Ni(Co) Laterite Deposits of Southeast Asia: A Review and Perspective
Abstract
:1. Introduction
2. Geological Background and Metallogeny
2.1. Tectonic Settings
2.2. Metallogenic Belts and Spatio–Temporal Distribution
2.3. Ultramafic Bedrock Types and Characteristics
2.4. Ore Deposit Type and Ore Distribution
3. Factors Controlling the Development of Ni(Co) Laterite Deposits
3.1. Lithology, Geomorphology, Climate, and Structure
3.2. Degree of Serpentinization of Bedrock and Related Ni-Co Contents
4. The Potential for Critical Metals of Ni(Co) Laterite
5. Future Perspectives
5.1. Research Perspectives
5.2. Exploration Perspectives
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marsh, E.; Anderson, E.; Gray, F. Nickel-cobalt laterites—A deposit model, chap. H of Mineral deposit models for resource assessment. In U.S. Geological Survey Scientific Investigations Report 2010–5070–H; U.S. Geological Survey: Reston, VA, USA, 2013; p. 38. [Google Scholar]
- Elias, M. Nickel laterite deposits—Geological overview, resources and exploration In Giant Ore Deposits: Characteristics, Genesis and Exploration; Special Publication; University of Tasmania: Hobart, TAS, Australia, 2002; Volume 4, pp. 205–220. [Google Scholar]
- Butt, C.R.M.; Cluzel, D. Nickel laterite ore deposits: Weathered serpentinites. Elements 2013, 9, 123–128. [Google Scholar] [CrossRef]
- Elias, M.; Donaldson, M.J.; Giorgetta, N.E. Geology, mineralogy, and chemistry of lateritic nickel-cobalt deposits near Kalgoorlie, Western Australia. Econ. Geol. 1981, 76, 1775–1783. [Google Scholar] [CrossRef]
- Nahon, D.; Paquet, H.; Delvigne, J. Lateritic weathering of ultramafic rocks and the concentration of nickel in the Western Ivory Coast. Econ. Geol. 1982, 77, 1159–1175. [Google Scholar] [CrossRef]
- Mongelli, G.; Taghipour, B.; Sinisi, R.; Khadivar, S. Mineralization and element redistribution in the Chah-Gheib Ni-laterite ore zone, Bavanat, Zagros Belt, Iran. Ore Geol. Rev. 2019, 111, 102990. [Google Scholar] [CrossRef]
- Colin, D.N.; Trescases, J.J.; Melfia, J. Lateritic weathering of pyroxenites at Niquelandia, Goias, Brazil; the supergene behavior of nickel. Econ. Geol. 1990, 85, 1010–1023. [Google Scholar] [CrossRef]
- Gleeson, S.A.; Herrington, R.J.; Durango, J.; Velásquez, C.A.; Koll, G. The mineralogy and geochemistry of the Cerro Matoso SA Ni laterite deposit, Montelíbano, Colombia. Econ. Geol. 2004, 99, 1197–1213. [Google Scholar] [CrossRef]
- Yongue-Fouateu, R.; Ghogomu, R.T.; Penaye, J.; Ekodeck, G.; Stendal, H.; Colin, F. Nickel and cobalt distribution in the laterites of the Lomié region, south-east Cameroon. J. Afric. Earth Sci. 2006, 45, 33–47. [Google Scholar] [CrossRef]
- Thorne, R.L.; Herrington, R.; Roberts, S. Composition and origin of Çaldăg oxide nickel laterite, West Turkey. Miner. Deposita 2009, 44, 581–595. [Google Scholar] [CrossRef]
- Wells, M.A.; Ramanaidou, E.R.; Verrall, M.; Tessarolo, C. Mineralogy and crystal chemistry of ‘‘garnierites’’ in the Goro lateritic nickel deposit, New Caledonia. Eur. J. Mineral. 2009, 21, 467–483. [Google Scholar] [CrossRef]
- Lambiv Dzemua, G.; Gleeson, S.A. Petrography, mineralogy, and geochemistry of the Nkamouna serpentinite: Implications for the formation of the Cobalt-Manganese Laterite Deposit, Southeast Cameroon. Econ. Geol. 2012, 107, 25–41. [Google Scholar] [CrossRef]
- Domènech, C.; Galí Medina, S.; Soler, J.M.; Ancco, M.P.; Meléndez, W.; Rondón, J.; Villanova-de-Benavent, C.; Proenza Fernández, J.A. The Loma de Hierro Ni laterite deposit (Venezuela): Mineralogical and chemical composition. Bol. Soc. Geol. Mex. 2020, 72, 1–28. [Google Scholar] [CrossRef]
- Al-Khirbash, S.A.; Ahmed, A.H. Distribution and mobility of platinum-group elements in the Late Cretaceous Ni-laterite in the Northern Oman Mountains. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022363. [Google Scholar] [CrossRef]
