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Abstract: The electrical resistivity method is widely used in near-surface mineral exploration. At
present, the deterministic algorithm is commonly employed in three-dimensional (3-D) electrical
resistivity inversion to obtain subsurface electrical structures. However, the accuracy and efficiency
of deterministic inversion rely on the initial model. In practice, obtaining an initial model that
approximates the true subsurface electrical structures remains challenging. To address this issue,
we introduce a broad learning (BL) network to determine the initial model and utilize the limited
memory quasi-Newton (L-BFGS) algorithm to conduct the 3-D electrical resistivity inversion task.
The powerful mapping capability of the BL network enables one to find the model that elucidates the
actual observed data. The single-layer BL network makes it efficient and easy to realize, leading to
much faster network training compared to that using the deep learning network. Both the synthetic
and field experiments suggest that the BL framework could effectively obtain the initial model
based on observed data. Furthermore, in comparison to using a homogeneous medium as the initial
model, the L-BFGS inversion with the BL framework-designed initial model improves the inversion
accuracy of subsurface electrical structures and expedites the convergence speed of the iteration. This
study provides an effective approach for fast initial model design in a data-driven manner when the
prior information is unavailable. The proposed method can be useful in high-precision imaging of
near-surface mineral electrical structures.

Keywords: broad learning; 3-D electrical resistivity inversion; limited memory quasi-Newton;
near-surface mineral exploration

1. Introduction

The electrical resistivity method is a well-known geophysical exploration method,
holding significant value for various applications, including engineering surveys [1], envi-
ronmental monitoring [2,3], mineral exploration [4–7], etc. The complex characteristics of
underground structures are difficult to directly interpret using observed data imaging (e.g.,
apparent resistivity pseudosections). Thus, it is crucial to invert observed data to obtain
accurate subsurface electrical structures. So far, various inversion techniques have been
applied in electrical resistivity imaging studies, including global optimization, determin-
istic, and probabilistic methods [8]. Global optimization algorithms, such as simulated
annealing [9], genetic algorithms [10,11], and particle swarm optimization [12], play a
crucial role in solving optimization problems with multiple local optima by thoroughly
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exploring the entire search space to identify the global optimum [13]. However, the high
computational costs associated with global optimization algorithms limit their practical
application in 3-D electrical resistivity inversion problems [11,14,15]. Deterministic meth-
ods such as the Gauss–Newton method [16], limited memory quasi-Newton method [17],
and conjugate gradient method [18–21] are the popular approaches for the 3-D electrical
resistivity inversion due to their promising performance in terms of result accuracy, stability,
and convergence speed [8,11,22].

In the practical operation, deterministic inversion faces the challenge of selecting
a suitable initial model for the inversion task [8,23]. Using an initial model that better
represents the true underground electrical structures reduces the probability that inversion
results fall into the local minima [24]. The use of a priori information is an effective
approach for addressing the selection of the initial model [25,26], yet the deficiency of prior
information is a common situation for underground electrical structure prospecting. As a
result, a homogeneous initial resistivity model is principally considered in 3-D electrical
resistivity inversion [27–31]. Additionally, the determination of the resistivity value for
a homogeneous initial model also relies on the empirical selection [32]. Therefore, the
selection of an appropriate initial model becomes a crucial issue in 3-D electrical resistivity
deterministic inversion.

Machine learning (ML) applied to geophysical problems is a cutting-edge direc-
tion [33]. In recent years, ML has been utilized in many geophysics application areas,
including pattern recognition in seismic attributes [34], noise removal [35,36], and inver-
sion tasks [8,37–40]. As a representative of the ML, the deep learning (DL) network comes
with strong learning and generalization capabilities, enabling excellent performance in
electrical resistivity inversion problems [41–43]. However, the training procedures of DL
suffer a time-consuming drawback induced by a mass of hyperparameters [44]. Meanwhile,
to further improve the inversion effect, Kong et al. utilize the prediction results of DL
as the initial model and reference model for the Gauss–Newton method [45]. But, it still
has the problem of the high time cost caused by DL, especially in 3-D structural imaging.
To overcome this drawback, Chen and Liu proposed the broad learning (BL) approach
equipped with a single-layer network [44]. The training time for the deep learning network
on the same training set may be hundreds of times longer than that of the BL network [44].
Recently, The BL network has been successfully applied in geophysical inversions, achiev-
ing noteworthy results [46–49]. These applications demonstrate that BL possesses the
advantages of excellent efficiency and robust mapping capability.

