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Abstract: The giant Pre-salt reservoirs represent most of the oil production in Brazil. The main
Aptian sag reservoirs were deposited in a unique and highly complex hyper-alkaline lacustrine
setting. These deposits are essentially constituted by fascicular and spherulitic calcite precipitated
in a magnesian clay matrix (stevensite, kerolite, and saponite/hectorite). Although vital for un-
derstanding the origin and main reservoir quality control, the genesis and interactions of clays
and carbonates are still poorly constrained. The detailed petrographic description was focused on
812 thin sections from five wells drilled in the Santos Basin Aptian Barra Velha Formation, com-
bined with cathodoluminescence, UV epifluorescence, and X-ray diffraction analyses. The main
syngenetic processes were the deposition of finely laminated peloidal and ooidal Mg-clays, the
formation of fascicular calcite crusts on the sediment–water interface, and the redeposition of these
materials as intraclasts. Abundant clay peloids engulfed in syngenetic shrubs indicate that calcite and
clay precipitation was concomitant, though with highly variable rates. Eodiagenetic phases include
matrix-replacive and -displacive spherulites and fascicular shrubs; matrix-replacive blocky calcite and
dolomite; lamellar carbonates filling matrix shrinkage pores; and microcrystalline calcite, dolomite,
and silica replacing the Mg-clay matrix. The preferential dolomitization and calcitization of peloidal
layers were most likely due to their higher permeability and larger specific surface. Matrix-replacive
saddle dolomite, macrocrystalline calcite, and dawsonite are interpreted as mesodiagenetic or hy-
drothermal phases after significant matrix dissolution. Unraveling the processes of the formation
and alteration of the carbonates and clays and their interactions in the Pre-salt deposits is essential
for constraining the depositional and diagenetic conditions in their unique environments and their
diagenetic overprinting and for decreasing the exploration risks and increasing the production of
those extraordinary reservoirs.

Keywords: Pre-salt; Aptian; carbonate–clay interactions; Barra Velha Formation; Santos Basin; diagenesis

1. Introduction

The giant oil and gas accumulations in Aptian lacustrine reservoirs in eastern Brazilian
basins and their western African counterparts along the South Atlantic conjugate margins,
known as the Pre-salt deposits [1–6], represent some of the most important discoveries of
this century. These rocks represent a unique combination of calcite aggregates, magnesian
phyllosilicates, dolomite, and silica. Their origin and evolution are matters of ongoing
discussion in the scientific community on topics such as the mechanisms of carbonate
formation, the degree and importance of microbial or biotic processes in their precipitation,
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the controls on facies deposition and distribution, the nature of the alkaline lacustrine fluids,
and the timing and controls in diagenetic alterations (e.g., [5,7–25]). There is, unfortunately,
no ancient or modern analog that encompasses the environment, size, and composition of
the South Atlantic Pre-salt deposits. This makes it difficult to interpret the processes of the
formation and distribution of Pre-salt deposits.

The substrate of the Pre-salt rocks that formed in situ was essentially composed origi-
nally of magnesian clays, with spherulitic and fascicular calcite aggregates forming shortly
after deposition in varying sizes, distributions, and proportions (e.g., [8,10,16,23–25]). Car-
bonates represent the main Pre-salt diagenetic phases formed in a Mg-clay matrix back-
ground [16,23,25]. Many in situ Pre-salt rocks show high porosity and permeability as a
result of extensive Mg-clay dissolution, identified as their main porosity-generating pro-
cess [21,24,26]. Understanding the relationships between carbonates and Mg-clays is of the
utmost importance for defining the genesis and evolution of the unique Pre-salt rocks, as
well as the main controls on the generation and distribution of porosity in the reservoirs.

Despite the great importance of carbonates and clay minerals in controlling reservoir
quality, the geochemical and environmental conditions responsible for their formation are
still poorly understood. Few studies examined the fundamental relationships between
carbonates and Mg-clays in the Pre-salt deposits. Besides controlling reservoir quality,
carbonate–clay interactions reveal important information on the depositional processes
and diagenetic evolution of these important reservoirs.

In the current study, we aim to explore the complex and diverse interactions between
carbonate and Mg-clay phases in order to better understand their distribution and poten-
tial formation mechanisms. The acquired results allowed us to unravel the mechanisms
involved in the formation and evolution of the complex Pre-salt sag deposits.

2. Geologic Context

The Santos Basin (Figure 1) is one of the largest Brazilian marginal basins, with around
350,000 km2, extending eastward to more than 3000 m water depth [27]. The basin is
limited to the north by the Cabo Frio High, with the Campos Basin, and to the south by
the Florianópolis High, with the Pelotas Basin [27,28]. Its stratigraphy is divided into three
stages or super sequences [27], i.e., rift, post-rift, and drift.

The rift super sequence corresponds to the basaltic volcanic rocks of the Early Creta-
ceous Camboriú Formation that overly a granitic–gneissic Precambrian basement, to the
Barremian siliciclastic alluvial conglomerates and lacustrine talc-stevensitic sandstones and
mudstones of the Piçarras Formation and to the late Barremian to early Aptian bioclastic
calcirudites and calcarenites and organic shales of the Itapema Formation. The top of
this super sequence is defined by a widespread erosive surface called the Pre-Alagoas
unconformity [27] (Figure 2).

The post-rift stage is related to a phase when thermal subsidence was the predominant
mechanism, creating a large, relatively flat, and shallow, sag-type basin [29,30]. The post-
rift super sequence, the focus of this study, is constituted by the early Aptian Barra Velha
Formation (BVF), consisting of carbonate-Mg-clay rocks, and by the late Aptian Ariri
Formation evaporites (Figure 2). The deposition of the BVF was originally interpreted
as microbial by Terra et al. [7] and Dias [31] and later reinterpreted as a result of abiotic
precipitation in evaporative lacustrine conditions by Wright and Barnett [8]. The main BVF
deposits are composed of a combination of in situ fascicular and spherulitic calcites and Mg-
clay matrices and of rocks composed of the reworked fragments of carbonate aggregates.
The topmost section of the Aptian interval is represented by the Ariri Formation, which
represents an extensive layered sequence of anhydrite, halite, and other chlorides, locally
larger than 2 km thick [27]. These evaporites mark the large-scale entrance of seawater into
the sag lake system, representing a massive marine transgression [27,32].
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The drift stage is characterized by the generation of oceanic crust [32] and the individ-
ualization of the South American and African plates [33]. Faulting and deformation related
to halokinesis are also important during this stage [32], characterized by shallow and deep
marine deposition.

3. Materials and Methods

The faciological description of 141.5 m of cores from five wells from three fields in the
Santos Basin (Figure 1) was conducted with support of the petrographic characterization of
thin sections. Core and petrographic descriptions served as the basis for new sampling for
thin section preparation. The exact location and identification of the studied wells and fields
are proprietary information and, therefore, cannot be revealed. The wells are identified as
well A from field A, wells B1 and B2 from field B, and wells C1 and C2 from field C. Cores
and thin sections from wells A, B1, and C1 were described, while B2 and C2 only had thin
sections available. Facies were classified according to De Ros and Oliveira [34].

Petrographic analysis of 812 thin sections was performed by counting 300 points along
transects perpendicular to the depositional structure and through visual estimation [35,36],
both using the Petroledge® Workstation software version 3.11.8.1111 [37]. Samples were
stained with an alizarine red S and potassium ferricyanide solution [38] in order to differen-
tiate carbonate minerals. Petrographic analysis was conducted with Zeiss Axio ImagerA1
(Zeiss, Gottingen, Germany) and Leica DM750P (Leica, Heerbrugg, Switzerland) polarized
transmitted light microscopes. The in situ and reworked samples were classified according
to De Ros and Oliveira [34] for the Aptian pre-salt deposits. Fifteen samples were selected
for cathodoluminescence (CL) and epifluorescence (EPI) analysis in order to further charac-
terize clay minerals and carbonates. CL analysis was conducted with a Cambridge Image
Technology Ltd. (CITL, Hatfield, UK) CL8200 Mk5-2 optical cathodoluminescence cold
cathode system mounted on a Zeiss Axioscope 5 (Zeiss, Suzhou, China), with a CITL 2
stage vacuum pump (CITL, Hatfield, UK). EPI analysis used a ZEISS HXP 120 V metal
halide fluorescence light source (Zeiss, Jena, Germany) connected to an Axio Imager A2
microscope (Zeiss, Jena, Germany), using a Zeiss ultraviolet set 02 (excitation G 365 nm,
beamsplitter FT 395 nm, emission LP 420 nm) and blue-cyan Lumar 09 (excitation BP
450–490 nm, emission LP 515 nm) filters.