- Tauler, E.; Lewis, J.F.; Villanova-De-Benavent, C.; Aiglsperger, T.; Proenza, J.A.; Domènech, C.; Gallardo, T.; Longo, F.; Galí, S. Discovery of Ni-smectite-rich saprolite at Loma Ortega, Falcondo mining district (Dominican Republic): Geochemistry and mineralogy of an unusual case of “hybrid hydrous Mg silicate–clay silicate” type Ni-laterite. Miner. Deposita 2017, 52, 1011–1030. [Google Scholar] [CrossRef]
- Lou, D.; Sun, Y.; Shan, C.; Sun, J.; Xiao, K. Geological characteristics and mineral prediction of Ni ore deposits in China. Earth Sci. Front. 2018, 25, 67–81, (In Chinese with English Abstract). [Google Scholar]
- Maurizot, P.; Sevin, B.; Iseppi, M. Nickel-bearing laterite deposits in accretionary context and the case of New Caledonia: From the large-scale structure of earth to our everyday appliances. GSA Today 2019, 29, 4–10. [Google Scholar] [CrossRef]
- Samouhos, M.; Godelitsas, A.; Nomikou, C.; Taxiarchou, M.; Tsakiridis, P.; Zavašnik, J.; Gamaletsos, P.N.; Apostolikas, A. New insights into nanomineralogy and geochemistry of Ni-laterite ores from central Greece (Larymna and Evia deposits). Geochemistry 2019, 79, 268–279. [Google Scholar] [CrossRef]
- Dybowska, A.; Schofield, P.F.; Newsome, L.; Herrington, R.J.; Mosselmans, J.F.W.; Kaulich, B.; Kazemian, M.; Araki, T.; Skiggs, T.J.; Kruger, J.; et al. Evolution of the Piauí laterite, Brazil: Mineralogical, geochemical and geomicrobiological mechanisms for cobalt and nickel enrichment. Minerals 2022, 12, 1298. [Google Scholar] [CrossRef]
- Murofushi, A.; Otake, T.; Sanematsu, K.; Zay Ya, K.; Ito, A.; Kikuchi, R.; Sato, T. Mineralogical evolution of a weathering profile in the Tagaung Taung Ni laterite deposit: Significance of smectite in the formation of high-grade Ni ore in Myanmar. Miner. Deposita 2022, 57, 1107–1122. [Google Scholar] [CrossRef]
- Zhang, Z.; Shu, Q.; Yang, X.; Wu, C.; Zheng, C.; Xu, J. Review on the Tectonic terranes associated with metallogenic zones in Southeast Asia. J. Earth Sci. 2019, 30, 1–19. [Google Scholar] [CrossRef]
- Santoro, L.; Putzolu, F.; Mondillo, N.; Boni, M.; Herrington, R. Trace element geochemistry of iron-(oxy)-hydroxides in Ni (Co)-laterites: Review, new data and implications for ore forming processes. Ore Geol. Rev. 2022, 140, 104501. [Google Scholar] [CrossRef]
- Liu, C.; Yin, W.; Tu, C.; He, W. Geologic characteristics and exploration & utilization progress of laterite nickel deposits in Luzon Island, Philippines. Jiangxi Nonferr. Metals 2009, 23, 3–7, (In Chinese with English Abstract). [Google Scholar]
- Li, W. Overview of laterite-type nickel deposit in Dagongshan, Myanmar. China Min. Sci. Technol. Lit. Rev. 2013, 421–423, (In Chinese with English Abstract). [Google Scholar]
- Fu, X.; Wang, Z.; Zhang, Q.; Shi, W.; Li, H.; Zhan, H.; Chen, D.; Fu, F.; Chen, H.; Fan, L.; et al. Application of soil geochemical survey to lateritic nickel ore exploration in the Philippines. Contrib. Geol. Mineral. Resour. Res. 2010, 25, 372–376, (In Chinese with English Abstract). [Google Scholar]
- Fu, W.; Yang, J.; Yang, M.; Pang, B.; Liu, X.; Niu, H.; Huang, X. Mineralogical and geochemical characteristics of a serpentinite-derived lateritic profile from East Sulawesi, Indonesia: Implications for the lateritization process and Ni supergene enrichment in the tropical rainforest. J. Asian Earth Sci. 2014, 93, 74–88. [Google Scholar] [CrossRef]
- Fu, W.; Zhang, Y.; Pang, C.; Zeng, X.; Huang, X.; Yang, M.; Shao, Y.; Lin, H. Garnierite mineralization from a serpentinite-derived lateritic regolith, Sulawesi Island, Indonesia: Mineralogy, geochemistry and link to hydrologic flow regime. J. Geochem. Explor. 2018, 188, 240–256. [Google Scholar] [CrossRef]