Therefore, in this study, we introduced the BL network into the 3-D electrical resistivity
inversion process. Firstly, the BL network is established based on the samples generated
by forward calculation. Secondly, the initial model of 3-D electrical resistivity inversion is
derived from observed data by using the constructed BL network. Finally, based on the
designed initial resistivity model, the limited memory quasi-Newton (L-BFGS) algorithm is
employed to undertake the 3-D electrical resistivity inversion task [17,50]. In the subsequent
sections, the inversion results of both synthetic models and field applications are presented
to verify the feasibility of the proposed method.

2. Materials and Methods
2.1. BL Framework for Initial Resistivity Model Design

To obtain the suitable initial resistivity model in 3-D electrical resistivity deterministic
inversion, the BL network is employed to approximate the mapping relationship between
the apparent resistivity data x ∈ RNx (Nx is the number of apparent resistivity data) and
the resistivity model y ∈ RNy (Ny is the number of the resistivity model grid) as follows:

y = ψ(x), (1)

where ψ is the functional mapping between apparent resistivity and the initial resistivity
model to be simulated by the BL network.
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Figure 1 shows the structure of the BL network for designing initial resistivity models.
For the BL network training, the input X ∈ RN×Nx denotes the input apparent resis-
tivity dataset, and the output Y ∈ RN×Ny reflects the output resistivity model dataset,
where N represents the number of training samples. The following relationship is con-
structed to represent the target functional mapping ψ:

Y = [Z1, · · · , Zn, H1, · · · , Hm]W = [Z, H]W, (2)

where Z = [Z1, · · · , Zn] is all the mapping features of the input apparent resistivity
dataset X, and n is the number of groups of mapping features. Each group of mapping
features with p neurons can be obtained by sparse autoencoder. H = [H1, · · · , Hm] is the
number of the enhancement nodes derived from Z, and m is the number of groups of
enhancement nodes. Each group of enhancement nodes is calculated by the nonlinear
activation function as follows:

Hj = φ
(

ZWH
j + βH

j

)
, (3)

where WH
j represents the jth random weight matrix; βH

j represents the jth random bias
vector, and Hj is the jth group of enhancement nodes. In this study, the tanh(·) function
is chosen as the nonlinear activation function. W is the only unknown matrix in the BL
network, and it can be determined by the pseudoinverse as follows:

W = [Z, H]+Y = A+Y, (4)

where A = [Z, H]. Particularly, the ridge regression algorithm is applied to solve the
pseudoinverse A+ [44].
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The BL network training is completed with the weighting matrix W determined for a
given optimal network complexity (namely, a fixed combination of the parameters p, n, and
m) [46]. Input the observed apparent resistivity data x into the trained BL network, and the
initial resistivity model ŷ ∈ RNy can be designed:

ŷ =
[
Z′, H′]W, (5)

where Z′ is the mapping features of the apparent resistivity data x ∈ RNx , and H′ is the
number of the corresponding enhancement nodes. For more detailed information about
the BL network, please refer to [17].

2.2. Generation of Training Dataset

The BL is a supervised learning network that depends on a training dataset to learn
the mapping relationship ψ. In this study, the training dataset is created through forward
calculation and consists of the resistivity model (network output) and its corresponding
apparent resistivity (network input). Specifically, the resistivity model is constructed
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with a single cuboid anomalous body ‘A’ embedded in a homogeneous background ‘B’,
as depicted in Figure 2a. The size and spatial position of anomalous body ‘A’ in each
resistivity model are randomly generated. The resistivity values of ‘A’ and ‘B’ are randomly
selected within a range from 1 to 500 Ω·m. Figure 2b illustrates the spatial distribution
of observed apparent resistivity data for the resistivity model, calculated using the finite
difference method.
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Figure 2. Schematic of a pair training sample. (a) Output resistivity model sample (‘A’ represents the
regular anomalous body, and ‘B’ represents the background model). (b) Input apparent resistivity
data sample (The black dots represent the locations of surface electrodes, while the red dots represent
the spatial positions of apparent resistivity data points. Wenner arrays are adopted for visualization).