Bulk rock and clay fractions were analyzed with a Bruker D8 Advance X-ray Diffrac-
tometer (XRD) (Bruker, Karlsruhe, Germany) with Cuα tube (40 kV and 30 mA). The
samples were crushed with an agate mortar and pestle and sifted through a 270-mesh
sieve. For clay fraction analysis, twenty-nine samples were selected and first suspended in
deionized water using a magnetic stirrer with an added deflocculant and later centrifuged
at 750 rpm for 7 min; afterward, the supernatant was then further centrifuged for an
additional 30 min at 3000 rpm and left to settle. The settled material was then smeared
on a glass slide and analyzed with three different treatments: air-dried, saturated with
ethylene glycol for 15 h, and heated to 550 ◦C for 5 h in an oven. Heated samples were
further solvated with glycerol and re-heated (cf. Christidis and Koutsopoulou [39]) in
order to identify stevensite and saponite–hectorite. Total powder fraction and air-dried
slides analysis encompassed 3–90◦2θ with a 0.015◦2θ step size and 0.2 s/step count time.
Heated, glycolated, and re-heated slide analysis ranged from 3 to 35◦2θ. Diffractograms
were interpreted utilizing Bruker’s DIFFRAC.EVA software version 5.2.0.5 with the ICDD
Powder Diffraction File™ 4+ database.

4. Core Descriptions

The main identified facies of the described well cores are summarized in Figures 3
and 4. The facies description and distribution of the A, B1, and C1 cores are summarized in
Table 1 and Figure 5.
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Figure 4. Summary of the main reworked lithotypes of the analyzed well cores according to the
classification of De Ros and Oliveira [34].

Table 1. Summary of the main lithotypes described in each well according to the classification of De
Ros and Oliveira [34].

A
Predominance of in situ rocks (max. 6.25 m) with rare intercalations of reworked deposits (max. 68 cm). In situ
rocks consist predominantly of shrub-spherulstone (max. 2.9 m) and muddy spherulstones (max. 1.4 m).
Silicification is concentrated at the base and top of the core.

B1

Predominance of in situ rocks (max. 8.8 m) with intercalated reworked deposits at the top and in situ rocks at
the base of the cored interval. In situ rocks predominantly consist of shrubstones (max. 3.7 m), muddy
shrubstones (max. 2 m), and cycles of muddy shrubstones and muddy spherulstones with high frequency,
centimetric intercalations. Reworked rocks are mostly composed of calcarenites (max. 4.53 m) and rudaceous
calcarenites (max. 3.2 m). Silicification is restricted to the top and the base of the core.

C1

Predominance of reworked deposits (2.18 m) with thick in situ intercalations (max. 3.12 m) at the top,
transitioning to in situ predominance (max. 17.54 m) towards the bottom of the core. In situ rocks consist
predominantly of muddy spherulstones (max. 2.6 m), shrubstones (max. 2.6 m), and shrub-spherulstones
(max. 1.7 m). Reworked deposits are represented by mostly calcarenites (max. 2.18 m) and rudaceous
calcarenites (max. 1.7 m). Silicification is dispersed throughout the core.
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5. Petrological Characteristics of the In Situ Deposits

The BVF in situ deposits are composed of calcite spherulites and shrubs and the
Mg-clay matrix, corresponding predominantly to muddy spherulstones and muddy shrub-
stones, followed by rare shrubstones, shrub-spherulstones, and mudstones (sensu De
Ros and Oliveira [34]). Spherulstones are extremely rare, only represented by two sam-
ples. Muddy shrubstones and shrubstones tend to be more common toward the top of
the wells, though they also occur as millimetric to centimetric intercalations with muddy
spherulstones and as centimetric layers between reworked intervals.

Muddy spherulstones display well-developed lamination related to the concentration
of spherulites (Figure 6A), detrital materials, and peloids. Muddy shrubstones, shrub-
spherulstones, and shrubstones display poorly defined laminations caused by the con-
centration of the carbonate aggregates, as well as detrital material, and clay peloids. The
differential dolomitization of certain layers, particularly those with abundant detrital mate-
rials emphasized these laminations (Figure 6B). The lateral coalescence of calcite shrubs
and/or spherulites also highlighted the horizontal laminations. Samples formed by coa-
lesced shrubs (shrubstones sensu De Ros and Oliveira [34]; Figure 6C), especially those
originally devoid of the Mg-clay matrix (i.e., syngenetic shrubstones), form a crystalline
framework that is distinct from other in situ samples.

5.1. Constituents and Their Paragenetic Relationships
5.1.1. Magnesian Clay Minerals

Magnesian clay minerals are one of the main components of the in situ rocks, predom-
inantly occurring as a laminated matrix with original strong parallel orientation replaced
and displaced by the calcite aggregates (Figure 6A) and locally occurring as clay peloids
(Figure 6D). In some samples, the matrix shows a dark brown hue, related to disseminated
amorphous organic matter (Figure 6A). The matrix displays high luminescence under EPI
analysis and is completely dull under CL.

The size of clay peloids varies significantly, from 0.04 to 0.5 mm, with the smaller
particles predominant in mud-rich rocks and the coarser particles commonly found in
shrubstones lacking a laminated matrix. Fine-grained peloids commonly display stronger
diagenetic alteration than the laminated matrix, replaced by cryptocrystalline silica, micro-
crystalline calcite and dolomite, and pyrite. Peloidal laminae are preferentially replaced
by spherulites, shrubs, and dolomites. A clay pseudomatrix was locally formed from the
compaction of peloids. Locally, peloids were covered by mostly continuous clay coatings
(Figure 6D) and were elsewhere identified as neoformed sepiolite [40]. The laminated
matrix was locally transformed into fibrous clay with a cross-cutting orientation (Figure 6E).
Clay coatings also locally cover matrix-replacive blocky and saddle dolomite.

Out of the 29 clay samples analyzed, 25 samples displayed a 15 Å peak, which
expanded to 17 Å with ethylene glycol, characteristic of smectites. After heating at 550 ◦C,
all samples collapsed to 9 Å, and with glycerol solvation, sixteen samples displayed a
return of the 17 Å peak. Utilizing the Christidis and Koutsopoulou [39] criterion, the nine
samples which did not re-expand were identified as stevensite, and the sixteen samples
which showed re-expansion were identified as saponite/hectorite. Four samples showed
kerolite, always associated with smectitic clays. Seven samples displayed a broad reflection
with an asymmetric leftward shoulder at 10 Å associated with the characteristic smectite
peak, which was interpreted as stevensite–kerolite mixed layers. Diffractograms of samples
with the characteristic interpreted signals can be found in Supplementary Materials.
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Figure 6. Main petrographic components observed in the studied wells. (A) Muddy spherulstone
with calcite (stained pink) spherulites replacing and displacing organic-rich laminated Mg-clay matrix
(uncrossed polarizers, //P). (B) Microcrystalline calcite and blocky dolomite intensely replacing
original matrix laminations (crossed polarizers, XP). (C) Coalesced shrubs with preserved original
texture and without clay matrix (XP). (D) Clay peloids covered by clay coatings (XP). (E) Trans-
formed Mg-clay matrix showing chaotic to cross-cutting texture (XP). (F) Calcite shrub replacing and
displacing laminated matrix, with recrystallization following the original internal texture (XP).