- Fan, R.; Gerson, A.R. Nickel geochemistry of a Philippine laterite examined by bulk and microprobe synchrotron analyses. Geochim. Cosmochim. Acta 2011, 75, 6400–6415. [Google Scholar] [CrossRef]
- Cui, Y.; Yang, X.; Jiang, Y.; Chen, Y. Metallogenic conditions and prospecting indicators for the lateritic nickel deposits. Acta Mineral. Sin. 2013, 33, 449–455, (In Chinese with English Abstract). [Google Scholar]
- Aquino, K.A.; Arcilla, C.A.; Schardt, C.S. Mineralogical zonation of the Sta. Cruz Nickel Laterite Deposit, Zambales, Philippines obtained from detailed X-ray diffraction coupled with Rietveld refinement. J. Geol. Soc. Philippines 2019, 73, 1–14. [Google Scholar]
- Aquino, K.A.; Arcilla, C.A.; Schardt, C.; Tupaz, C.A.J. Mineralogical and geochemical characterization of the Sta. Cruz nickel laterite deposit, Zambales, Philipines. Minerals 2022, 12, 305. [Google Scholar] [CrossRef]
- Tupaz, C.A.J.; Watanabe, Y.; Sanematsu, K.; Echigo, T.; Arcilla, C.; Ferrer, C. Ni-Co mineralization in the Intex laterite deposit, Mindoro, Philippines. Minerals 2020, 10, 579. [Google Scholar] [CrossRef]
- Tupaz, C.A.J.; Watanabe, Y.; Sanematsu, K.; Echigo, T. Mineralogy and geochemistry of the Berong Ni-Co laterite deposit, Palawan, Philippines. Ore Geol. Rev. 2020, 125, 10386. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, I.; Moon, I. Geochemical and mineralogical characteristics of garnierite from the Morowali Ni-laterite deposit in Sulawesi, Indonesia. Front. Earth Sci. 2021, 9, 761748. [Google Scholar] [CrossRef]
- Metcalfe, I. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Res. 2011, 19, 3–21. [Google Scholar] [CrossRef]
- Zheng, H.W.; Gao, R.; Li, T.D.; Li, Q.S.; He, R.Z. Collisional tectonics between the Eurasian Philippine Sea plates from tomography evidences in Southeast China. Tectonophysics 2013, 606, 14–23. [Google Scholar] [CrossRef]
- Metcalfe, I. Late Palaeozoic and Mesozoic tectonic and palaeogeographical evolution of SE Asia. Geol. Soc. Lond. Spec. Publ. 2009, 315, 7–23. [Google Scholar] [CrossRef]
- Zaw, K.; Meffre, S.; Lai, C.-K.; Burrett, C.; Santosh, M.; Graham, M.; Manaka, T.; Salam, A.; Kamvong, T.; Cromie, P. Tectonics and metallogeny of mainland Southeast Asia—A review and contribution. Gondwana Res. 2014, 26, 5–30. [Google Scholar]
- Queaño, K.L.; Yumul, G.P., Jr.; Marquez, E.J.; Gabo-Ratio, J.A.; Payot, B.D.; Dimalanta, C.B. Consumed tectonic plates in Southeast Asia: Markers from the Mesozoic to early Cenozoic stratigraphic units in the northern and central Philippines. J. Asian Earth Sci. X 2020, 4, 100033. [Google Scholar] [CrossRef]
- Wang, D.; Lin, F.C.; Shi, M.F.; Wang, H.; Yang, X.Y. Geological setting, tectonic evolution and spatio-temporal distributions of main mineral resources in South East Asia: A comprehensive review. Solid Earth Sci. 2023, 8, 34–48. [Google Scholar] [CrossRef]
- Simons, W.J.F.; Socquet, A.; Vigny, C.; Ambrosius, B.A.C.; Haji Abu, S.; Promthong, C.; Subarya, C.; Sarsito, D.A.; Matheussen, S.; Morgan, P.; et al. A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries. J. Geophys. Res. 2007, 112, B064202007. [Google Scholar] [CrossRef]
- Hall, R.; Wilson, M.E.J. Neogene sutures in eastern Indonesia. J. Asian Earth Sci. 2000, 18, 781–808. [Google Scholar] [CrossRef]
- Deng, J.H.; Yang, X.Y.; Zartman, R.E.; Qi, H.S.; Zhang, L.P.; Liu, H.; Zhang, Z.F.; Mastoi, A.S.; Berador, A.E.G.; Sun, W.D. Early cretaceous transformation from pacific to neo-tethys subduction in the SW Pacific Ocean: Constraints from Pb-Sr-Nd-Hf isotopes of the Philippine arc. Geochem. Cosmochim. Acta 2020, 285, 21–40. [Google Scholar] [CrossRef]
- Hallet, V. Scanning the globe for organic chemistry. U.S. News and World Report, 19 April 2004, p. 59. Business Source Premier. Available online: http://www.epnet.com/academic/bussourceprem.asp (accessed on 5 January 2024).
