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Abstract: The Late Permian coal measures in eastern Yunnan, western Guizhou, and central Guangxi
are significantly enriched in critical metals that could serve as important supplements to conventional
critical metal deposits in China. This study collected previous geochronological and geochemical
data from the Late Permian coal measures to evaluate the distribution characteristics and enrichment
factors of critical metals. Moreover, metallogenic models for critical metals were also developed.
The results showed that Late Permian coal measures in Yunnan, Guizhou, and Guangxi provinces
exhibited abnormal enrichment in Nb, Zr, and rare earth elements (REY, or REE if Y is excluded).
The Emeishan mafic rocks and intermediate-felsic volcanic ash from the Truong Son orogenic belt
underwent chemical weathering, with Nb and Zr selectively preserved in situ in the form of heavy
minerals (e.g., rutile, zircon, and anatase), which subsequently led to the enrichment of Nb and Zr
in bauxite and Al-claystone at the bottom of the Late Permian coal measures. Intermediate-felsic
volcanic ash from the Emeishan large igneous province (ELIP) and the Truong Son orogenic belt
supplied Nb, Zr, and REY for the middle and upper parts of the Late Permian coal measures. The
intermediate-felsic mineral material of the coal measures in the intermediate zone, outer zone, and
outside zone of ELIP are derived mainly from the ELIP, the mixture from ELIP and the Truong Son
orogenic belt, and the Truong Son orogenic belts, respectively. Nb, Zr, and REY were leached by acidic
aqueous solutions and from the parting and roof into underlying coal seams, where they deposited
as authigenic minerals or adsorbed ions on organic matter during early coalification.

Keywords: critical metals; the Late Permian coal measures; enrichment factor; material sources;
metallogenic model

1. Introduction

Coal, an organic rock, has the capability to accumulate a large amount of Ge, Ga, Al,
Li, V, Ti, W, Ba, REY, and other metal elements under certain geological conditions [1,2].
The content of metal elements in coal, especially in coal ash, could reach the grade of
these conventional metal deposits and, thus, coal or its combustion wastes might have
economic value for extraction and utilization [3]. The distribution characteristics, modes
of occurrence, and enrichment factors of critical metals in coal measures determine the
difficulty of exploration, mining, and metallurgy, which are important for the extraction of
critical metals from coal measures.

The Late Permian is the most important coal-forming period in southwest China [4].
The Late Permian coal measures (including coal, bauxite, and claystone) in eastern Yunnan,
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western Guizhou, and central Guangxi contain significant amounts of critical metals (e.g.,
Li, Nb, Ta, Zr, Hf, Ga, Al, U, and REY) [5–7]. A new type of Nb(Ta)-Zr(Hf)-REE-Ga
polymetallic deposit was discovered in the Late Permian coal-bearing sequences in the
lower part of Xuanwei Formation in eastern Yunnan [8]. These metal elements derived from
ELIP alkaline rocks and intermediate-felsic magmatic rocks of the Paleo-Tethys arc and
were enriched and precipitated in coal-bearing strata after acidic hydrothermal leaching
and water–rock interactions [7,9]. Zr, Nb, La, Y, and Ce are significantly enriched in the
Late Permian coal from the Qiandongbei coalfield, which derived from peralkaline rhyolite
and ELIP basalt. In addition, the distribution of metal elements is influenced by felsic
volcanic ash and acidic aqueous solutions [10]. The upper Permian Heshan Formation in
Pingguo is strongly enriched in Li and Nb, and the average content of Li2O and Nb2O5
is 0.56 wt.% and 0.035 wt.%, respectively, exceeding the cut-off grades for independent Li
and Nb deposits (Li2O = 0.5 wt.% and Nb2O5 = 0.016–0.02 wt.%). Li and Nb occur mainly
in cookeite and anatase, respectively [11]. The heavy rare earth oxide (HREO) content
(HREO = 0.5 wt.%) in carbonaceous mudstone at the bottom of the Upper Permian Heshan
Formation in Shanglin approaches the cut-off grade for ion-adsorbed rare earth deposits
(HREO = 0.3–0.5 wt.%). The detrital material in this mudstone is mainly derived from felsic
magmatic rocks of the Paleo-Tethys arc, with a minor contribution from the Emeishan felsic
rocks [5].