In the synthetic experiments, nine profiles are employed for data collection, each
featuring 40 electrodes spaced 1 m apart. The data for each profile are acquired using the
Wenner array, resulting in the collection of 247 data points. The model mesh is divided into
92 (X direction) × 84 (Y direction) × 29 (Z direction). In the survey line area, the minimum
grid spacing of the resistivity model in the lateral direction is set to half of the electrode
spacing. Beyond this region, the lateral grid spacing gradually increases with a factor of
1.3. For the first three layers in the vertical direction, the grid spacing is 0.1 m, and then it
increases with a factor of 1.2.

2.3. Select of Training Dataset Size

The choice of training dataset size in the training phase depends on various factors,
such as the complexity of the resistivity model to be predicted and the desired degree
of precision [8]. Generally, a larger training dataset can help improve the performance
and generalization ability of the network [8]. However, collecting an excessive number of
training samples significantly increases the computation time consumption while providing
minimal improvements in results [37]. Therefore, it is meaningful to choose the appropriate
number of training samples.

To determine the appropriate training dataset size, we trained the BL using different
training dataset sizes and evaluated the results using a validation dataset consisting of
500 samples that were not involved in the training process. Table 1 provides mean absolute
percentage error (MAPE) at different training dataset sizes. As the size of the training
dataset increases, the MAPE values of the training dataset and validation dataset gradually
decrease. When the training dataset size is 12,000, both the training dataset and validation
dataset have the minimum MAPE values, and the MAPE of the validation dataset does
not decrease further compared to a training dataset size of 11,000. Therefore, to reduce the
time spent on collecting training samples, we utilized the training dataset consisting of
12,000 samples to train the BL network.

Table 1. Training of BL network with different sizes of training datasets.

Number of Training Dataset 6000 8000 10,000 11,000 12,000

MAPE of the training dataset (%) 1.26 1.16 1.07 1.02 0.99
MAPE of the validation dataset (%) 1.06 1.04 1.03 1.02 1.02
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2.4. Choose of BL Network Complexity

The complexity of the BL network is determined by the following three key factors:
the number of feature nodes (p); the number of mapping groups (n); and the corresponding
enhancement nodes (m). When these parameters are set to small values, the network
structure becomes simple, which may not be able to efficiently extract features and result in
poor mapping capability. On the other hand, if the network structure is too complex, it can
lead to overfitting the training dataset [48]. Therefore, selecting an appropriate network
complexity is crucial.

In this study, we select the appropriate network complexity by conducting an exhaus-
tive search on these three parameters (p, n, m) within the range [50:50:200], [40:20:100], and
[100:100:500], using 12,000 training samples and 500 validation samples. All samples are
generated in the manner described in Section 2.2, and the validation dataset is not included
in the training process. To assess the predictive accuracy of different network complexities,
the deviation between the predicted resistivity model and the true one is calculated by
the mean absolute percentage error (MAPE). When the p, n, and m are set to 200, 80, and
100, respectively, both the training and validation datasets exhibit the lowest MAPE values.
Therefore, this study considers these three values as the optimal network complexity for
the BL.

2.5. L-BFGS Inversion with Designed Initial Model

To circumvent the challenge of selecting the initial resistivity model in 3-D electrical
resistivity deterministic inversion, we adopt the output result ŷ obtained from the BL
framework as the initial resistivity model for the inversion task by using the L-BFGS
algorithm, and the corresponding objective function is as follows:

Γ(y) = (x − f (y))TC−1
x (x − f (y)) + µ

(
y − yre f

)T
C−1

y

(
y − yre f

)
, (6)

where x denotes the apparent resistivity data used for the inversion; y is the inverted
resistivity model at each iteration, with the initial resistivity model being the output
result ŷ of the BL framework; f (·) is the forward calculation operator, and Cx is the data
covariance matrix, which takes into account the relative importance of the observations [51].
To avoid the inversion process from focusing on fitting large values in the observed data,
the observed data are employed to construct the data covariance matrix. The superscript
T represents the transpose operation; yre f is the homogeneous reference model whose
resistivity value is given by the mode of the designed initial model vector ŷ; Cy is the model
covariance matrix; and µ is the regularization parameter. For the details of the L-BFGS
algorithm, readers can refer to [17,52,53]. The inversion process using the designed initial
model is concisely outlined as follows:

1. Set fitting tolerance error ξ and a maximum number of iterations Num. Input apparent
resistivity data x and the designed initial resistivity model ŷ;

2. Calculate the apparent resistivity data xcal of the current kth iteration resistivity
model yk by forward modeling: xcal = f (yk);

3. Calculate the partial derivative ∇Γ(yk, x) of Equation (6), and calculate the search
direction pk. Obtain the appropriate step αk by line search and update resistivity
model yk+1 = yk + αkpk;

4. Compute the misfit between observed data x and calculated data xcal . If misfit < ξ or
k > Num inversion stop; otherwise, set k = k + 1 and go to step 2.

3. Results

In this section, four synthetic examples and a field experiment are used to assess the
performance of 3-D electrical resistivity inversion based on the initial model designed by a
BL framework. In addition to qualitatively evaluating the inversion results through visual
judgment, we perform the quantitative evaluation on the final inversion results using
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the MAPE = 1
Ny

∑
Ny
i=1

∣∣∣ yi−ŷi
yi

∣∣∣ (where ŷ represents the final inversion result) and assess the

data misfit using the normalized root-mean-error NRMSE =

√
1

Nx
∑Nx

i=1

(
xi−x̂i

xi

)2
(where x̂

represents the apparent resistivity data obtained through the forward calculation of the
inversion model). In this study, the initial resistivity model design is conducted on a
workstation equipped with a 3.80 GHz Intel Xeon W-2235 CPU.

3.1. Synthetic Experiment 1

Synthetic experiment 1 tests the performance of the 3-D electrical resistivity inversion
with the designed initial model using a single regular anomalous body model (Figure 3a).
It consists of a 10 Ω·m rectangular prism embedded in a 100 Ω·m homogeneous medium.
The dimensions of the rectangular prism are 4 m (length) × 8 m (width) × 2 m (height),
with its top located at a depth of 3 m. The spatial heterogeneity of the synthetic resistivity
model is determined by multiple profiles aligned in parallel along the y-direction (Figure 3a,
black dots). Figure 3b shows the initial resistivity model designed by the BL framework,
with training and prediction times of 207 s and 0.5 s, respectively. The designed initial
model approximately captures the structure of the anomalous body.
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Figure 3. Synthetic model and inversion results. (a) The synthetic model. The black dots represent
the positions of surface electrodes; nine profiles are deployed. (b) The initial resistivity model is
designed by the BL framework. (c,d) The L-BFGS inversion results using the homogeneous initial
model and the designed initial model, respectively.

Figure 3c illustrates the inversion result of the L-BFGS algorithm using the homoge-
neous initial model (inversion time approximately 115 min). It delineates the shape of the
anomalous body, but there are redundant structures at the top interface of the anomalous
body, which can be misinterpreted as the anomalous extending to the surface. Figure 3d
shows the L-BFGS inversion result using the initial resistivity model designed by the BL
framework (inversion time approximately 110 min). Comparing Figure 3c with Figure 3d,
it is evident that Figure 3d effectively suppresses redundant structures on the upper bound-
ary of the anomalous body, leading to a more accurate delineation of the anomalous body
boundary. Furthermore, the MAPE values of the L-BFGS inversion results for those two
initial models are 2.62% (homogeneous initial model) and 2.35% (designed initial model),
respectively. It indicates that the inversion result using the proposed method is more
accurate compared to the traditional method.

The NRMSE value (0.31%) of the first iteration of the proposed method corresponds
to the NRMSE value of the designed initial model. However, after 100 iterations, the data
misfit (NRMSE = 0.11%) using the traditional method is smaller than directly using the
output of the BL network (the designed initial model). It indicates that the designed initial
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model fits the data less effectively than the inversion results of the homogeneous initial
model. We, thereby, used the outputting model of the trained BL network as the initial
model for further L-BFGS inversion.