5.1.2. Calcite

Low-Mg calcite is the main mineral of the in situ rocks, occurring mostly as spherulites
and shrubs. The spherulites (0.2 to 0.6 mm in diameter) are fibrous-radial aggregates that
replaced and displaced the clay matrix (Figure 6A), locally displaying clay peloid nuclei,
which are usually replaced by microcrystalline calcites. Shrubs are fan-like or plumose
fibrous calcite aggregates (fascicular–optic sensu Kendall [41] or simply fascicular) with
a sweeping extinction pattern (Figure 6C,F). They may be longer than 2 mm but are, on
average, 0.5 mm long. Shrubs either replaced and displaced the clay matrix (Figure 6F) or
covered and encrusted previously formed shrubs, clay matrices, and peloids (Figure 6C).
Intermediate forms between spherulites and shrubs are represented by asymmetric and
lobate spherulites.
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The recrystallization of spherulites and shrubs is very common, presenting several
patterns. Spherulites are usually recrystallized to triangular sectors following the original
radial structure, though they may also display macro- to microcrystalline calcite mosaics
without preferential orientation. Shrubs are less recrystallized than spherulites, usually
forming sectors that follow their internal structure, partially preserving their sweeping
extinction pattern (Figure 6F). Both spherulites and shrubs engulfed detrital grains and clay
peloids (Figure 7A). Peloids are locally concentrated in bands along the growth structure of
shrubs, where they may be partially or completely dissolved or replaced by calcite partially
following aggregate orientation (Figure 7B).
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Figure 7. Main eodiagenetic components in the studied samples. (A) Peloids engulfed and partially
replaced by calcite shrubs (arrows; //P). (B) Shrubs with dissolution along growth lines, with
replaced peloid remnants (XP). (C) Blocky calcite crystals with rounded inclusions-rich nuclei and
blocky to saddle dolomite cement (not-stained) (//P). (D) Blocky calcite rims around spherulites,
covered by blocky dolomite rims that replaced the matrix (//P). (E) Lamellar calcite and dolomite in
muddy spherulstone with pervasive matrix dissolution (//P). (F) Rhombohedral dolomite replacing
Mg-clay matrix (XP).
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Other forms of calcite possess blocky, macrocrystalline, and microcrystalline habits.
Blocky calcite occurs by directly replacing the matrix, similarly to dolomite, locally with
rounded inclusion-rich nuclei (Figure 7C); replacing matrix as rims covering the calcite
shrubs and spherulites; or lining dissolution, inter-aggregate, and fracture pores (Figure 7D).
The microcrystalline calcite usually replaced the matrix, especially in levels with detrital
grains or clay peloids, commonly intercalated with levels replaced by microcrystalline to
blocky dolomite (Figure 6B). Such calcite layers and lenses vary significantly in thickness,
from 0.05 to 1 mm, the thicker displaying remnants of small (<0.1 mm) calcite spherulites.
Macrocrystalline calcite-cemented fractures and pores from the dissolution of aggregates
and the matrix and locally replaced the matrix. Rare lamellar aggregates of calcite crys-
tals perpendicular to the lamination-filled matrix shrinkage pores together with lamellar
dolomite/magnesite and replaced the matrix (Figure 7E).

Spherulites show mostly homogenous orange luminescence under CL. Shrubs show
a distinct zonation pattern under CL, with predominantly dull red luminescence cut by
bright orange bands following shrub growth patterns.

5.1.3. Dolomite

Dolomite is an important diagenetic component in the BVF, occurring mostly as blocky
(Figure 7F), saddle, or microcrystalline crystals replacing the Mg-clay matrix, preferentially
where detrital grains are common (Figure 8A). Saddle dolomite crystals with incipient
sweeping extinction are commonly mixed with well-formed, uniform-extinction rhombo-
hedral dolomite. Blocky dolomite locally occurs as discontinuous rims around spherulites
and shrubs, covering and partially replacing blocky calcite rims in some cases (Figure 7D).
Some blocky dolomite crystals display rounded inclusion-rich nuclei and clear euhedral
borders. Blocky dolomite commonly displays a bright red luminescent core, followed by an
orange zone bordered by a dull red edge in CL. UV fluorescence displays a similar pattern
(Figure 8B) or a dull yellow luminescence. Saddle dolomite commonly filled fractures
and pores from extensive matrix dissolution and also locally replaced the original matrix
(Figure 8C). Saddle dolomite is largely non-fluorescent under UV and CL, locally with
bright cores and small alternating bright bands towards the edges. Microcrystalline, blocky,
and saddle dolomite also replaced calcite spherulites and shrubs, though significantly less
than the Mg-clay matrix. Dolomite rarely replaced the spherulitic and fascicular calcite
pseudomorphically.

5.1.4. Other Carbonates and Minor Diagenetic Constituents

Lamellar aggregates of dolomite or magnesite are locally important. These aggregates
filled pores generated by the shrinkage of the laminated Mg-clay matrix and were locally
covered by rims of the same carbonates [24] (Figure 8D). The lamellar aggregates follow ma-
trix laminations previously deformed by the precipitation of the spherulites, consequently
forming wavy bridges among them. Locally, the lamellar aggregates are floating within
pores formed by the complete dissolution of the host matrix [21] and partially broken by
compaction. The UV fluorescence pattern of the lamellar carbonates displays dull centers
followed by brighter zones (Figure 8E), as shown by Carramal et al. [24]. Rare prismatic,
fibro-radial, and acicular crystals of dawsonite (NaAlCO3(OH)2) locally fill matrix disso-
lution and aggregate fracture pores (Figure 8F). Pyrite is common but not volumetrically
significant, usually as microcrystalline or framboidal crystals replacing clay peloids, matrix,
carbonate particles, and calcite aggregates. Pyrite is concentrated in detrital-rich layers
and along stylolites. Macrocrystalline quartz occurs by filling aggregate fractures, vugular,
matrix, and aggregate dissolution pores. Microcrystalline quartz occurs mostly as a matrix
replacement. Prismatic quartz and fibrous radial chalcedony occur as cements that fill
vugular and matrix dissolution pores. Spherulitic and hemispherulitic chalcedony are rare
and replace the matrix. Cryptocrystalline silica locally replaces the matrix.
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Figure 8. Main eodiagenetic and late-stage components in the analyzed samples. (A) Microcrystalline
and blocky dolomite preferentially replacing level with detrital material and organic matter concen-
tration (black grains). (//P). (B) Matrix-replacive blocky dolomite with dull brown core followed
by orange zone, locally with bright green and completely dull cores (UV Epifluorescence; UVF).
(C) Saddle dolomite replacing partially dissolved matrix. (XP). (D) Lamellar carbonate replacing
matrix remnants covered by perpendicular palisade crystals filling matrix shrinkage pores. (XP).
(E) Blocky dolomite with dull rounded core and bright edge, and lamellar carbonate with a dull core
followed by brighter perpendicular fibrous and a very bright edge (UVF). (F) Acicular dawsonite in
matrix-dissolution pores. (XP).

5.1.5. Detrital and Intrabasinal Grains

Intraclasts of eroded and redeposited spherulites and fragments of shrubs and other
calcite aggregates occur as layers intercalated between the in situ deposits. Superficial
ooids with intraclastic nuclei and originally clay envelopes abraded and replaced or filled
by fibrous to microcrystalline calcite and dolomite also occur in these layers but not in the
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in situ rocks. Rare articulated and disarticulated ostracod and phosphatic bioclasts were
partially engulfed by calcite shrubs and spherulites. Detrital grains correspond mostly
to silt to very fine sand grains of quartz, feldspar, and micas; rare celadonite and heavy
minerals occur mixed with the Mg-clay matrix, commonly concentrated in some laminae
or engulfed by the calcite aggregates.

5.1.6. Pore Types

The main pore types in the in situ rocks are secondary inter-aggregate pores that re-
sulted from widespread matrix dissolution (Figure 8E) in muddy spherulstones (Figure 7E),
muddy shrubstones, shrub-spherulstones, and primary inter-aggregate pores in syngenetic
shrubstones (Figure 6C). Other important pores are intra-aggregate, from the partial disso-
lution of calcite spherulites and shrubs and of included clay peloids, usually along shrub
growth lines in muddy shrubstones and shrubstones (Figure 7B). Aggregate fracture pores
are more common in shrubs, rare in spherulites, and predominantly found in matrix-free
shrubstones and muddy shrubstones. The nuclei of blocky calcite and dolomite are locally
dissolved. Matrix shrinkage pores are common in muddy spherulstones (Figures 6A and
8C,D) and rare in muddy shrubstones but volumetrically of little significance in most cases.
Vuggy pores (Figure 8F) are common in extremely altered samples of any class but slightly
more common in muddy shrubstones.