- Yumul, G.P., Jr. The Acoje Block platiniferous dunite horizon, Zambales Ophiolite Complex, Philippines: Melt Type and Associated Geochemical Controls. Resour. Geol. 2001, 51, 165–174. [Google Scholar] [CrossRef]
- Yumul, G.P., Jr.; Zhou, M.; Wang, C.Y.; Wang, C.; Zhao, T.; Dimalanta, C.B. Geology and Geochemistry of the Shuanggou Ophiolite (Ailao Shan Ophiolitic Belt), Yunnan Province, SW China: Evidence for a Slow-Spreading Oceanic Basin Origin. J. Asian Earth Sci. 2008, 32, 385–395. [Google Scholar] [CrossRef]
- Elias, M. Nickel laterites in SE Asia: Geology, Technology and Economics—Finding the balance. In East Asia: Geology, Exploration Technologies and Mines; CSA Global Resource industry Consultants: Bali, Indonesia, 2013. [Google Scholar]
- Reynolds, C.D.; Havryluk, I.; Bastaman, S.; Atmowidjojo, S. The exploration of the nickel laterite deposits in Irian Barat, Indonesia. Geol. Soc. Malays. Bull. 1973, 6, 309–323. [Google Scholar] [CrossRef]
- Golightly, J.P.; Arancibia, O.N. The chemical composition and infrared spectrum of nickel- and iron-substituted serpentine from a nickeliferous laterite profile, Soroako, Indonesia. Canad. Mineral. 1979, 17, 719–728. [Google Scholar]
- Sufriadin; Arifudin, I.; Subagyo, P.; Wayan, I.W.; Akira, I. Study on mineralogy and chemistry of the saprolitic nickel ores from Soroako, Sulawesi, Indonesia: Implication for the lateritic ore processing. J. Appl. Geol. 2011, 3, 23–33. [Google Scholar] [CrossRef]
- Ilyas, A.; Koike, K. Geostatistical Modeling of Ore Grade Distribution from Geomorphic Characterization in a Laterite Nickel Deposit. Nat. Resour. Res. 2012, 21, 177–191. [Google Scholar] [CrossRef]
- Farrokhpay, S.; Cathelineau, M.; Blancherb, S.B.; Laugierb, O.; Filippova, L. Characterization of Weda Bay nickel laterite ore from Indonesia. J. Geochem. Explor. 2019, 196, 270–281. [Google Scholar] [CrossRef]
- Ogura, Y.; Murata, K.; Iwai, M. Relation between chemical composition and particle-size distribution of ores in the profile of nickeliferous laterite deposits of the Rio Tuba mine, Philippines. Chem. Geol. 1987, 60, 259–271. [Google Scholar] [CrossRef]
- Aurelio, M.A.; Peña, R.E.; Taguibao, K.J.L. Sculpting the Philippine archipelago since the Cretaceous through rifting, oceanic spreading, subduction, obduction, collision and strike-slip faulting: Contribution to IGMA5000. J. Asian Earth Sci. 2013, 72, 102–107. [Google Scholar] [CrossRef]
- Abrajano, T.A.; Pasteris, J.D.; Bacuta, G.C. Zambales ophiolite, Philippines I. Geology and petrology of the critical zone of the Acoje massif. Tectonophysics 1989, 168, 65–100. [Google Scholar] [CrossRef]
- Hawkins, J.W.; Evans, C. A Geology of the Zambales Range, Luzon, Philippine Islands—Ophiolite derived from an island arc-backarc basin pair. In The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Part 2; Geophysical Monographs, Series; Hayes, D.E., Ed.; American Geophysical Union: Washington, DC, USA, 1983; Volume 27, pp. 95–123. [Google Scholar]
- Rossman, D.L.; Castañada, G.C.; Bacuta, G.C. Geology of the Zambales ophiolite, Luzon, Philippines. Tectonophysics 1989, 168, 7–22. [Google Scholar] [CrossRef]
- Yumul, G.P.; Dimalanta, C.B. Geology of the Southern Zambales Ophiolite Complex, (Philippines): Juxtaposed terranes of diverse origin. J. Asian Earth Sci. 1997, 15, 413–421. [Google Scholar] [CrossRef]
- Gibaga, C.R.L.; Arcilla, C.A.; Hoang, N. Volcanic rocks from the Central and Southern Palawan Ophiolites, Philippines: Tectonic and mantle heterogeneity constraints. J. Asian Earth Sci. X 2020, 4, 100038. [Google Scholar] [CrossRef]
- Hutchison, C.S. Ophiolite in Southeast Asia. Geol. Soc. Am. Bull. 1975, 86, 797–806. [Google Scholar] [CrossRef]
- Mitchell, A.H.G.; Hernandez, F.; dela Cruz, A.P. Cenozoic evolution of the Philippine archipelago. J. Southeast Asian Earth Sci. 1986, 1, 3–22. [Google Scholar] [CrossRef]
- Faure, M.; Marchadier, Y.; Rangin, C. Pre-Eocene Synmetamorphic Structure in the Mindoro-Romblon-Palawan Area, West Philippines, and Implications for the History of Southeast Asia. Tectonics 1989, 8, 963–979. [Google Scholar] [CrossRef]
- Rangin, C.; Jolivet, L.; Pubellier, M. A Simple Model for the Tectonic Evolution of Southeast Asia and Indonesia Region for the Past 43 M.y. Bull. De La Soc. Geol. De Fr. 1990, VI, 889–905. [Google Scholar] [CrossRef]
- Yumul, G.P.; Dimalanta, C.B.; Faustino, D.V.; De Jesus, J.V. Translation and docking of an arc terrane: Geological and geochemical evidence from the southern Zambales ophiolite complex, Philippines. Tectonophysics 1998, 293, 255–272. [Google Scholar] [CrossRef]
- Yumul, G.P.; Dimalanta, C.B.; Tamayo, R.A. Indenter-tectonics in the Philippines: Example from the Palawan Microcontinental Block-Philippine mobile belt collision. Resour. Geol. 2005, 55, 189–198. [Google Scholar] [CrossRef]
- Ohn, K.K. Geology & Mineral Resources of Myanmar. Report 2015, 50. Available online: https://www.cgs.gov.cn/upload/201510/20151020/20151020214113776.pdf (accessed on 3 January 2024).