Figure 4 displays the NRMSE curves of the L-BFGS method utilizing two different
initial models. The NRMSE value achieved by the proposed method is consistently lower
than that obtained by the traditional method at the same iteration number. For example,
after 35 iterations of the L-BFGS method utilizing the designed initial model, the NRMSE
value is smaller than the NRMSE value obtained by the traditional method after 100 itera-
tions. This test demonstrates the capacity of the initial model crafted by a BL network to
enhance the convergence speed of deterministic inversion.
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Figure 4. NRMSE curves of L-BFGS inversion shown in Figure 3 using the homogeneous initial model
and the designed initial model, respectively. The red dots indicate the homogeneous medium as the
initial resistivity model (Traditional). The blue dots indicate the initial resistivity model designed by
the BL framework (Proposed).

3.2. Synthetic Experiment 2

In many cases, the distribution of the electrical property of the underlying geology
exhibits an irregular structure. Hence, this section utilizes an irregular anomaly body model
to assess the proposed method. The background and anomaly resistivity values are set at
50 Ω·m and 100 Ω·m, respectively. The irregular anomaly body is positioned approximately
as a parallelogram on the horizontal plane and is situated at a depth ranging from 4 m
to 7 m underground. For a clearer visual representation of the irregular anomaly body’s
shape, Figure 5a depicts the true model slices at various depths ([Z = 4 m, 5 m, 6 m, 7 m]).
Figure 5b displays the initial model slices generated by the BL network. The total training
and prediction time of the BL network is within 4 min. While the resistivity values of the
anomaly body may not precisely match the true value of 100 Ω·m, the shape of the anomaly
body closely resembles that of the true model. Figure 5c illustrates slices of the L-BFGS
inversion result using the homogeneous initial model (inversion time of approximately
129 min). It inadequately delineates both the value and shape of the anomaly body and
the accuracy of the inversion result degrades with an increase in the depth of the anomaly
body. Furthermore, the structural details of the anomaly body are not clearly discernible
at depths between 6 m and 7 m. Figure 5d exhibits slices of the L-BFGS inversion result
utilizing the initial model designed by the BL network (inversion time of approximately
102 min). An evident high-resistivity anomalous body is discerned at depths ranging from
3 m to 7 m, corresponding to the actual anomaly body area. The MAPE values of the
L-BFGS inversion results for the two initial models are 1.91% (homogeneous initial model)
and 1.28% (designed initial model), respectively. Consequently, the subsurface resistivity
structure presented in Figure 5d is deemed more realistic in comparison to the L-BFGS
inversion result using the homogeneous initial model (Figure 5c). The results suggest
that utilizing the designed initial model can improve the accuracy of electrical resistivity
inversion.
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The NRMSE curves of the L-BFGS inversion for two different initial models are
shown in Figure 6, and the NRMSE value for inversion using the designed initial model
decreases more rapidly than that of the homogeneous initial model inversion. Specifically,
at 13 inversion iterations, the NRMSE value using the designed initial model is smaller
than the NRMSE value at 100 inversion iterations using the homogeneous initial model.
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This synthetic example illustrates that the BL network, trained on single regular
model samples, can effectively design the initial model for irregular underground electrical
structures. Moreover, employing the designed initial model in electrical resistivity inversion
can enhance the convergence speed of the inversion process.

3.3. Synthetic Experiment 3

In practice, subsurface electrical structures may contain multiple anomalous bodies.
Therefore, we consider a complex synthetic model to test the generalization of the proposed
method. The synthetic model consists of three 10 Ω·m conductive rectangular prisms
and three 400 Ω·m resistive rectangular prisms embedded in a 100 Ω·m homogeneous
medium. All six prisms are located 3 m to 5 m below the surface, as shown in Figure 7a.
It is important to note that the resistivity model in the training dataset is a single regular
anomaly body, and the model with multiple anomalies is not included. The total training
and prediction time of the BL network is within 4 min (Training (218 s), Prediction (0.6 s)).
Figure 7b shows the initial resistivity model designed by the BL framework. It roughly
delineates the electrical structures of the true model, showing that the training dataset only
contains a single anomalous body and can also perform initial model design for electrical
structures with multiple anomalous bodies.
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Figure 7. Synthetic model and inversion results. (a) The synthetic model. (b) The initial model.
(c,d) The L-BFGS inversion results using the homogeneous initial model and the designed initial
model, respectively. Note: The resistivity model in the training dataset contains only one regular
anomaly body, and the resistivity values of both the anomaly and the model background are random
numbers between 1 and 500 Ω·m.