6. Discussion
6.1. Genesis of the Pre-Salt Minerals

The conditions of the formation and evolution of the Pre-salt deposits are still poorly
understood, yet some constraints are established. Tutolo and Tosca [14] and Pozo and
Calvo [42] indicated that Mg-clay minerals are stable in high pH conditions, with variable
salinities. Tutolo and Tosca [14] established that, under high silica concentrations and
alkaline lakes buffered at pH > 10, the precipitation of spherulitic calcite would be favored.
Shrub formation has been attributed to higher HCO3

- concentrations than spherulites. This
may be promoted by evaporation, CO2 degassing, and/or increased CO2 supply from
groundwater [16,20,25,43,44]. The absences of syngenetic sulfates and chlorides in Pre-salt
strata indicate low SO4

2− and Cl− concentrations, thus indicating the absence of seawater
influence [14,25]. The sources for the large volumes of Mg2+, Ca2+, silica, and CO2 required
for the massive formation of Mg-clays and carbonates in the Pre-salt, however, are still
not revealed. Several authors suggested an origin derived from a mixture of different
sources, including the granitic–gneissic basement rocks, rift and Aptian magmatism, the
rift deposits, and the exhumation and serpentinization of the upper mantle [13,14,19].

Considering the formation and evolution of the BVF system, characterized by complex
diagenetic intensity and distribution patterns, as well as high-frequency intercalations
of depositional and diagenetic processes, the interactions among carbonates and Mg-
clays will be discussed according to their genetic processes and timing, under syngenetic,
eodiagenetic, and mesodiagenetic/hydrothermal conditions.

The syngenetic processes by Chilingar et al. [45] refer to any product formed simulta-
neously or penecontemporaneously to deposition on or above the water–sediment surface.
Eodiagenesis refers to processes and products generated after the deposition still under
the influence of depositional waters and low P and T conditions [46,47]. Mesodiagenesis
refers to those processes and products generated under effective burial and the influence of
considerably modified fluids, higher P and T [46–48]. Hydrothermal processes, however,
are somewhat harder to define. Machel and Lonnee [49] discussed that the term can only
be properly used where the formation temperature of a mineral is higher (>10 ◦C) than
that of the host rock. However, as Lima and De Ros [16] argued, this constraint is rather
impractical and difficult to determine. These authors instead broadened the hydrothermal
definition to any mineral assemblage that is related to the focusing of hot fluid flow through
faults or fracture systems, commonly but not exclusively related directly or indirectly to
magmatic processes.
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6.2. Syngenetic Interactions

Syngenetic interactions in the BVF involved those developed between Mg-silicates
(stevensite, kerolite, stevensite–kerolite mixed layers, saponite, and sepiolite [24,50–52])
formed in the lake water column (homogeneous nucleation) or on the surface of pre-existing
solids (heterogeneous nucleation as on ooids), and fascicular calcite shrubs precipitated on
the sediment–water interface (Figure 9). Such magnesian clays constitute the depositional
background of Pre-salt deposits and the laminated or peloidal matrix of most in situ rocks.
The only notable exceptions are matrix-free shrubstones formed above the sediment–water
interface, which are, nevertheless, usually associated with Mg-clay peloids (Figure 9B).
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Figure 9. Schematic representation of the main syngenetic relations between carbonates and clays.
(A) Syngenetic calcite shrubs growing over a matrix substrate. (B) Syngenetic calcite shrubs en-
gulfing peloids according to their growth lines. (C) Clay ooid formed over a carbonate intraclast.
(D) Reworked clay ooid with envelopes replaced by carbonate and abraded.

Pre-salt shrubs were formed either on the sediment–water interface (syngenetic) or just
below it, within the Mg-silicate matrix (eodiagenetic; [16,17,24]. They are texturally similar
to the Archean and Proterozoic crystalline stromatolites or “sea-floor cements” [53–57],
Phanerozoic crisis horizons [56,58,59], and crystalline travertines [43,60] (Figure 6C,F). All
these deposits are considered as being the result of abiotic precipitation, as interpreted for
the Pre-salt shrubs (e.g., [8–10,16,17,20,25,56,58,59,61]). Gomes et al. [17] interpreted the
predominantly vertical orientation of the shrubs as being the result of higher precipitation
rates and ion supply via advection.

Al-free magnesian clay minerals are formed from fluids highly concentrated in Mg2+

and silica, with specific mineral species resulting from a combination of Mg/Si ratios,
salinity, and pH [42,62]. Stevensite requires pH > 9 and high salinity with variable Mg/Si,
while kerolite forms in lower salinity conditions with pH > 9 or under high salinities with
pH < 9 [42], according to Equations (1) and (2).

Ca2+ + Na+ + Mg2+ + H4SiO4 + H2O ↔ (Ca0.5, Na)0.33Mg3(Si4O10)(OH)2·2H2O(stevensite) (1)

or
Mg2+ + H4SiO4 + H2O ↔ Mg3(Si4O10)(OH)2·H2O(kerolite) (2)
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Tutolo and Tosca [14] interpreted the association of these clays with spherulites and
shrubs to indicate high pH (~10–10.5) with high concentrations of silica and alkali cations,
such as Na+ and Ca2+. Wright and Tosca [9] considered the large-scale deposition of the
laminated matrix as a result of the settling and crystallization of a colloidal gel formed while
suspended in the water column. Conversely, Carramal et al. [24] argued that, according
to Stoke’s law, the settling of gels would require a long time under very quiet conditions,
which is incompatible with the large-scale and recurrent Mg-clay deposition seen in the
Pre-salt, frequently associated with siliciclastic silt. Furthermore, the authors also indicated
that well-laminated clay matrix fabrics would not be formed from the crystallization of
an amorphous gel, which would result in chaotic orientation, as seen, for instance, in the
crystallization of opal (cf. French et al. [63] and French and Worden [64]). They also argued
that the deformation of the matrix laminations by the very early spherulites and shrubs
would indicate that the Mg-clays were already deposited with a laminated and strongly
oriented fabric. Consequently, Carramal et al. [24] indicated that the matrix was deposited
as clay particles instead of the Mg-Si gel, as suggested by Wright and Barnett [8].

Mg-clay peloids may have formed through the complete replacement of pre-existing
particles, from the reworking of matrix or other clay grains (such as ooids and intraclasts),
or from clay flocculation while in suspension. The first case is common in volcanic set-
tings, with alteration providing ions and creating alkaline environments that favor clay
formation [65,66]. Furthermore, the formation of “green clays”, such as berthierine and
glauconite, is known to form peloids through the infilling and replacement of fecal pellets,
carbonate bioclasts, and various detritals [67,68]. The second case is better represented
by glauconite grains, which are commonly reworked, possibly transported, and incor-
porated into penecontemporaneous or younger sediments, termed para-autochthonous
and allochthonous [69,70]. In addition, Armelenti et al. [71] described the widespread
gravitational redeposition of previously formed stevensitic peloids and ooids in the rift
section of the Campos Basin. In the third case, clay flocculation is a result of the com-
plex interactions between clay minerals suspended in saline fluids, which are attached
in progressively larger particles, increasing their settling velocity [72–76]. Some degree
of turbulence is needed to maintain clay particles in suspension for peloid development,
requiring a moderate amount of energy in the system [77,78].

Clay peloids are quite common in the in situ rocks of the Pre-salt, yet very few studies
have focused on them (e.g., [24]). Though not as ubiquitous as the laminated clays, clay
peloids are quite common and significant in constraining environmental conditions. Their
occurrence can be recognized as follows: (1) in laminae mixed with detrital materials;
(2) among matrix-free shrubstones (Figure 6C); and (3) engulfed in eodiagenetic (Figure 7A)
and syngenetic shrubs and eodiagenetic spherulites. As volcaniclastic materials are scarce
throughout the Barra Velha Fm., restricted mostly to areas close to the Cabiúnas Fm.,
the Pre-salt peloids were most likely formed through reworking and/or flocculation. The
common presence of small clay peloids associated with siliciclastic grains suggests that they
are related to an increased sediment supply associated with energy increase in the system,
pointing to a resedimented origin for these particles. These layers are often highly modified
by diagenesis, usually in the form of calcite and dolomite replacement, as discussed in the
next section (eodiagenetic).

