]), Chehugou (245 Ma; [85]),
Kulitu (236 Ma; [153]), and Badaguan deposits (228.8–225.1 Ma; [46,48,154]). Molybdenum
deposits formed in the Early to Middle Jurassic are abundant within the LXZR, and scat-
tered in the NCGXR, including the Daheishan (169.2–168.0 Ma; [52,155,156]), Xingshan
(167.3 Ma; [53]), Jidetun (168.9–168.0 Ma; [54,58,157]), Fu’anpu (168.2–166.9 Ma; [57,158]),
Houdaomu (167.5 Ma; [159]), Shuangshan (171.6 Ma; [160]), Jiapigou (196 Ma; [160]), San-
cha (183.1 Ma; [160]), Dashihe (186.7 Ma; [161]), Liushengdian (169.3–168.7 Ma; [159,162]),
Sifangdianzi (176.6 Ma; [59]), Luming (177.9–176.7 Ma; [61,62]), Huojihe (181.3 Ma; [64]),
Xinhualong (171.3 Ma; [159]), Wunugetushan (180.5–177.6 Ma; [49,163]), and Taipingchuan
deposits (200.1 Ma; [164]). Most of the molybdenum deposits dated between the Late Jurassic
and Early Cretaceous are located in the GXR, including the Chalukou (150–148 Ma; [65,67]),
Taipinggou (130.1–129.4 Ma; [72,165]), Jiazishan (147.4 Ma; [166]), Diyanqinamu (156.2 Ma; [167]),
Hashitu (150 Ma; [75]), Aolunhua (132–129.4 Ma; [79,168,169]), Shabutai (135.3 Ma; [26]),
Haisugou (136.4 Ma; [26]), Banlashan (143–136.1 Ma; [26,169]), Yangchang (138.5 Ma; [169]),
Hongshanzi (138.2–137.2 Ma; [83]), Xiaodonggou (138.1–135.5 Ma; [84,170]), Nianzigou
(154.3–153 Ma; [85,86,153]), and Jiguanshan deposits (155.4–151.1 Ma; [143,171]). The zircon



Minerals 2023, 13, 1189 19 of 32

U-Pb ages of ore-bearing granodiorites record the granitic magmatism in the Kanchuan-
gou and Jinchanggou deposits at 111.1 [56] and 114 Ma [63], respectively. Unfortunately,
no accurate molybdenite Re-Os ages of these two deposits have been reported, and the
genetic relationship between molybdenum mineralization and host granodiorites remains
to be further investigated. Hence, the molybdenum mineralization in these two deposits
is not involved in the present study. The Early Cretaceous molybdenum mineralization
in Lower Urgen is in accordance with the Late Jurassic–Early Cretaceous molybdenum
metallogenesis in the NCGXR.
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6.2. Source of Mineralizing Fluids

Stage 1 quartz has calculated δ18Ofluid values (1.1 to 1.9‰) that are lower than normal
magmatic fluids (7–9‰; [172]) and substantially higher than normal Mesozoic meteoric
water (–18‰; [173]). The δ18Ofluid values of the quartz samples from the late quartz–
carbonate stage are more depleted (–8.0 to –6.1‰) and comparable to the values of Mesozoic
meteoric water [127,173] (Figure 8). This δ18Ofluid variation trend implies the mixing of
magmatic fluids with later meteoric water during the mineralization at Lower Urgen.
Furthermore, in agreement with the documented δD values of Mesozoic meteoric water in
the GXR (–140 to –90‰; [173]), the δD values of all stages (–146.6 to –129.9‰) are much
lower than those of magmatic water (–50 to –85‰; [174]). The depletion of δD in the
mineralizing fluids could be controlled through (1) fluid boiling or immiscibility [175],
(2) magma degassing led by major meteoric water incursion [176], and (3) hydrogen isotope
fractionation between the mineralizing fluids and some reduced species (e.g., CH4). As
shown in Figure 5, the coexistence of multiple FI types in stages 1 and 2 indicates intense
fluid immiscibility during ore precipitation. The decreasing trend of Th and salinity in
the FIs from stage 1 to 3 indicates increasing meteoric water input toward the late fluid
system (Figure 7). However, no reduced species such as CH4 have been detected in the
H2O-dominated ore-forming fluids, which indicates that hydrogen isotope fractionation
is likely negligible [127]. Hence, we preliminarily speculate that fluid immiscibility and
meteoric water input could explain the δD depletion of ore-forming fluids at Lower Urgen.
In the δD versus δ18Ofluid diagram, the calculated δ18Ofluid and δD values also show a clear
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evolution trend from stage 1 to 3, and the data are plotted between the magmatic and
meteoric water fields (Figure 8). Therefore, we conclude that the mineralizing fluids of
the Lower Urgen deposit were primarily of magmatic origin with progressive meteoric
water input.