Recent studies have focused on the critical metal content [12–14], occurrence modes [6,15,16],
and material source [10,17–19] in the Late Permian coal measures in southwest China.
However, the material source of critical metals remains controversial because of the different
rock types and research methods. The discovery of alkalic tonsteins in coal measure
indicates that critical metals are derived from the Emeishan alkaline volcanic ash [13,20].
Geochemical characteristics and the detrital zircon U-Pb age of bauxites at the bottom of coal
measures indicate that the origin of bauxite is related to the Emeishan flood basalt [11]. The
evidence based on Lu-Hf isotopes and trace elements of detrital zircon indicate that material
sources of the critical metals include ELIP basalt, ELIP intermediate-felsic magmatic rocks,
and Truong Son orogenic magmatic rocks [17,20,21]. Therefore, the comprehensive study
of critical metals in the different rock types of the coal measure at different temporal and
spatial scales is an effective approach to solve the above problems.

In this study, major elements, trace elements, detrital zircon U-Pb ages, and Lu-Hf
isotopes of Late Permian coal measures in southwest China are systematically collected, and
the enrichment factors, including the material source, occurrence modes, acidic solution,
and organic matter, are evaluated. Furthermore, a metallogenic model of critical metals in
the Late Permian coal measures is established.

2. Geological Setting

The South China Block is bounded to the southwest by the Truong Son orogenic belt,
to the southeast by the Yunkai massif, and to the north by the Emeishan large igneous
province (Figure 1). During the Permian, the South China Block and Indochina Block
drifted northward, and were subducted near the equator (paleolatitude: 0–10◦), forming
the Permian Island arc igneous rocks, which eventually coalesced into the Truong Son
orogenic belt at the end of the Triassic [22]. The Truong Son orogenic belt extends in a
NW–SE direction and is composed of Neoproterozoic to Carboniferous metasedimentary
rocks and Carboniferous to Triassic intermediate-felsic magmatic rocks [23,24]. The early
Late Permian (~260 Ma) intermediate-felsic magmatic rocks are mainly distributed in the
Dien Bien, Xam Nua, Phonsavin, and Vinh areas. The Truong Son orogenic belt is adjacent
to the north by the Song Ma suture zone, which is considered as the relic of a Paleotethyan
back-arc basin (BAB) or branch [25].
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The ELIP covers an area of ∼0.3 × 106 km2 extending across southwestern China and 
northern Vietnam (Figure 1), and mainly consists of mafic lava, volcaniclastic rocks, and 
ultramafic-felsic intrusions [32]. In the center of ELIP, Emeishan basalts directly cover the 
Maokou Formation limestone. The high-precision data confirm that the Emeishan lavas 
erupted over a period of at least 6 m.y. (263–257 Ma) [33]. Detrital material from the ELIP 

Figure 1. Simplified geological map of the Emeishan large igneous province and Truong Son orogenic
belt, showing distributions of Emeishan basalt, silicic rocks, and Truong Son igneous rocks, with a
summary of in situ zircon geochronology [23–31].

The ELIP covers an area of ∼0.3 × 106 km2 extending across southwestern China and
northern Vietnam (Figure 1), and mainly consists of mafic lava, volcaniclastic rocks, and
ultramafic-felsic intrusions [32]. In the center of ELIP, Emeishan basalts directly cover the
Maokou Formation limestone. The high-precision data confirm that the Emeishan lavas
erupted over a period of at least 6 m.y. (263–257 Ma) [33]. Detrital material from the ELIP
was deposited in nearby basins of different environments. The ELIP is structurally divided
into three zones (inner, intermediate, and outer) that broadly correspond to crustal thickness
estimates [32,33]. The inner zone of the ELIP volcanic rocks has not been completely eroded
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by runoff because of its considerable thickness (maximum of >5000 m). The intermediate
zone of the ELIP volcanic rocks was completely eroded in some areas, and the outer zone
of the ELIP volcanic rock was completely eroded [11].