The lack of a laminated clay matrix within shrubstones indicates that shrub precipi-
tation occurred during periods of decreased clay deposition. Whether this is the result of
unfavorable changes in the lake chemistry and pH for Mg-clay authigenesis [8] or the in-
crease in the wave or bottom current energy impeding clay-sized particle deposition [16,24]
remains unclear. However, peloids are quite commonly engulfed by syngenetic shrubs,
indicating peloid deposition during shrub formation and the persistence of clay deposition
during calcite precipitation. The alternation of growth zones with abundant engulfed
peloids and “clean” layers within shrubs seems to further indicate that calcite and clay
deposition were concomitant during some periods of lake evolution (Figure 10). The zones
with no engulfed peloids may be related to increased wave or current energy in the system
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related to the deposition of larger peloids. Wright [25] suggested that restricted and shallow
lakes are highly dynamic systems, with meter-scale water-level fluctuations occurring
throughout decades as a result of environmental and hydrodynamic changes. However,
such fluctuations could not explain the high-frequency intercalations in the composition
and energy observed in the Pre-salt deposits. This is because fluctuations in rainfall, run-off
and groundwater discharge, evaporation rates, and connection to other water bodies could
not change the chemistry and the level of the huge lacustrine system as reflected in the
high-frequency intercalations observed in the deposits.
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Figure 10. Schematic representation of dissolution of shrubs following their growth lines. (A) Initial
stage of shrub formation with clay peloids as substrate. (B) Peloids deposited over shrubs and
incipiently engulfed by the shrubs. (C) Shrub growth continues, engulfing the peloids. (D) En-
gulfed peloids replaced by calcite, leaving “ghosts” of their shapes. (E) Engulfed peloids dissolved.
(F) Dissolution follows previously formed pores to create dissolution zones in the shrubs.

Some authors suggested that the Pre-salt Mg-silicates may have nucleated on or
within EPS (extracellular polymeric substances generated by microbial activity [11,12]).
Indeed, some papers reported on Mg-Si gels formed within EPS of microbial mats and
thrombolites [79–82]. This relates to the trapping of ions such as Mg, Si, and Ca by EPS
under highly alkaline conditions [79–83]. Tosca and Wright [62] argued that the hypothesis
of a microbial substrate would restrict Mg-silicate occurrence to specific microbial facies,



Minerals 2024, 14, 191 17 of 35

which is not observed in the Pre-salt deposits. Carramal et al. [24] have also raised important
objections against the microbial model, mainly considering the sheer volume and wide
distribution of Mg-silicates spanning several basins, both in the African and Brazilian
conjugate margins, and the characteristics of associated carbonates that are incompatible
with a microbial origin.

Carramal et al. [24] described ooids with kerolite and stevensite envelopes in the Lula
Field of Santos Basin as the main components of ooidal arenites or mixed with volcanic
fragments in hybrid arenites. These ooids have nuclei composed of spherulitic, fascicular,
and microcrystalline carbonate intraclasts, and their clay envelopes are usually strongly re-
placed by microcrystalline calcite, dolomite, or silica. Mg-silicate ooids had been previously
identified in the rift section of the Campos and Santos Basins [71,84,85]. Carramal et al. [24]
suggested that sag-section ooids originated from heterogenous nucleation on carbonate
nuclei in conditions of lower energy than those interpreted for the rift-section ooids. Later
reworking partially abraded the envelopes, which, together with carbonate replacement,
makes the identification of these redeposited particles difficult (Figure 11).
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6.3. Eodiagenetic Interactions

The eodiagenetic interactions include those developed between Mg-silicates and car-
bonates precipitated at very shallow burial depths beneath the sediment-water interface
and still under the influence of the lacustrine waters. The spherulites and part of the
fascicular shrubs replaced and deformed the Mg-clay matrix shortly after its deposition
and before lithification. This is indicated by the deformation of the matrix laminations, and
by remnants of the matrix included within the aggregates [8,10,16,24]. Other eodiagenetic
relations include blocky calcite replacing the matrix as scattered crystals and as rims cover-
ing the calcite aggregates, matrix-replacive blocky dolomite and rims, lamellar carbonates
filling shrinkage pores and replacing matrix, and matrix-replacive microcrystalline calcite
(Figure 12).
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The processes involved in the formation of the characteristic Pre-salt fascicular and 
spherulitic calcite aggregates are part of an ongoing debate in the literature. Some authors 
ascribe such formation to microbially induced or influenced mechanisms (e.g., 
[11,12,86,87]). Others, on the basis of the unfractionated δ13C values and on the abiotic 
formation of similar aggregates in some stromatolites and travertines (e.g., [43,54,56]), 
interpret their origin as a product of abiotic, chemical precipitation (e.g., 
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spherulites as precipitated within an amorphous Mg-Si gel. However, as previously 
stated, Carramal et al. [24] suggested that the Mg-clay matrix was already deposited as 

Figure 12. Schematic representation of the main eodiagenetic relations between clays and calcite (rose)
and dolomite/magnesite (yellow). (A) Shrubs replacing and displacing Mg-clay matrix, deforming
the original laminations. (B) Spherulites replacing and displacing Mg-clay matrix, with clay peloids
serving as a nucleus and engulfed during spherulite growth. (C) Blocky calcite rims (BC) replacing
matrix, formed over spherulites, and blocky dolomite rims (D) replacing matrix and covering calcite
rims. (D) Lamellar calcite replacing matrix remnants and filling matrix-shrinkage pores. (E) Blocky
calcite with round, turbid, inclusion-rich nuclei replacing matrix. (F) Calcite and dolomite replacing
and filling clay ooid envelopes shrinkage pores. (G) Blocky dolomite with turbid nuclei replacing
original matrix. (H) Lamellar dolomite filling matrix-shrinkage pores and replacing matrix remnants.
(I) Microcrystalline calcite replacing and displacing matrix forming lenses and “ribbons”.

The processes involved in the formation of the characteristic Pre-salt fascicular and
spherulitic calcite aggregates are part of an ongoing debate in the literature. Some authors
ascribe such formation to microbially induced or influenced mechanisms (e.g., [11,12,86,87]).
Others, on the basis of the unfractionated δ13C values and on the abiotic formation of similar
aggregates in some stromatolites and travertines (e.g., [43,54,56]), interpret their origin as a
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product of abiotic, chemical precipitation (e.g., [8,10,16,24,25,88]). Wright and Barnett [8]
originally interpreted the formation of spherulites as precipitated within an amorphous
Mg-Si gel. However, as previously stated, Carramal et al. [24] suggested that the Mg-clay
matrix was already deposited as such, on the basis of Stoke’s law, the highly parallel
and organized fabric, and the matrix deformation by the very early calcite precipitation.
Therefore, the Pre-salt spherulitic and fascicular aggregates were formed by the abiotic
replacement, displacement, and/or incrustation of the Mg-clay matrix (Figure 12A,B and
Figure 13). The lobate or asymmetric spherulites represent intermediate forms between
spherulitic and fascicular aggregates. Our hypothesis is, therefore, that the formation of
either spherulites or shrubs was related to the distance to the water–sediment interface.
Closer or on the interface, the higher ionic supply and rate of precipitation favored a
preferentially vertical crystal growth [8,16,54,89].
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Figure 13. Schematic diagram for matrix layer deformation due to spherulite precipitation. The initial
stage of parallel lamination is progressively deformed by growth of spherulites, with laminae replaced
(cut) and displaced (deformed) by the aggregates.
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Clay peloids and siliciclastic grains are usually found engulfed by spherulitic and
fascicular aggregates (Figures 7A and 12B). This feature is found in concretions formed
through the replacement and displacement of host sediment, indicative of formations
under very shallow burial [90–93]. Calcite later replaced part of the engulfed peloids,
generating an inclusion-rich, “turbid” texture. Rounded moldic pores within the shrubs
and spherulites were formed by the dissolution of clay peloids. In shrubs which display
peloids concentrated in growth zones, this dissolution porosity generated “dissolution
bands” (Figure 10).