6.3. Source of Sulfur and Lead

S isotopes can be used to trace the source of sulfur in sulfide minerals, despite the fact
that the entire S isotopic components could be influenced by pH, temperature, ion activity,
and f O2 [177–179]. The δ34S data of sulfides can be utilized to determine their origin because
no sulfate minerals have been found in the Lower Urgen district. The molybdenite, pyrite,
chalcopyrite, and galena have δ34S values of 5.4–5.5‰, 5.4‰, 4.8–5.4‰, and 3.9‰, respec-
tively, implying that these sulfides have reached sulfide equilibrium fractionation [179].
The sulfides δ34S values of the Lower Urgen deposit display a restricted range (3.9–5.5‰),
which is commonly interpreted as a magma-derived sulfur [180] (Figure 9).

The source of the lead in the mineralizing fluids has been constrained using the lead iso-
tope ratios of sulfides. The Pb isotopic ratios of sulfides can provide information about the
source of Pb since sulfide minerals often have minimal radiogenic Pb isotopes and extremely
low quantities of Th and U [129,181]. By contrasting the Pb isotope ratios of molybdenite,
pyrite, chalcopyrite, galena, and molybdenum-bearing granite porphyry, the Pb source of
the Lower Urgen molybdenum deposit can be determined. The sulfide samples have nar-
row ranges of 206Pb/204Pb (18.336–18.510), 207Pb/204Pb (15.540–15.569), and 208Pb/204Pb
(38.130–38.312), implying an individual or successfully mixed lead origin. The Pb isotopic
ratios of sulfides in the Lower Urgen deposit are distinct from those of the surround-
ing Mesozoic strata (e.g., Tamulagou and Manketouebo Fms) (206Pb/204Pb = 18.08–18.32,
207Pb/204Pb = 15.46–15.55, and 208Pb/204Pb = 37.62–38.10) [93,182], but similar to those
of the ore-bearing granite porphyry stock in the deposit (206Pb/204Pb = 18.535–18.599,
207Pb/204Pb = 15.571–15.574, and 208Pb/204Pb = 38.419–38.583). Lead with high µ values
(>9.58) was derived from the upper crust [129], whereas that with values of 8.92 was de-
rived from the mantle [183]. The sulfides and granite porphyry stock from the Lower Urgen
deposit yield µ values of 9.35–9.40 and 9.39–9.40, respectively, indicating that lead was basi-
cally from the crustal source and an extremely small amount of the mantle source. On the
diagram of 207Pb/204Pb versus 206Pb/204Pb [129], the sulfide and ore-bearing granite por-
phyry samples are all located between the mantle and orogen evolution curves (Figure 10a).
On the diagram of 208Pb/204Pb versus 206Pb/204Pb [129], most sulfide and ore-bearing
granite porphyry samples are distributed on the orogen evolution curve (Figure 10b). These
features imply that the metal sulfides and granite porphyry at Lower Urgen have the same
lead source, which has been documented in many porphyry deposits [2,3,184], and that the
granitic magmatism is probably largely responsible for the molybdenum mineralization in
the Lower Urgen deposit.