- China Nonferrous Guilin Institute of Mineral Geology Co., Ltd. (CNGIMG). Report on the results of target selection and evaluation of nickel-chromium polymetallic ore in Tagaung Taung District, Mandalay Province, Myanmar. Unpublished report, 2015; p. 82.
- Ballantyne, P.D. Petrological Constraints upon the Provenance and Genesis of the East Halmahera Ophiolite. Orogenesis in Action. J. South. East. Asian Earth Sci. 1991, 1, 259–269. [Google Scholar] [CrossRef]
- Kadarusmana, A.; Miyashitab, S.; Maruyamaa, S.; Parkinsonc, C.D.; Ishikawad, A. Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia. Tectonophysics 2004, 392, 55–83. [Google Scholar] [CrossRef]
- Van Leeuwen, T.M. Stratigraphy and Tectonic Setting of the Cretaceous and Paleogene Volcanic-Sedimentary Successions in Northwest Sulawesi, Indonesia: Implications for the Cenozoic Evolution of Western and Northern Sulawesi. J. Asian Earth Sci. 2005, 25, 481–511. [Google Scholar] [CrossRef]
- Ilyas, A.; Kashiwaya, K.; Koike, K. Ni grade distribution in laterite characterized from geostatistics, topography and the paleo-groundwater system in Sorowako, Indonesia. J. Geochem. Explor. 2016, 165, 174–188. [Google Scholar] [CrossRef]
- Aurelio, M.; Peña, R. Geology and Mineral Resources of the Philippines. Geology 2004, 1, 27–30. [Google Scholar]
- Schellman, W. Allochthonous surface alteration of Ni-laterites. Chem. Geol. 1989, 74, 351–364. [Google Scholar] [CrossRef]
- Schellman, W. Composition and origin of laterite nickel ore at Tagaung Tagung, Burma. Miner. Deposita 1989, 254, 161–168. [Google Scholar] [CrossRef]
- Zuo, L. Study on Production Exploration, Development and Utilization and Deep Prospecting in H District of Dagongshan Nickel Mine in Myanmar. China Resour. Comp. Utiliz. 2020, 38, 79–81, (In Chinese with English Abstract). [Google Scholar]
- Zhong, X.; Shi, Z. Discussion on the microstructure of one limonite-type laterite nickel ore from Indonesia. Metall. Anal. 2020, 40, 1–7, (In Chinese with English Abstract). [Google Scholar]
- Cheng, L.; Liu, J.; Ren, X.; Wu, G. Geological characteristics and genesis of gravel lateritic nickel deposit in Sulawesi, Indonesia. Glob. Geol. 2015, 34, 120–126, (In Chinese with English Abstract). [Google Scholar]
- Yan, Y.; Qi, S.; Wei, X.; Ye, C.; Pu, J. Geological characteristics and prospecting of laterite nickel deposits of Weila conglomerate type in Indonesia. Glob. Geol. 2019, 38, 944–952, (In Chinese with English Abstract). [Google Scholar]
- Cheng, Q.; Luo, T. Weathering crust nickel silicate deposit in Dagon Mountain, Myanmar. Yunnan Geol. 2009, 28, 420–424, (In Chinese with English Abstract). [Google Scholar]
- Zhang, D.; Sun, Y. Geological-Geochemistry characteristics and minerogenesis of nickel-bearing weathering crust in Tagaung Taung, Myanmar. J. Guilin Univ. Techn. 2010, 30, 332–338, (In Chinese with English Abstract). [Google Scholar]
- Ruan, S.; Huang, Y. Metallogenic geological conditions and prospecting direction of Mwetaung laterite nickel mine, Myanmar. World Nonferr. Met. 2017, 10, 123–124, (In Chinese with English Abstract). [Google Scholar]
- Norton, A.S. Laterite and bauxite formation. Econ. Geol. 1973, 68, 353–361. [Google Scholar] [CrossRef]
- Lelong, F.; Tardy, Y.; Grandin, G.; Trescases, J.J.; Boulange, B. Pedogenesis, chemical weathering and processes of formation of some supergene ore deposits. In Handbook of Stratabound and Stratiform Ore Deposits—I—Principles and General Studies—Volume 3—Supergene and Surficial Ore Deposits; Texture and, Fabrics; Wolf, K.H., Ed.; Elsevier: Amsterdam, The Netherlands, 1976; pp. 93–133. [Google Scholar]
- Golightly, J.P. Nickeliferous laterite deposits. Econ. Geol. 1981, 75, 710–735. [Google Scholar]
- Golightly, J.P. Progress in understanding the evolution of nickel laterites. In The Challenge of Finding New Mineral Resources—Global Metallogeny, Innovative Exploration, and New Discoveries; Society of Economic Geologists Special Publication; Goldfarb, R.J., Marsh, E.E., Monecke, T., Eds.; 2010; Volume 15, pp. 451–485. [Google Scholar]