Clay coatings that formed over particles have been identified by Ramnani et al. [40]
as sepiolite, suggesting that they have been formed by the partial dissolution of previous
Mg-clay minerals. They further indicated that these coatings formed under eodiagenetic
conditions, which agree with their continuity over the peloid surface in the studied samples.
Though sepiolite may form from a precursor Mg-rich clay mineral, such as stevensite or
saponite [94], it may also form directly from a solution having high Si/Mg ratios, lower
salinity, and a pH of around 8–8.5 [42]. Sepiolite is also found to be associated with
dolomitization processes in highly evaporative environments, covering dolomite crystals
or cementing intercrystalline pores [95].

The distinction between matrix-replacive and cement phases may appear clear when
the matrix is still partially preserved, but it becomes significantly harder in cases where
there was complete matrix dissolution, such as in Pre-salt deposits. This can be achieved
with a careful petrographic analysis of the distribution and habits of diagenetic constituents
and their relation to the depositional matrix. Carbonate cement phases favor nucleation
over pre-existing carbonates, occurring as rims of various habits (e.g., acicular, blocky,
isopachous) or overgrowths or as pore-occluding coarse cements, frequently with drusiform
coarsening towards the center of the pores. Furthermore, matrix-replacive phases typically
display no preferential orientation to particle or aggregate surfaces, giving rise to the
so-called ‘floating’ or random distribution [8] or are directly controlled by the existing
lamination of clay minerals as the pseudomorphic lamellar phases (‘bridges’ of Wright
and Barnett [8]). It is important to notice that, even though rims may form as a matrix-
replacive phase, ‘floating’ crystals will not form without a previous substrate. Matrix
dissolution may occur during any stage of matrix replacement and may create rocks with
intercrystalline porosity among dolomite crystals, as described by Herlinger et al. [26]. Late-
stage dolomite cementation may also fill any remaining porosity. A schematic summary of
these characteristics is shown in Figure 14.

Tosca and Wright [62] interpreted the spherulstones without Mg-silicates as a result of
a large-scale congruent dissolution of the matrix. They argued that this would be possible
due to the turbostratic structure and bonding characteristics of Al-free Mg-silicates, as well
as their high specific surface area. As discussed by Tosca and Masterson [96], the stability
of Mg-silicates is rather limited, and small fluctuations in pH, Mg2+, and silica activities
may cause their dissolution. This occurs mainly due to the weak Mg-O bonds and the
disordered (turbostratic) structure of the stevensite [24,97]. Tosca and Wright [62] suggested
that CO2 input would effectively decrease the pH and increase the HCO3

- concentration,
which would induce massive Mg-silicate dissolution while maintaining or even increasing
carbonate stability (Equation (3)). Although conditions for Mg-silicate dissolution in the
reservoirs could have easily been achieved during burial, Carramal et al. [24] reasoned that
large-scale dissolution occurred during early diagenesis because the low permeability of
the deposits would severely limit the development of such process under burial.

(Ca0.5, Na)0.33Mg3(Si4O10)(OH)2·2H2O(stevensite) + CO2
↔ CaCO3(calcite) + MgCa(CO3)2(dolomite) + Na+ + H4SiO4 + H2O

(3)



Minerals 2024, 14, 191 21 of 35Minerals 2024, 14, x FOR PEER REVIEW 23 of 38 
 

 

 
Figure 14. Schematic representation of the differential distribution generated by dolomite 
replacement of matrix and cementation of matrix-dissolution porosity. 

Tosca and Wright [62] interpreted the spherulstones without Mg-silicates as a result 
of a large-scale congruent dissolution of the matrix. They argued that this would be 
possible due to the turbostratic structure and bonding characteristics of Al-free Mg-

Figure 14. Schematic representation of the differential distribution generated by dolomite replacement
of matrix and cementation of matrix-dissolution porosity.

The first eodiagenetic process that followed the formation of spherulites and shrubs
was the precipitation of blocky calcite rims over these aggregates, usually replacing the
original matrix (Figures 7D and 12C). The habit of these rims is most likely related to
the decreasing saturation of calcite in the system, favoring the precipitation of coarser
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crystals over the pre-existing fibrous calcite aggregates. These rims are often found over
recrystallized spherulites and shrubs, following the overall crystal orientation, indicating
that calcite rims formed either during their recrystallization or shortly after.

The early dolomite replacement of the Mg-clays clearly suggests that their instability
favored the precipitation of dolomite [98], while calcite spherulites and shrubs are usually
completely preserved. This could be explained by the relative stability of calcite due to
its high HCO3

− activity [62], which, when allied to the Mg-rich composition of the clays,
would favor the precipitation of dolomite at the expense of the matrix while preserving
the calcite aggregates. Conversely, the rare samples where an intense dolomitization of the
aggregates occurred could represent a different original composition. Gomes [99] published
XRD data showing significant volumes of still preserved high-Mg calcite (HMC) in the
Santos Basin paleo-high and off-structure areas. Considering an original HMC composition
for the aggregates, matrix replacement would follow Equation (4), and limited silicification
of the matrix could occur due to SiO2 being released from the clay destabilization as per
Equation (5). Aggregates originally composed of HMC are more susceptible to dolomite
replacement than low-Mg calcite (LMC) aggregates, usually preserving their original
textures [100,101]. Therefore, the pseudomorphic dolomitization of calcite aggregates most
likely took place before HMC stabilization [102]. This could also explain the varying degree
of recrystallization found, where LMC would be prone to pseudomorphic recrystallization,
while a late neomorphism of HMC would produce mosaic fabrics without the inheritance
of the original crystalline orientation of the aggregates. Although a compelling hypothesis,
direct evidence for HMC transformation to LMC (e.g., [103–105]) is still absent for the Pre-
salt deposits. Although the LMC aggregates could be also generated by the neomorphism
of aragonite [51], the crystalline fabric and square stepped terminations characteristic of
aragonite neomorphism [106] are lacking from the Pre-salt calcite spherulites.

(Ca0.5, Na)0.33Mg3(Si4O10)(OH)2·2H2O(stevensite) + HCO−
3 + Ca2+

↔ Ca0.85Mg0.15CO3(Mg−calcite) + H4SiO4 + Na+ + Mg2+ + H2O
(4)

or
(Ca0.5, Na)0.33Mg3(Si4O10)(OH)2·2H2O(stevensite) + HCO−

3 + Ca2+

↔ Ca0.85Mg0.15CO3(Mg−calcite) + SiO2(quartz) + Na+ + Mg2+ + H2O
(5)

The rounded, inclusion-rich nuclei of dolomite and calcite crystals (Figure 7C) covered
by euhedral overgrowths may represent a recrystallization/stabilization process of less
stable phases. Proto-dolomite or HMC commonly display extremely defective forms [107],
which are replaced during diagenesis to more stable dolomite or LMC calcite with euhedral
or subhedral forms via a dissolution–reprecipitation mechanism, potentially resulting in
the precipitation of both carbonate phases as per Equation (6) [108–111].

Ca0.85Mg0.15CO3(Mg−calcite) + Ca2+ + Mg2+ + CO2 ↔ CaCO3(calcite) + CaMg(CO3)2(dolomite) (6)

Liu et al. [112] showed experimental evidence that smectites may serve as nuclei for
proto-dolomite formation under high alkalinity. Proto-dolomite is suggested to recrystallize
to ordered, stoichiometric dolomite under burial [107]. An initial metastable phase is not
required, however, to form the inclusion-rich “turbid” cores in blocky dolomites. These
cores could represent an initial phase of matrix-replacive dolomite followed by clear
overgrowths [111,113] (Figure 7D,F), suggesting at least two eodiagenetic dolomitization
events for the Pre-salt. The recrystallization of earlier phases could also occur together
with the overgrowths, possibly using the less stable core as an ion source for further
dolomite precipitation [114–121]. Further interpretations regarding the mechanisms of
dolomite precipitation in the studied areas require detailed data on dolomite cation ordering
and stoichiometry.