In the Middle Permian, the study area was extensively covered by a restricted car-
bonate platform in the southwest of the South China Block, which is composed of the
Maokou Formation bioclastic limestone and siliceous limestone [34]. At the end of the
Middle Permian, the carbonate platform was exposed by rapid differential crustal uplift
during the Dongwu movement, resulting in denudation of the Middle Permian Maokou
Formation limestone and formation of paleokarst landforms [17,35,36]. With sea level
rise in the Late Permian, the coal-bearing sequence formed in terrestrial, transitional, and
marine environments, respectively, from northwest to southeast [35] (Figure 2). In the
intermediate zone of the ELIP, the Longtan and Wuchiaping Formations unconformably
overlie the Emeishan igneous rocks and the Maokou Formation limestone, respectively [7].
The Longtan Formation, a major Late Permian coal-bearing strata in western Guizhou, is
divided into upper and lower segments. The upper segment is mainly composed of fine
sandstone and siltstone, including 6–19 coal seams. The lower segment mainly consists
of siltstone and mudstone, with occasional coal seams, which are relatively rare and have
poor stability [4]. In the outer zone of the ELIP, the Heshan Formation unconformably
overlies the limestone of the Maokou Formation [11]. The Heshan Formation is divided
into upper and lower sections. The lower section of the Heshan Formation is mainly
composed of claystone, limestone with siliceous nodules, bioclastic limestone, and a coal
seam. The upper section mainly consists of limestone with siliceous nodules interbedded
with mudstones, coal seams, and sandstones [14].
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The Late Permian coal in southwestern China underwent strong coalification, which
resulted in anthracite predominating [37]. The coal seams commonly contain thinly bedded
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pyrite nodules, with thin beds of calcite in some coal seams [38]. The composition of
maceral is mainly vitrinite, with inertinite being the secondary component.

3. Sources of Data

The Late Permian coal measures (including bauxite, claystone, and coal) in the study
area showed anomalous enrichment of critical metals (e.g., Nb, Zr, and REY). Recent studies
have focused on the petrological, mineralogical, and geochemical features, U-Pb age, and
Lu-Hf isotopes of detrital zircon in the coal measures, and numerous data were obtained.
The data types, sampling locations, rock types, and data sources used in this study are
listed in Table 1. The actual major elements, trace elements, U-Pb age, and Lu-Hf isotopes
data used in this article are listed in Supplementary Tables S1 and S2.

Table 1. Summary of location, data type, and sample number of Late Permian coal measures in the
study area.

Location Lithology Stratigraphy Sample Number Data Type and References

Fusui coal, parting, bauxite Heshan 38 Major elements, trace elements [39,40]
Banai volcanoclastic rock Shaiwa 3 Major elements, trace elements, U-Pb [41]

Chongzuo bauxite Heshan 8 Major elements, U-Pb, Lu-Hf [20]
Pingguo clastic rock, bauxite Heshan 54 Major elements, U-Pb, Lu-Hf [11,17,20]

Sanhe bauxite Heshan 23 Major elements, trace elements [42]
Jinshajiang clastic rock Longtan 30 Major elements, trace elements [43]

Panxian mudstone, bauxite Longtan 11 Major elements, trace elements [44]
Sidazhai siltstone Shaiwa 12 Major elements, U-Pb, Lu-Hf [45]
Tongzi coal Wujiaping 14 Major elements, trace elements [16]
Heshan coal, floor, roof, claystone Heshan 50 Major elements, trace elements [46,47]
Jingxi bauxite Heshan 4 Major elements, U-Pb, Lu-Hf [20,21]
Jinqi coal, floor Longtan 10 Major elements, trace elements [10]

Yudai coal, floor, roof Longtan 10 Major elements, trace elements [10]
Leye Al-claystone, bauxite Heshan 6 Major elements, trace elements [21]

Liupanshui Al-claystone, coal, floor, roof Heshan 20 Major elements, trace elements [35,48]
Nayong coal, claystone Longtan 20 Major elements, trace elements [49]
Shanglin coal, claystone Heshan 41 Major elements, trace elements [5,14]
Qinyin claystone Xuanwei 14 Major elements, U-Pb, Lu-Hf [50]
Weixin Al-claystone Xuanwei 10 Major elements, trace elements [7]
Yiliang Al-claystone Xuanwei 17 Major elements, trace elements [7]
Yishan coal Heshan 23 Major elements, trace elements [19]
Xinde coal Xuanwei 18 Major elements, trace elements [51]
Zunyi Al-claystone Heshan 20 Major elements, trace elements [35]
Puan claystone Longtan 12 Major elements, U-Pb, Lu-Hf [52]

Qujing coal Xuanwei 14 REY, Zr, Nb [8]
Zhenxiong coal Xuanwei 43 REY, Zr, Nb [8]
Zhaotong coal Xuanwei 5 REY, Zr, Nb [8]

Debao bauxite Heshan 2 U-Pb, Lu-Hf [20,21]