Figure 7c,d displays the L-BFGS inversion results using the homogeneous initial model
(inversion time of approximately 116 min) and the designed initial model (inversion time
of approximately 93 min), respectively. Compared to Figure 7c, Figure 7d shows better
recovery of the values and shape of the anomalous bodies. Furthermore, the MAPE values
for the L-BFGS inversion results using the homogeneous initial model (Traditional) and the
designed initial model (Proposed) are 4.97% and 4.30%, respectively. This indicates that the
inversion result obtained using the proposed method is closer to the true model compared
to the traditional method.

We also show the NRMSE curves of the L-BFGS inversion for two different initial
resistivity models in Figure 8. The results indicate that the NRMSE values using the
proposed method are much smaller than those of the traditional method under the same
iteration number.
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3.4. Synthetic Experiment 4

In this section, a complex synthetic model, as illustrated in Figure 9a, is employed
to evaluate the proposed method. The synthetic model comprises a 100 Ω·m rectangular
prism and a 300 Ω·m irregular resistive anomalous body embedded in a 200 Ω·m homo-
geneous half-space. The depth of the anomaly bodies ranges from 3 m to 5 m, with the
high-conductive body surrounded by the high-resistive body on three faces. The initial
model designed through the Broad Learning (BL) framework is illustrated in Figure 9b,
and the corresponding training and prediction times are 200 s and 0.5 s, respectively. It
approximately depicts structures of high and low resistivity anomalies that resemble the
characteristics of the actual model. The L-BFGS inversion results using the homogeneous
initial model and the designed initial model are presented in Figure 9c (inversion time of ap-
proximately 122 min) and Figure 9d (inversion time of approximately 106 min), respectively.
In comparison with the inversion result in Figure 9c (MAPE 1.11%), the result obtained
with the designed initial model (Figure 9d) (MAPE 0.81%) more accurately characterizes
the value and shape of anomaly bodies.
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Figure 9. Synthetic model, designed initial model, and inversion results. (a) Synthetic model.
(b) The initial model is designed by the BL framework. (c) The L-BFGS inversion result using
the homogeneous initial model. (d) The L-BFGS inversion result using the designed initial model.
Note: The resistivity model in the training dataset contains only one regular anomaly body, and the
resistivity values of both the anomaly and the model background are random numbers between
1 and 500 Ω·m.
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Figure 10 illustrates the NRMSE curves of the L-BFGS method with the two different
initial models. The NRMSE value from the inversion using the designed initial model is
smaller than the NRMSE value of the homogeneous initial model inversion at the same
number of iterations. Specifically, at 54 iterations, the NRMSE value using the designed
initial model is smaller than the NRMSE value at 100 iterations of the homogeneous initial
model inversion.
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Figure 10. NRMSE curves of the L-BFGS inversion shown in Figure 9 using the homogeneous initial
model (Traditional) and the designed initial model (Proposed), respectively. The red dots indicate the
homogeneous medium as the initial resistivity model (Traditional). The blue dots indicate the initial
resistivity model designed by the BL framework (Proposed).

3.5. Field Experiment

In addition, we conduct a field experiment in a farmland area south of Shenzhen,
China. In the experimental area, we carried out three profiles with 1.5 m profile spacing, as
shown in Figure 11a. For each profile, 20 electrodes are laid out with an electrode interval
of 0.4 m. We bury an empty foam box (high resistivity) (Figure 11c) of 0.3 m (length) ×
0.27 m (width) × 0.2 m (height) under the No. 5 electrode of profile P1. Its top interface
is 0.1 m below the ground surface. In addition, we bury an iron box (high conductivity)
(Figure 11b) with a size of 0.42 m (length) × 0.3 m (width) × 0.28 m (height) under No. 10
and No. 11 electrodes of profile P2; the top interface of the iron box is approximately 0.05 m
from the surface, and the long side is parallel to the survey profile. The standard Wenner
configuration is used for the survey. The model mesh is divided into 67 × 51 × 23. Setting
the electrode spacing to less than half the size of the targets could enhance the spatial
resolution of electrical resistivity exploration.

A high-resistivity anomalous body in the No. 5 electrode region of profile P1 and
a low-resistivity anomalous body in the middle of profile P2 can be observed in the
initial resistivity model designed by the BL framework (Figure 12a). These two resistivity
anomalous bodies correspond to the foam box and the iron box, respectively. However,
there are redundant structures at the bottom of the anomalous bodies.