The precipitation of lamellar dolomite or magnesite aggregates parallel to the lami-
nation of the matrix (Figures 8C and 12H) was interpreted by Wright and Barnett [8] as
a direct replacement of Mg-silicate gels or after some neoformation of clays from them



Minerals 2024, 14, 191 23 of 35

and as a product of the pseudomorphic replacement of the stevensite matrix laminations
by Lima and De Ros [16]. Carramal et al. [24] identified two morphologies of lamellar
dolomite/magnesite, the first constituted of palisade crystals grown perpendicular to the
laminations over extremely contracted Mg-silicate remnants and replacing them, and the
second with uneven thickness and chaotic orientation, both precipitated directly in matrix
shrinkage pores (Figure 15). Carramal et al. [24] interpreted that the palisade crystals
formed within the early filling of matrix shrinkage pores and that the orientation parallel
to the matrix indicates a subaqueous origin (i.e., synaeresis), most likely related to changes
in water chemistry (salinity or αH2O). The authors also suggested that further matrix
dissolution could be an internal source of Mg for carbonate precipitation. These diagenetic
carbonates are strikingly similar to “beef” calcite, a term used for sub-vertical, fibrous
calcite veins filling sub-horizontal fractures in and around organic-rich shales ([122,123]
and references therein). Though extensive research regarding fracture formation and calcite
source exists, there is no consensus yet on the origin of these veins [123].

In theory, horizontal fractures cannot form under lithostatic burial conditions, as
the main stress is vertical and compressive, caused by gravity, while horizontal stress is
minimal [124]. However, horizontal fractures may form where (1) tectonism results in
horizontal compressive stress or (2) the tensile strength of a rock is the smallest perpendicu-
lar to bedding [125–127]. Non-tectonic fractures are formed in shales mostly due to their
ultra-low permeability, which promotes overpressure build up [128], and diagenetic alter-
nations, changing the mechanical properties of rocks, porosity, and amount of formation
water [129,130]. There are several mechanisms capable of generating non-tectonic fractures
in shales, which range from synaeresis, sediment loading or compaction, seismic activity,
authigenic mineralization, clay transformation, silica diagenesis, pressure solution, and
hydrocarbon-generating processes [128,131]. Though several of these processes generate
predominately sub-vertical or chaotic fractures (sediment loading, seismic activity, and
opal-A to opal-CT transformation), processes capable of creating sub-horizontal fractures
are found in all stages of diagenesis. The relation between lamellar carbonates and blocky
dolomite indicates that these were precipitated at a similar time (see Figure 5E of Carramal
et al. [24]). Furthermore, the strongly parallel orientation of the lamellar carbonates with
the matrix lamination would restrain lamellar carbonate formation to shallow, pre-burial
conditions. Processes that could result in the observed sub-horizontal shrinkage during
eodiagenesis include synaeresis [131] and clay transformation [24].

Salinity variations may promote the generation of shrinkage cracks near the sediment–
water interface in sediments rich in smectites by the dehydration of the swelling clays [131].
McMahon et al. [131] showed that such conditions can produce sub-horizontal cracks in
shallow sediments, and Carramal et al. [24] suggested that this, associated with matrix
dissolution, is the most likely mechanism for generating the sub-horizontal pore network
in the Pre-salt. The transformation of stevensite into kerolite in the Pre-salt, where a more
hydrated phase (smectite) transforms into a less hydrated phase (kerolite), may have led
to structural water expulsion and clay shrinkage [24]. Some studies on the evolution
of clays in the Pre-salt by Silva et al. [50] and Netto et al. [52] suggested that kerolite
formed directly from pore waters or from a precursor gel and were later transformed
into stevensite due to increasing pH and decreasing Mg/Si through kerolite–stevensite-
interstratified aggregates. However, Ramnani et al. [40] indicated that the increase of
kerolite crystallinity and the predominance of kerolite in kerolite–stevensite mixed layers
is related to increasing burial and temperature. A similar general trend of increasing
dehydration with burial is also observed in the transformation of smectites to illites or to
chlorites [132–135]. The transformation of stevensite to kerolite in the Pre-salt succession
would occur through Equation (7):

(Ca0.5, Na)0.33Mg3(Si4O10)(OH)2·2H2O(stevensite)
↔ Mg3(Si4O10)(OH)2·H2O(kerolite) + 0.165Ca2+ + 0.33Na+ + H2O

(7)
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Figure 15. Schematic representation of two possible pathways for lamellar carbonate formation
(modified from Carramal et al. [24]. The initial stage of laminated mud deposition (A) may follow
two paths for lamellar carbonate precipitation. The left pathway shows extremely contracted matrix
remnants (B) serving as a nucleus for perpendicular carbonate formation (C), which may be followed
by complete matrix dissolution (D). The right pathway shows matrix contraction (E) followed by
lamellar dolomite filling the shrinkage pores (F). Complete matrix dissolution creates floating lamellar
carbonates (G), as also seen in the left pathway (D).
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Carramal et al. [24] also reported the carbonate cementation and replacement of the
clay envelopes of stevensite–kerolite ooids. These features formed in a similar fashion to the
described processes of matrix shrinkage and replacement but with carbonate orientation
perpendicular to particle surfaces. Although we were unable to find any preserved ooids,
abundant reworked ooids occurred, with envelopes completely replaced or cemented by
calcite or dolomite, which became extremely abraded during redeposition.

Layers or levels rich in peloids display more intense replacement by dolomite, silica,
and calcite aggregates. This may be related to the higher original porosity and permeability
of these levels than the laminated matrix, which would facilitate fluid percolation. Or this
may be a different composition of the peloids. Preferential calcite precipitation in peloidal
levels would explain the common occurrence of engulfed peloids in spherulites and shrubs
(Figure 10). Likewise, microcrystalline and blocky dolomite most often preferentially
replaced layers rich in peloids and detritals.

The replacement of Mg-clays by microcrystalline calcite in mudstones is similar to
some features found in laminar calcretes with abiogenic features (alpha calcretes of 90),
with irregular and “ribbon” shapes (Figures 6B and 12I). The change from spherulitic
and fascicular calcite precipitation to microcrystalline calcite may indicate a decrease in
alkalinity and/or silica activity [14,136–138]. The presence of spherulite remnants in thicker
layers suggests that microcrystalline calcite may be, at least partially, the result of spherulite
recrystallization, though direct matrix replacement seems to be the predominant process.
Their lenticular shapes are also indicative of replacive–displacive precipitation.

6.4. Mesodiagenetic/Hydrothermal Interactions

We found only three carbonate phases that may be considered “late-stage” or that at
the very least indicate higher precipitation temperatures. The first corresponds to saddle
dolomite, characteristically formed under high temperature conditions under burial or hy-
drothermal conditions [49,139–143] (Figure 16A,B). The second is dawsonite (NaAl(OH)2CO3)
(Figure 16C), originally identified in the Pre-salt by Farias et al. [15] and by Lima and De
Ros [16]. The third corresponds to coarse macrocrystalline calcite (Figure 16D). All three
occur as cements in matrix dissolution and vugular pores (Figures 8F and 16B), though
saddle dolomite also appears as matrix replacement (Figures 8E and 16A).

In their studies of the Campos Basin Pre-salt deposits, Lima et al. [19] found evidence
of high homogenization temperatures (152 ◦C) for saddle dolomite and macrocrystalline cal-
cite, which allied to their fault-associated paragenetic assemblage (macrocrystalline quartz,
Sr-barite, celestine, fluorite, dickite, sphalerite, galena, other metallic sulfides, and bitumen)
and led them to interpret these precipitates to be derived from burial hydrothermal fluids.
Furthermore, the authors presented isotopic data (δ13C, δ18O, and 87Sr/86Sr) that showed
the interaction with the host rock and/or mixture of hydrothermal fluids with basinal
fluids. These homogenization temperatures and isotopic data agree with the published
data from Poros et al. [144], and Girard and San Miguel [145] for the analogous Kwanza
Basin hydrothermal assemblage. Lima et al. [19] suggested that the hydrothermal fluids
in the Campos Basin Pre-salt deposits are most likely a result of the interaction of several
fluids derived from granitic–gneissic basement, rift sedimentary succession, Early and
Late Cretaceous and Paleogene magmatism, and mantle exhumation and serpentinization.
However, isotopic and fluid inclusion data presented by Lima et al. [19] are mostly related
to late-stage pore-filling saddle dolomite or completely silicified and dolomitized rocks.
Carvalho et al. [23] published a large amount of isotopic data from bulk rock geochemical
analysis in 21 wells of the Tupi Field of Santos Basin, along with petrographic analysis.
They found no clear hydrothermal modification of isotopes in their samples, though the
authors noted that their samples did not show pervasive alteration as those analyzed
by Lima et al. [19] and that saddle dolomite was closely associated with faulting, which
suggested a hydrothermal origin for these minerals.
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Figure 16. Schematic representation of the main mesodiagenetic relations between clays and carbon-
ates. (A) Saddle dolomite replacing matrix. (B) Saddle dolomite partially filling matrix-dissolution
pores. (C) Coarse, macrocrystalline calcite partially filling matrix-dissolution pores. (D) Dawsonite
partially filling matrix-dissolution pores.