6.4. Metal Precipitation Mechanisms

Fluid immiscibility, one of the most significant ore-forming mechanisms in magmatic–
hydrothermal metallogenic systems, can change the temperature, pH, and salinity of the
ore-bearing fluids, thereby reducing the solubility of metals in the fluids [14,185–188]. The
occurrence of fluid immiscibility is supported by the following evidence from stage 1 quartz-
hosted FIs: (1) L-, S-, C1-, and C2-type FIs have intimate spatial relationships (Figure 5a–c);
(2) they exhibit distinct homogenization modes; and (3) these FIs show distinct salinities
and comparable homogenization temperature ranges (Figure 7a,b). Similarly, at stage 2, L-,
C1-, and C2-type FIs frequently coexist, indicating that they were simultaneously captured
and showed different homogenization modes (Figures 5g and 7c,d). Notably, in stages 1
and 2, C1- and C2-type FIs frequently show lower salinities but analogous homogenization
temperatures than L-type FIs, which shows that fluid immiscibility occurred before their
entrapment [189]. The increased salinity of the residual fluids caused by volatile separation
from the ore-bearing fluids as temperature and pressure drops may be the cause of the
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higher salinities in L-type FIs than those in C1- and C2-type FIs [185,190]. The mineralizing
fluids at Lower Urgen underwent fluid immiscibility processes during stages 1 and 2, as
reflected by the diagram of salinity versus homogenization temperature (Figure 12). Field
evidence, such as the widespread fracture and brecciation of granite porphyry cupola
and the overlying intermediate–basic volcanic rocks at Lower Urgen, suggests a dramatic
pressure drop that might result in fluid immiscibility, further supporting the existence
of fluid immiscibility [119,191–193]. Previous research has demonstrated that a mafic
magmatic source or the magmatic–hydrothermal formation procedure of a deep-seated
magma chamber often contributes significant amounts of dissolved CO2 [119,194–198].
In combination with the H-O isotopic compositions of stage 1 quartz, we speculate that
the original fluids of the Lower Urgen molybdenum deposit are CO2-rich magmatic–
hydrothermal fluids. As the fluids rose, volatiles (such as CO2) started to separate from
the fluids due to a decrease in pressure and temperature. The sudden supersaturation
of the solution was caused by the release of volatiles, which also increased the pH of the
solution and caused the decoupling of metal complexes. As a result of the procedure,
significant amounts of molybdenite precipitated from stage 1 fluids, while chalcopyrite,
pyrite, sphalerite, arsenopyrite, and galena were deposited from stage 2 fluids.
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Hydrothermal mineralization frequently involves fluid–rock interaction, which is
essential for the transport and deposition of metal ions, especially in an intrusive-related
mineralization system [4,199–201]. Many investigations have demonstrated that changes
in the physicochemical properties of fluids as a result of fluid–rock interactions affect metal
solubility and mineral precipitation [202–205]. Different hydrothermal alteration types are
characteristics of porphyry molybdenum mineralization, and phyllic alteration is frequently
seen as a sign of prospecting [201,203,205,206], as indicated by the fact that molybdenum
mineralization in the deposit is spatially related to phyllic alteration, and plagioclase and
K-feldspar of the ore-bearing granite porphyry tend to be replaced by quartz and sericite in
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stage 1 (Figure 4b,e). Phyllic alteration lowered the H+ contents of the hydrothermal fluids
and enriched the reduced sulfur (S2−), which mixed with Mo2+ to generate molybdenite.
The following formulas reflect the pertinent reactions:

3KAlSi3O8 + 2H+ → KAl3Si3O10(OH)2 (sericite) + 6SiO2 (quartz) + 2K+ (1)

3NaAlSi3O8 + K+ + 2H+ → KAl3Si3O10(OH)2 (sericite) + 6SiO2 (quartz) + 3Na+ (2)

H2S→ H+ + HS− (3)

HS− → H+ + S2− (4)

Therefore, we provide a preliminary argument that phyllic alteration could benefit
the deposition of molybdenite at Lower Urgen. Nevertheless, a more detailed explanation
to this conclusion is beyond the scope of our current study and additional alteration
mineralogical and geochemical research is necessary before a full understanding can
be attained.

Numerous studies have shown that fluid mixing is a crucial factor in the production
of base metal sulfide deposits because it can dilute and cool hydrothermal solutions, which
causes enormous sulfide mineral depositions [207–211]. Mineral deposition occurs when
the solubility of metal ions in the fluids surpasses saturation, and substantial deposition
occurs as the solubility is dramatically decreased [208]. In the Lower Urgen deposit, the
continuous fluid immiscibility in stages 1 and 2 would have increased the permeability
of the host granite porphyry stock, and further accelerated meteoric water circulation.
Stage 2 fluids have much lower salinity and homogenization temperatures than stage 1
fluids (Figure 12). Additionally, stage 2 fluids have more depleted δ18Ofluid values than
stage 1 fluids (Figure 8). These features collectively demonstrate the existence of fluid
mixing processes in stage 2. To summarize, fluid mixing propelled the polymetallic sulfide
mineralization in stage 2 at Lower Urgen. The progressive incursion of meteoric water into
the magmatic–hydrothermal system might cause considerable cooling, the instability of
metal chloride complexes, and sulfide deposition.

In conclusion, stage 1 molybdenite deposition is primarily controlled through fluid
immiscibility and fluid–rock interaction. The increasing injection of meteoric water into the
hydrothermal system and fluid immiscibility collectively controlled the massive deposition
of polymetallic sulfides in stage 2.

6.5. Metallogenic Model for the Lower Urgen Magmatic–Hydrothermal System

Especially for intrusion-related magmatic–hydrothermal deposits, the development
of a metallogenic model may successfully direct the investigation of the ore deposit and
increase the successful rate of prospecting and prediction [4,212]. We construct the metallo-
genic model for the Lower Urgen molybdenum deposit upon the above discussion and
previous research, as outlined below.