The L-BFGS inversion results after 10 iterations, employing the homogeneous initial
model (inversion time approximately 24 min) and the designed initial model (inversion time
approximately 22 min), are presented in Figures 12b and 12c, respectively. Compared with
the inversion result in Figure 12b, the result in Figure 12c shows a clearer characterization of
the foam box and iron box. The NRMSE curves in Figure 12d also indicate that the L-BFGS
inversion using the designed initial resistivity model fits the observed apparent resistivity
data better than the homogeneous initial model. This field experiment demonstrates that
higher inversion accuracy can be obtained based on the designed initial resistivity model
using the BL framework rather than directly using L-BFGS inversion.
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Figure 12. Inversion results and iteration NRMSE curves. The white rectangle indicates the location
of the iron box, and the black rectangle indicates the location of the foam box. (a) The initial model.
(b) The L-BFGS inversion result using the homogeneous initial model. (c) The L-BFGS inversion
result using the designed initial model. (d) The NRMSE curves of the L-BFGS inversion using the
homogeneous initial model (Traditional) and the designed initial model (Proposed), respectively.
Note: The resistivity model in the training dataset contains only one regular anomaly body, and the
resistivity values of both the anomaly and the model background are random numbers between
1 and 500 Ω·m.

4. Discussion
4.1. Generalization Ability of BL Network

Synthetic experiments showcase the generalization ability of the BL network in charac-
terizing both multiple anomalous electrical bodies and irregular anomalous bodies. In these
experiments, all earth model samples used for training the BL network are of resistivity
values within the range of (1, 500) Ω·m. However, in practical operation, the resistivity
values of earth models can surpass this range. To assess the generalization capability of the
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BL network, we test it with five earth models having resistivity values exceeding 500 Ω·m.
The five synthetic models are depicted in the left column of Figure 13, and the specific pa-
rameter values of the models are detailed in Table 2. The right column of Figure 13 displays
the predicted results using the BL network trained before (the samples within the range of
(1, 500) Ω·m). The BL network can still effectively delineate the structural characteristics of
the true subsurface model. Notably, the BL network can design an accurate initial model,
even when the resistivity values of the models exceed the training dataset.
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Figure 13. Synthetic models and initial models. (a–e) The synthetic models. The resistivity values
corresponding to the true models are presented in Table 2. (f–j) The initial model designed by the
BL network. Note: The resistivity model in the training dataset contains only one regular anomaly
body, and the resistivity values of both the anomaly and the model background are random numbers
between 1 and 500 Ω·m.

Table 2. The resistivity values of synthetic models.

Synthetic Model Low Resistivity High Resistivity Background
Resistivity

MAPE
(%)

(a) 10 Ω·m 1000 Ω·m 100 Ω·m 4.34
(b) 1000 Ω·m 100 Ω·m 3.12
(c) 1000 Ω·m 800 Ω·m 0.43
(d) 600 Ω·m 1000 Ω·m 800 Ω·m 0.51
(e) 1000 Ω·m 2000 Ω·m 1500 Ω·m 0.98

4.2. Noise Resistance Test

In practice, observation data are often contaminated by noise. To assess the impact
of noise on the proposed method, we add 20% Gaussian random noise (noisei = xi ×
20%× ri; xi represents ith observed apparent resistivity data, and ri represents the Gaussian
random number) to the apparent resistivity data of Experiment 1. Figure 14a shows the
initial resistivity model designed by the BL framework, which contains a noticeable false
anomaly in the background. Figure 14b shows the L-BFGS inversion result using the initial
resistivity model designed by the BL framework. Compared with the result in Figure 14a,
the redundant structures in Figure 14b are significantly reduced, and the anomalous body is
closer to the true model. As shown in Figure 14a, although the input data are contaminated
and changed by the noise, the BL network can still provide useful information about the
anomalous body. Compared with the result shown in Figure 3b, the mapping accuracy
decreased when relatively strong noise (20%) existed. Therefore, we use the output result
of the BL framework as the initial resistivity model for deterministic inversion to further
improve the accuracy of the inversion result.
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Figure 14. Initial resistivity model and inversion result. (a) The initial resistivity model is designed
by the BL framework. (b) The L-BFGS inversion result uses the initial resistivity model designed by
the BL framework.