- Gleeson, S.A.; Butt, C.R.M.; Elias, M. Nickel laterites, a review. Soc. Econ. Geol. Newsl. 2003, 54, 11–18. [Google Scholar] [CrossRef]
- Freyssinet, P.; Butt, C.R.M.; Morris, R.C.; Piantone, P. Ore-forming processes related to lateritic weathering. Econ. Geol. 2005, 100, 681–722. [Google Scholar]
- Ogura, Y. Mineralogical studies on the profiles of nickeliferous laterite deposits in the Southwestern Pacific Area. Geol. Surv. India Mem. 1986, 120, VI-1–VI-12. [Google Scholar]
- Ito, A.; Otake, T.; Maulana, A.; Sanematsu, K.; Sufriadin; Sato, T. Geochemical constraints on the mobilization of Ni and critical metals in laterite deposits, Sulawesi, Indonesia: A mass-balance approach. Resour. Geol. 2021, 71, 255–282. [Google Scholar] [CrossRef]
- Maulana, A.; Sanematsu, K.; Sakakibara, M. Study on Sc-bearing Lateritic Ni deposits in Ultramafic Rock from Sulawesi: A New Paradigm in Indonesia Metal Mining Industry. IOP Conf. Ser. Mater. Sci. Eng. 2019, 676, 012032. [Google Scholar] [CrossRef]
- Maulana, A.; Sanematsu, K.; Sakakibara, M. An overview on the possibility of scandium and REE occurrence in Sulawesi, Indonesia. Indones. J. Geosci. 2016, 3, 139–147. [Google Scholar] [CrossRef]
- Onggang, S.; Maulana, A.; Sufriadin; Irfan, U.R. Preliminary study of scandium enrichment in lateritic profile from weathered ultramafic rock in Linpaopaao area Kolaka Regency of Souheast Sulawesi. IOP Conf. Ser. Earth Environ. Sci. 2021, 921, 012040. [Google Scholar] [CrossRef]
- Gibaga, C.R.L.; Samaniego, J.O.; Tanciongco, A.M.; Quierrez, R.N.M.; Montano, M.O.; Gervasio, J.H.C.; Reyes, R.C.G.; Peralta, M.J.V. The rare earth element (REE) potential of the Philippines. J. Geochem. Explor. 2022, 242, 107082. [Google Scholar] [CrossRef]
- Aiglsperger, T.; Proenza, J.A.; Lewis, J.F.; Labrador, M.; Svojtka, M.; Rojas-Purón, A.; Longo, F.; Durišová, J. Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geol. Rev. 2016, 73, 127–147. [Google Scholar] [CrossRef]
- Qin, H.; Yang, S.; Tanaka, M.; Sanematsu, K.; Arcilla, C.; Takahashi, Y. Chemical speciation of scandium and yttrium in laterites: New insights into the control of their partitioning behaviors. Chem. Geol. 2020, 552, 119771. [Google Scholar] [CrossRef]
- Ulrich, M.; Cathelineau, M.; Muñoz, M.; Boiron, M.C.; Teitler, Y.; Karpoff, A.M. The relative distribution of critical (Sc, REE) and transition metals (Ni Co, Cr, Mn, V) in some Ni-laterite deposits of New Caledonia. J. Geochem. Explor. 2019, 197, 93–113. [Google Scholar] [CrossRef]
- Wu, Z.X.; Chen, Y.; Wang, Y.; Xu, Y.; Lin, Z.L.; Liang, X.L.; Cheng, H.F. Review of rare earth element (REE) adsorption on and desorption from clay minerals: Application to formation and mining of ion-adsorption REE deposits. Ore Geol. Rev. 2023, 157, 105446. [Google Scholar] [CrossRef]
- Gaudin, A.; Petit, S.; Rose, J.; Martin, F.; Decarreau, A.; Noack, Y.; Borschneck, D. The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and EXAFS) approaches. Clay Miner. 2004, 39, 453–467. [Google Scholar] [CrossRef]
- Gaudin, A.; Decarreau, A.; Noack, Y.; Grauby, O. Clay mineralogy of the nickel laterite ore developed from serpentinised peridotites at Murrin Murrin, Western Australia. Aust. J. Earth Sci. 2005, 52, 231–241. [Google Scholar] [CrossRef]
- Villanova-de-Benavent, C.; Nieto, F.; Viti, C.; Proenza, J.A.; Galí, S.; Roque-Rosell, J. Ni-phyllosilicates (garnierites) from the Falcondo Ni-laterite deposit (Dominican Republic): Mineralogy, nanotextures and formation mechanisms by HRTEM and AEM. Amer. Miner. 2016, 101, 1460–1473. [Google Scholar] [CrossRef]
- Santoro, L.; Putzolu, F.; Mondillo, N.; Herrington, R.; Najorka, J.; Boni, M.; Dosbaba, M.; Maczurad, M.; Balassone, G. Quantitative mineralogical evaluation of Ni-Co laterite ores through XRPD-QPA- and automated SEM-based approaches: The Wingellina (Western Australia) case study. J. Geochem. Explor. 2021, 223, 106695. [Google Scholar] [CrossRef]