4. Discussion
4.1. Enrichment Characters of Critical Metals

The ionic radii of Y3+ and Ho3+ are similar and have similar geochemical characteris-
tics [53]. Rare earth elements and yttrium are classified into light (LREY: La, Ce, Pr, Nd,
and Sm), medium (MREY: Eu, Gd, Tb, Dy, and Y), and heavy (HREY: Ho, Er, Tm, Yb, and
Lu) groups based on geochemical classification [54]. In order to assess the distribution
characters of Nb, Zr, and REY in bauxite and Al-claystone, the weighted averages of Nb,
Zr, and REY in sampling points in the mining are used to replace the contents of the whole
mining area. Based on the Kriging interpolation method, Surfer software was used to
draw the distribution maps of Nb, Zr, and REY in bauxite and Al-claystone. However, it
should be noted that the model is based on only nine points of observation; hence, the
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trends should only be considered as indicative. The average contents of Zr, Nb, and REY in
bauxite and Al-claystone used in Figure 3 are listed in Supplementary Table S3.
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In the study area, numerous reports have indicated the presence of Nb-Zr-REY poly-
metallic mineralization in the bauxite and Al-claystone at the bottom of the Upper Per-
mian [6,9]. Zr contents in bauxite and Al-claystone range from 278.30 to 2790.92 µg/g,
with lower contents in the northwest and higher contents in the southeast (Figure 3a).
Bauxites in the Pingguo region have the highest Zr content, peaking at 1981.29 µg/g on
average [11,17,20]. The contents of Nb in bauxite and Al-claystone range from 7.40 to
279.00 µg/g, and the distribution character of Nb is similar to that of Zr (Figure 3b). Nb
(Ta) is abnormally enriched in bauxite and Al-claystone in the Chongzuo, Fusui, Sanhe,
Jingxi, Leye, Pingguo, and Zunyi areas, with (Nb,Ta)2O5 average contents of 0.020 wt.%,
0.015 wt.%, 0.017 wt.%, 0.028 wt.%, 0.023 wt.%, 0.029 wt.%, and 0.015wt.%, respectively,
which is higher than the industrial utilization standard of Specifications for Nb (Ta) Mineral
Exploration ((Nb,Ta)2O5 > 0.008 wt.%, DZ/T 0203-2020) [55]. REY contents in bauxite and
Al-claystone range from 22.18 to 4491.46 µg/g, and the distribution character is different to
that of Zr and Nb, with higher contents in the northwest and lower contents in the southeast
(Figure 3c). LREY is abnormally enriched in bauxite and Al-claystone in Fusui, Tianyang,
Jingxi, Leye, and Zunyi, with the average LERY oxide (LERO) contents of 0.057 wt.%,
0.200 wt.%, 0.066 wt.%, 0.053 wt.%, and 0.052 wt.%, respectively, which is higher than
the industrial utilization standard of Specifications for Rare Earth Mineral Exploration
(LREO > 0.05 wt.%, DZ/T 0204-2002) [56]. The weathering intensity of parent rocks could
be an important reason for the different distribution characteristics of Zr, Nb, and REY in
bauxite and Al-claystone [57,58]. With the intensification of weathering, where the parent
rock gradually transforms into bauxite, mobile elements, such as K, Na, Ca, Mg, and part
of Si, are migrated, while immobile elements, such as Al, Ti, and Fe, are accumulated in
situ [58,59]. Therefore, the (Al2O3+Fe2O3)/SiO2 ratio could represent, to some degree, the
intensity of weathering during bauxite formation. The contents of Nb and Zr in bauxite
and Al-claystone are significantly positively correlated with the (Al2O3+Fe2O3)/SiO2 ratios
(Figure 4a,b), whereas the contents of REY in bauxite and Al-claystone are negatively
correlated with the (Al2O3+Fe2O3)/SiO2 ratios (Figure 4c), indicating that Zr and Nb pref-
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erentially accumulate in the weathering crust, with increasing weathering during bauxite
formation, whereas REY is more likely to be removed from parent rocks.
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The contents of Zr, Nb, and REY in the Late Permian coal gradually increase from
the intermediate zone to the outside zone of ELIP. The average contents of Zr, Nb, and
REY in the Late Permian coal in the intermediate zone of ELIP are 99.46 µg/g, 9.92 µg/g,
and 203.61 µg/g, respectively. In contrast, the average contents of Zr, Nb, and REY in
the Late Permian coal from the outside zone of ELIP are 210.64 µg/g, 15.91 µg/g, and
305.54 µg/g, respectively. The migration and deposition of Zr, Nb, and REY is influenced
by the material source and the mode of occurrence, which could be the main reason for the
different distribution of these elements [60]. Nb(Ta) and LREY are abnormally enriched
in Jingqi and Yudai coals. The average (Nb,Ta)2O5 content in Jingqi and Yudai coals is
0.013 wt.% and 0.013 wt.%, respectively, which is higher than the industrial utilization
standard of Specifications for Nb (Ta) Mineral Exploration ((Nb,Ta)2O5 > 0.008 wt.%, DZ/T
0203-2020) [55]. The average LREO contents in Jingqi and Yudai coal are 0.053 wt.%
and 0.054 wt.%, respectively, which are higher than the industrial utilization standard of
Specifications for Rare Earth Mineral Exploration (LREO > 0.05 wt.%, DZ/T 0204-2002) [56].