The impact of noise is an important issue for field data. Noise within the field data
diminishes the precision of inversion results, consequently impeding the accurate identi-
fication of authentic anomalies. To enhance the accuracy of imaging results, we plan to
integrate denoising methods with the proposed inversion technique in future work.

4.3. Checkerboard Test

To further verify the reliability of the field experiment results, we employ the chess-
board test to analyze the resolution of the inversion results. The checkerboard model is
depicted in Figure 15a. The background resistivity value is 50 Ω·m, with the low-resistance
anomaly at 10 Ω·m and the high-resistivity anomaly at 100 Ω·m. The sizes of the low-
resistance anomaly and the high-resistance anomaly are both 0.4 m (length) × 0.4 m (width)
× 0.2 m (height). The intervals between the anomaly bodies in the X direction and Y
direction are 1 m and 0.8 m, respectively. Figure 15b presents the initial model designed
through the BL network. In the whole region, the initial model designed by the BL network
could approximately represent the pattern of the anomaly, although in regions lacking
measuring points some redundant structures existed. Figure 15c depicts the inversion result
obtained through the L-BFGS algorithm using a homogeneous initial model. Below the
survey line, the inversion result reproduces the structure of the anomaly bodies. However,
beyond the coverage area of the survey line, the inversion result fails to depict the anomaly
bodies. Figure 15d shows the inversion result obtained through the L-BFGS algorithm
using the designed initial model. Compared Figure 15c with Figure 15d, it is evident that
Figure 15d gives a more accurate delineation of the anomaly bodies. The NRMSE curves of
the L-BFGS inversion for two different initial models are depicted in Figure 16. The NRMSE
value for inversion using the designed initial model decreases more rapidly than that of the
homogeneous initial model inversion. Specifically, at 27 inversion iterations, the NRMSE
value using the designed initial model is smaller than that at 100 inversion iterations using
the homogeneous initial model.
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profiles are deployed. (b) The initial resistivity model is designed by the BL framework. (c,d) The
L-BFGS inversion results using the homogeneous initial model and the designed initial model,
respectively. Note: The resistivity model in the training dataset contains only one regular anomaly
body, and the resistivity values of both the anomaly and the model background are random numbers
between 1 and 500 Ω·m.
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designed by the BL framework (Proposed).

Different arrays demonstrate varying sensitivities to underground structures, and
the choice of observation arrays should align with specific problem requirements, such
as signal-to-noise ratio and horizontal or vertical resolutions. In this study, the Wenner
array, selected for its high signal-to-noise ratio, is employed to test the proposed method.
The BL network trained in this article is only suitable for the given observation strategy.
In the practical operation, the parameters, including observation arrays, the number of
observation data, survey line spacing, and electrode spacing to generate the training
dataset, should be set the same as field observation. For measurement data with different
observation arrays or containing multiple observation arrays, a new training set needs to
be constructed for network training.

5. Conclusions

The initial model selection is crucial and challenging in 3-D electrical resistivity de-
terministic inversion. In this study, we introduce the Broad Learning (BL) framework for
fast initial model design and employ the L-BFGS algorithm for the 3-D electrical resistivity
inversion task. The BL framework is constructed based on the training dataset consisting of
only one regular anomaly body, yet it could provide a reliable and effective initial resistivity
model, even though the underground electrical structure may contain multiple anomalous
bodies. Synthetic and field experiments verify the effectiveness of the BL framework in
designing the initial resistivity model. Furthermore, in comparison to the homogeneous
initial resistivity model, the L-BFGS inversion using the initial resistivity model designed
by the BL framework can increase the convergence speed and improve the accuracy of the
inversion result. This study provides a useful tool for the initial resistivity model design in
deterministic inversion and can be helpful in high-precision imaging of electrical structures.

Metallic minerals typically exhibit lower resistivities compared to non-metallic miner-
als or surrounding rocks. This contrast in resistivity values enables the identification of min-
eralized zones through electrical resistivity exploration. The proposed inversion method
in this study facilitates the high-precision imaging of subsurface electrical structures, en-
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abling geologists and geophysicists to better delineate and understand the distribution of
mineralized zones.
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