Although several authors interpret saddle dolomite as related to hydrothermal fluid
flow (e.g., [10,19,112,146,147]), Machel and Lonnee [49] and Spötl and Pitman [139] have
indicated that it may be related only to high temperature conditions (>80 ◦C) and not
necessarily to hydrothermalism. Furthermore, magma-derived hydrothermal fluids are
usually acidic and commonly result in the development of large-scale carbonate disso-
lution [146,148]. This feature is observed in some of the studied samples, where saddle
dolomite is partially dissolved, but seems incongruent with samples where the matrix is
partially replaced by saddle dolomite. As previously discussed, Mg-clays are extremely
prone to dissolution and would not resist acidic hydrothermal fluid percolation. An alter-
native origin for saddle dolomite is from basinal brines under burial ([146] and references
therein [113,149–152]). These fluids are highly saline and concentrated waters with var-
ied origins, such as modified seawater (e.g., [102,143,153]), post-evaporite brines ([146]
and references therein), deeply buried mudstones [143], or alteration of mafic/ultramafic
rocks [143].

Lima and De Ros [16] showed the burial evolution of the Campos Basin deposits
reaching close to 4.5 km and circa 111 ◦C, high enough temperatures for saddle dolomite
formation. The Barra Velha Formation of the Santos Basin suffered higher burial depths
than the described Campos Basin deposits, reaching up to 7 km depths, though averaging
around 5 km. This implies that the maximum temperature for the BVF is likely higher
than its Campos Basin equivalents. As such, saddle dolomite could form without the
necessity of an external fluid in the BVF, as long as Ca/Mg ratios and HCO3

- were suffi-
cient. Stevensite transformation into kerolite as well as their large-scale dissolution could
source Ca2+ and Mg2+ ions [154], creating highly concentrated brines capable of precipi-
tating dolomite. Furthermore, early dolomite crystals may serve as a source for further
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precipitation during hydrothermal dolomitization by partially consuming earlier phases
of dolomite and reprecipitating as overgrowths or as recrystallization phases [114–121].
Although most saddle dolomite precipitation described in the literature are vugular or
fracture-filling cements, some cases also occur where previously formed early dolomite
are replaced/recrystallized by hydrothermal saddle dolomite (e.g., [153,155]). Therefore, at
least part of the matrix-replacive saddle dolomite may be the result of eodiagenetic blocky
dolomite recrystallization when subjected to Mg-rich fluids derived from the dissolution or
transformations of Mg-clays.

Lima et al. [19] also interpreted coarse, late-stage calcite cement as hydrothermal
according to its isotopic composition and fluid inclusion data, precipitated from a similar
fluid as saddle dolomite. In fact, coarse calcite associated with saddle dolomite from hy-
drothermal fluids has been observed in several locations, usually occurring after significant
dolomite precipitation (e.g., [113,118,121,143,153]). Its precipitation is usually related to
a decrease in Mg2+ from dolomite formation and an increase in Ca2+ by calcite dissolu-
tion [113,156]. Considering the paucity of macrocrystalline calcite in the studied samples
of the BVF and its association with saddle dolomite and dawsonite, an origin related to
depleting hydrothermal fluids is likely.

Dawsonite is related to alkaline fluids with high Al3+, Na+, and HCO3
− and high

CO2 pressures [157]. The most common origin for this mineral is the alteration in albite in
sandstones under high pCO2 (e.g., [158] and references therein), though they have also been
related to the hydrothermal activity associated with intrusive or volcanic rocks [159,160]
and under shallow conditions through the reaction of Na+-HCO3

- rich brines and bacterial
CO2 (e.g., [161]). Lima and De Ros [16] attributed the dawsonite presence in the Pre-salt to
hydrothermal activity due to its association with saddle dolomite and Sr-barite cements.
The source of CO2 for dawsonite precipitation has been shown to be magmatic in several
other studies (e.g., [157,158,160]). Our data seem to agree with a late-stage, hydrothermal
origin for dawsonite, associated with saddle dolomite cementation.

7. Conclusions

The analysis of different carbonate and clay-mineral phases in five wells from three
fields of the Aptian Pre-salt succession from Santos Basin allowed us to acquire several
observations and inferences regarding the mechanisms and conditions involved in their
formation. These processes were divided according to their relative timing of occurrence as
syngenetic, eodiagenetic, and mesodiagenetic/hydrothermal.

• The main syngenetic interactions included the deposition of the magnesian clay lami-
nated matrices, peloids, and ooids and the precipitation of fascicular calcite aggregates
upon the sediment–water interface.

• The main eodiagenetic interactions include the widespread formation of spherulites
and shrubs replacing and displacing the matrix, the precipitation of blocky calcite and
dolomite replacing the matrix or as rims covering calcite aggregates, the precipitation
of lamellar carbonates in pores formed by shrinkage of the matrix, the replacement and
cementation of clay ooids, and the precipitation of microcrystalline calcite, dolomite,
and silica replacing the matrix.

• The main mesodiagenetic/hydrothermal interactions are mostly related to cemen-
tation by saddle dolomite, macrocrystalline calcite, and dawsonite after significant
matrix dissolution.

• The fast precipitation of syngenetic calcite shrubs occurred under high ionic supply
conditions. The common occurrence of peloids within preferential growth layers in
shrubs indicates that clay and carbonate precipitation was concomitant and mostly
controlled by the rate of precipitation of each mineral.

• The interruption and deformation of the clay matrix laminations by the calcite spherulites
and shrubs indicate that the matrix was deposited as Mg-clay particles and was re-
placed and displaced by the calcite aggregates still in an unconsolidated state.
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• The lamellar carbonates were formed initially by filling the matrix shrinkage pores
and later covered by palisade crystals perpendicular to matrix orientation. A similar
pattern is observed in the replacement and cementation of the clay envelopes of
the ooids.

• An original HMC composition of some aggregates could explain the wide variation in
the recrystallization patterns observed in the calcite spherulites and shrubs, as well as
their local pseudomorphic dolomitization.

• The common replacement of the matrix by blocky dolomite crystals was favored due
to the instability of stevensite during eodiagenesis.

• The occurrence of rounded, inclusion-rich cores in blocky calcite and dolomite may
indicate a recrystallization of an initial highly defective phase such as proto-dolomite
or VHMC, followed by a further precipitation of more stoichiometric carbonates.

• The preferential replacement of peloidal levels by calcite and dolomite likely occurred
due to their higher permeability and specific surface.

• The replacement of the matrix by microcrystalline, instead of spherulitic calcite, likely
occurred due to decreased alkalinity and/or silica concentration.

• Saddle dolomite and dawsonite precipitated mostly through matrix dissolution and
replacement possibly by hydrothermal fluids or alternatively as a result of the cemen-
tation and recrystallization of early blocky dolomite by evolved brines, not related to
hydrothermal circulation, during burial. A mesodiagenetic origin without hydrother-
mal influence is suggested by the widespread distribution of saddle dolomite in wells
away from major faults that could correspond to conduits for the focused flow of
such fluids [19]. Macrocrystalline calcite cemented dissolution pores after significant
dolomite precipitation.

These observations on the timing and controls of carbonate–clay interactions in the in
situ Pre-salt rocks are essential to understand how these deposits were formed and evolved
to constitute the giant petroleum reservoirs presently under exploration and production.
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