Due to the closure of the MOO, the surveyed region experienced an extensional envi-
ronment in the Late Jurassic and Early Cretaceous, which promoted the partial melting of
the lower crust and produced ore-bearing granitic magmas [25,50,213–218]. As a lithophile
element, molybdenum tends to be abundant in the crust but deficient in the mantle [219].
Consequently, a potential source for molybdenum mineralization might be the lower crust
under the Lower Urgen region. Metallic elements are partitioned into the melt through
partial melting of the protolith. The ore-bearing granite porphyry, which represents the
parental rock and served as a constant source of hot, ore-rich fluids for the generation of the
hydrothermal mineralization system, was emplaced at about 142.3 Ma. The potassic and
phyllic alteration zones were generated by these fluids accumulating at the cupola of the
mineralization intrusion and interacting with cooling granite porphyry (Figure 2c). In the
meantime, intense and widespread fluid immiscibility was created through the constant
ascent and decompression of mineralizing fluids. Stage 1 fluids belong to a NaCl–H2O–
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CO2 system and contain bimodal salinities (5.0–11.9 and 30.1–50.8 wt% NaCl equiv.) and
have medium–high temperatures (240–430 ◦C). Intense fluid immiscibility and fluid–rock
interaction caused an increase in pH and a drop in temperature, which significantly re-
duced the solubility of molybdenum and aided in the precipitation of molybdenite. The
molybdenum mineralization stage was characterized by widespread molybdenum-bearing
quartz veinlets and disseminated molybdenite in the granite porphyry. In stage 2, massive
meteoric water mixed with the evolved magmatic–hydrothermal fluids through localized
regional hydraulic fractured and brecciated zones. Stage 2 fluids have salinities and ho-
mogenization temperatures of 3.0–9.1 wt% NaCl equiv. and 180–280 ◦C, respectively, and
belong to a NaCl–H2O–CO2 system. The molybdenum mineralization came to an end with
the extinction of veinlet-disseminated- and vein-type quartz–molybdenite(–pyrite) ores.
The constant infiltration of meteoric water diluted ore-forming fluids and decreased their
temperature. This process, combined with extensive fluid immiscibility, collectively led to
the large-scale decoupling of base metal complexes and promoted the massive deposition
of polymetallic sulfides. Stage 3 fluids belong to a NaCl–H2O system and have salinities of
0.2 to 7.9 wt% NaCl equiv. and homogenization temperatures of 120 to 220 ◦C, suggesting
a hydrothermal environment with low salinity and temperature. The hydrothermal fluids
were governed by meteoric water as the pressure of the system was dropped. The fluids
produced quartz and calcite as precipitates. The absence of ore minerals in the veins of
this stage suggests that the fluids are no longer useful for mineralization, signaling the
termination of the hydrothermal process in the Lower Urgen region.

7. Conclusions

(1) Molybdenite Re-Os dating yields two model ages of 141.2 ± 1.5 and 147.7 ± 1.7 Ma
for the Lower Urgen molybdenum deposit. The new geochronological data indicate that
the molybdenum mineralization event in the Lower Urgen area is consistent with the
intensive and extensive Late Jurassic–Early Cretaceous molybdenum mineralization events
in NE China.

(2) Three hydrothermal stages of the Lower Urgen molybdenum deposit can be
distinguished: (i) quartz–molybdenite(–pyrite) stage—ore-forming fluids have medium–
high temperatures (240–430 ◦C) and bimodal salinities (5.0–11.9 and 30.1–50.8 wt% NaCl
equiv.) and belong to a NaCl–H2O–CO2 system; (ii) quartz–polymetallic sulfide stage—ore-
forming fluids have medium temperatures (180–280 ◦C) and low salinities (3.0–9.1 wt%
NaCl equiv.) and belong to a NaCl–H2O–CO2 system; and (iii) quartz–carbonate stage—
fluids have low temperatures (120–220 ◦C) and low salinities (0.2–7.9 wt% NaCl equiv.)
and belong to a NaCl–H2O system.

(3) Hydrogen–oxygen isotope results indicate that the mineralizing fluids initially had
a magmatic source with the progressive incursion of meteoric water. Sulfur–lead isotopic
compositions indicate that the mineralizing materials have a genetic relationship with
ore-bearing granite porphyry, and sulfur and lead are magmatically derived.

(4) Fluid immiscibility and fluid–rock interaction are the predominant mechanisms
for molybdenite deposition in stage 1. Fluid mixing and immiscibility are cooperatively
accountable for the massive deposition of polymetallic sulfides in stage 2.
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