- El Mendili, Y.; Chateigner, D.; Orberger, B.; Gascoin, S.; Bardeau, J.-F.; Petit, S.; Duee, C.; Guen, M.L.; Pilliere, H. Combined XRF, XRD, SEM-EDS, and Raman Analyses on Serpentinized Harzburgite (Nickel Laterite Mine, New Caledonia): Implications for Exploration and Geometallurgy. ACS Earth Space Chem. 2019, 3, 2237–2249. [Google Scholar] [CrossRef]
- Andersen, J.C.O.; Rollinson, G.K.; Snook, B.; Herrington, R.; Fairhurst, R.J. Use of QEMSCAN® for the characterization of Ni-rich and Ni-poor goethite in laterite ores. Miner. Eng. 2009, 22, 1119–1129. [Google Scholar] [CrossRef]
- Babechuk, M.G.; Widdowson, M.; Kamber, B.S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol. 2014, 363, 56–75. [Google Scholar] [CrossRef]
- Anand, R.R. Importance of 3-D regolith-landform control in areas of transported cover: Implications for geochemical exploration. Geochem-Explor. Env. A 2015, 16, 14–26. [Google Scholar] [CrossRef]
- Roqué-Rosell, J.; Mosselmans, J.F.W.; Proenza, J.A.; Labrador, M.; Galí, S.; Atkinson, K.D.; Quinn, P.D. Sorption of Ni by “lithiophorite-asbolane” intermediates in Moa Bay lateritic deposits, eastern Cuba. Chem. Geol. 2010, 275, 9–18. [Google Scholar] [CrossRef]
- Roqué-Rosell, J.; Villanova-De-Benavent, C.; Proenza, J.A. The accumulation of Ni in serpentines and garnierites from the Falcondo Ni-laterite deposit (Dominican Republic) elucidated by means of μXAS. Geochem. Cosmochim. Acta 2017, 198, 48–69. [Google Scholar] [CrossRef]
- Villanova-De-Benavent, C.; Domenech, C.; Tauler, E.; Gali, S.; Tassara, C.S.; Proenza, J.A. Fe–Ni-bearing serpentines from the saprolite horizon of Caribbean Ni-laterite deposits: New insights from thermodynamic calculations. Miner. Deposita 2017, 52, 979–992. [Google Scholar] [CrossRef]
- Villanova-de-Benavent, C.; Jawhari, T.; Roque-Rosell, J.; Galí, S.; Proenza, J.A. Ni-bearing phyllosilicates (“garnierites”): New insights from thermal analysis, μRaman and IR spectroscopy. Appl. Clay Sci. 2019, 175, 47–66. [Google Scholar] [CrossRef]
- Soler, J.M.; Cama, J.; Galí, S.; Meléndez, W.; Ramírez, A.; Estanga, J. Composition and dissolution kinetics of garnierite from the Loma del Hierro Ni-laterite deposit. Venezuela. Chem. Geol. 2008, 249, 191–202. [Google Scholar] [CrossRef]
- Putzolu, F.; Abad, I.; Balassone, G.; Boni, M.; Cappelletti, P.; Graziano, S.F.; Santoro, L. Parent rock and climatic evolution control on the genesis of Ni-bearing clays in Ni-Co laterites: New inferences from the Wingellina deposit (Western Australia). Ore Geol. Rev. 2020, 120, 103431. [Google Scholar] [CrossRef]
- Putzolu, F.; Abad, I.; Balassone, G.; Boni, M.; Mondillo, N. Ni-bearing smectites in the Wingellina laterite deposit (Western Australia) at nanoscale: TEM-HRTEM evidences of the formation mechanisms. Appl. Clay Sci. 2020, 196, 105753. [Google Scholar] [CrossRef]
- Lacroix, E.; Cauzid, J.; Teitler, Y.; Cathelineau, M. Near real-time management of spectral interferences with portable X-ray fluorescence spectrometers: Application to Sc quantification in nickeliferous laterite ores. Geochem. Explor. Environ. Anal. 2021, 21, 1–13. [Google Scholar] [CrossRef]
- Thorne, R.L.; Roberts, S.; Herrington, R. Climate change and formation of nickel laterite deposits. Geology 2012, 40, 331–334. [Google Scholar] [CrossRef]
- Ndjigui, P.D.; Bilong, P. Platinum-group elements in the serpentinite lateritic mantles of the Kongo-Nkamouna ultramafic massif (Lomié region, South-East Cameroon). J. Geochem. Explor. 2010, 107, 63–76. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Laskou, M.; Eliopoulos, D.G.; Megremi, I.; Kalatha, S.; Eliopoulos, G.D. Origin of Critical Metals in Fe–Ni Laterites from the Balkan Peninsula: Opportunities and Environmental Risk. Minerals 2021, 11, 1009. [Google Scholar] [CrossRef]
- Teitler, Y.; Favier, S.; Ambrosi, J.-P.; Sevin, B.; Golfier, F.; Cathelineau, M. Evaluation of Sc concentrations in Ni-Co laterites using Al as a geochemical proxy. Minerals 2022, 12, 615. [Google Scholar] [CrossRef]
- Putzolu, F.; Boni, M.; Mondillo, N.; Maczurad, M.; Pirajno, F. Ni-Co enrichment and High-Tech metals geochemistry in the Wingellina Ni-Co oxide-type laterite deposit (Western Australia). J. Geochem. Explor. 2019, 196, 282–296. [Google Scholar] [CrossRef]
- Pan, W.; Wang, Z.; Fu, X.; Chen, D.; Chen, H. Application of Luoyang spade exploration technique to quick assessment of Huiyang Ni ore district at Dinajiate Island in Philippines. Contrib. Geol. Miner. 2013, 28, 454–461, (In Chinese with English Abstract). [Google Scholar]
- Feng, J.; Song, X. Exploration method and project assessment of laterite nickel deposits. Resour. Ind. 2014, 16, 61–65, (In Chinese with English Abstract). [Google Scholar]
- Yang, C.; Feng, J.; Zhou, L. Ore-controlling factors and exploration techniques of laterite nickel deposit. Xinjiang Nonferr. Metal. 2017, 76–83, (In Chinese with English Abstract). [Google Scholar]
- Xing, Y.; Ye, S. Application of the electrical method to exploration of lateritic nickel in the AREA mine district, Philippine. Geol. Explor. 2021, 57, 1117–1126, (In Chinese with English Abstract). [Google Scholar]
- Prendergast, M.D. Landscape evolution, regolith formation and nickel laterite development in the northern part of the great dyke, Zimbabwe. S. Afr. J. Geol. 2013, 116, 219–240. [Google Scholar] [CrossRef]
- Yang, X.; Guo, Y.; Chen, B.; Cui, Y.; Guo, X. The distribution and the exploration, development and utilization situation of the lateritic nickel ore resources in the world. Acta Geosci. Sin. 2013, 34, 193–201, (In Chinese with English Abstract). [Google Scholar]
- Rutherford, J.; Munday, T.; Meyers, J.; Cooper, M. Relationship between regolith materials, petrophysical properties, hydrologeology and mineralisation at the Cawse Ni laterite deposits, Western Australia: Implications for exploring with airborne EM. Explor. Geophys. 2001, 32, 160–170. [Google Scholar] [CrossRef]
- Langford, R.L. Temporal merging of remote sensing data to enhance spectral regolith, lithological and alteration patterns for regional mineral exploration. Ore Geol. Rev. 2015, 68, 14–29. [Google Scholar] [CrossRef]
- Savin, C.; Robineau; Monteil, G.B.; Beauvais, A.; Parisot, J.C.; Ritz, M. Electrical imaging of peridotite weathering mantles as a complimentary tools for a nickel ore exploration in New Caledonia. In Proceedings of the 16th ASEG Geophysical Conference and Exhibition, Adelaide, Australia, 16–19 February 2003; Australian Society of Exploration Geophysicists: Perth, Australia, 2003. [Google Scholar]
- Robineau, B.; Join, J.L.; Beauvais, A.; Parisot, J.-C.; Savin, C. Geoelectrical imaging of a thick regolith developed on ultramafic rocks: Groundwater influence. Aust. J. Earth Sci. 2007, 54, 773–781. [Google Scholar] [CrossRef]
- Iseppi, M.; Sevin, B.; Cluzel, D.; Maurizot, P.; Le Bayon, B. Supergene nickel ore deposits controlled by gravity-driven faulting and slope failure, Peridotite Nappe, New Caledonia. Economic Geol. 2018, 113, 531–544. [Google Scholar] [CrossRef]
- Fang, J.; Liu, H. Geochemical characteristics and geological significance of a laterite-type nickel deposit in Indonesia revealed by data statistics. Sci. Technol. Innov. Appl. 2015, 34, 6–7, (In Chinese with English Abstract). [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soh Tamehe, L.; Zhao, Y.; Xu, W.; Gao, J. Ni(Co) Laterite Deposits of Southeast Asia: A Review and Perspective. Minerals 2024, 14, 134. https://doi.org/10.3390/min14020134
Soh Tamehe L, Zhao Y, Xu W, Gao J. Ni(Co) Laterite Deposits of Southeast Asia: A Review and Perspective. Minerals. 2024; 14(2):134. https://doi.org/10.3390/min14020134
Chicago/Turabian StyleSoh Tamehe, Landry, Yanpeng Zhao, Wenjie Xu, and Jiahao Gao. 2024. "Ni(Co) Laterite Deposits of Southeast Asia: A Review and Perspective" Minerals 14, no. 2: 134. https://doi.org/10.3390/min14020134
APA StyleSoh Tamehe, L., Zhao, Y., Xu, W., & Gao, J. (2024). Ni(Co) Laterite Deposits of Southeast Asia: A Review and Perspective. Minerals, 14(2), 134. https://doi.org/10.3390/min14020134