4.2. Enrichment Factors
4.2.1. Material Sources

The possible provenance sources for the mineral matter of the Late Permian coal mea-
sures in the study area include: Emeishan volcanic rocks [4,12,16], arc-related intermediate-
felsic rocks [17,36], Maokou Formation limestone [61,62], and mixed sources of Emeishan
volcanic rocks and arc-related rocks [7,20,21,35]. The REY concentration in the Maokou
Formation limestone is significantly low (about 2 ppm on average) [63], and the thickness
of bauxite over the Maokou Formation ranges from 4 to 10 m, with an average REY content
of about 280 ppm.

The ratio of Al2O3/TiO2 is widely used to infer the origin of sedimentary rocks, be-
cause Al2O3 and TiO2 are relatively immobile during weathering, transport, sedimentation,
diagenesis, and epigenesist [64]. Typical ratios of Al2O3/TiO2 range from 3 to 8, 8 to 21,
and 21 to 70, corresponding to the parental rocks being of mafic, intermediate, and felsic
composition, respectively [17,65]. Since the distribution of REY is hardly influenced by
epigenetic and diagenetic processes, this is considered a crucial approach for tracing the
provenance of sedimentary rocks [66]. Intermediate-felsic magmatic rocks usually show
negative Eu anomalies, whereas basic magmatic rocks show positive or no Eu anoma-
lies [53]. In the studied area, there are significant differences in Al2O3/TiO2 ratios and δEu
in the Late Permian coal measures. From the intermediate zone to the outside zone of ELIP,
the minimum ratios of Al2O3/TiO2 gradually increase (Figure 5a), while the maximum
δEu tends to decrease (Figure 5b). The Al2O3/TiO2 ratios of bauxite and Al-claystone in
the bottom of Upper Permian in the intermediate zone of the ELIP range from 2.67 to 14.45
(with an average value of 5.75). The patterns of REE are similar to those of ELIP mafic
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rocks (Figure 6a), showing significant LREY enrichment and no or a weak negative Eu
anomaly (δEu = 0.83–0.96), suggesting that material sources may be weathering products
of Emeishan mafic rocks [4,12]. The ratios of Al2O3/TiO2 of coal measures in the middle
and upper parts of the Upper Permian in the intermediate zone of ELIP are 3.19–116.00
(with average value of 22.55), and the REE patterns exhibit obvious LREY enrichment, with
significant negative Eu anomalies (δEu = 0.17–0.70), similar to the intermediate-felsic rocks
in the ELIP and the Truong Son orogenic belt (Figure 6b). The ratios of Al2O3/TiO2 and
REE patterns suggest that the detrital material might be derived from intermediate-felsic
volcanic rocks [11]. In the outer zone of ELIP, the ratios of Al2O3/TiO2 in coal measures
vary widely (Al2O3/TiO2 = 4.53–73.00), and the REY patterns are complex (Figure 6c). The
δEu of coal measures in Banai, Zunyi, Sidazhai, and Jinshajiang are 0.79, 0.75, 0.84, and 0.74,
respectively, showing no or weak negative Eu anomalies, and the δEu of coal measures in
Yudai and Leye are 0.32 and 0.63, respectively, showing significant negative Eu anomalies,
suggesting that the detrital material is derived mainly from ELIP mafic rocks, with a minor
contribution from intermediate-felsic rocks. The Al2O3/TiO2 ratios of coal measures in
the outside zone of ELIP range from 3.13 to 135.93 (with an average value of 27.18), and
the REE patterns are similar to the intermediate-felsic rocks in the ELIP and the Truong
Son orogenic belt (Figure 6d), with obvious LREY enrichment and significant negative Eu
anomalies (δEu = 0.35–0.53), indicating that the detrital material is probably derived from
intermediate-felsic volcanic rocks [17].
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In addition, high-precision U-Pb dating and Lu-Hf in situ isotopic analysis of detri-
tal zircon grains are important methods for determining the provenance of sedimentary
rocks [7,52]. Zircon U-Pb dating shows that the age of the Late Permian coal measures
(263–257 Ma) is consistent with that of ELIP intermediate-felsic volcanic rocks (267–255 Ma)
and Truong Son intermediate-felsic island arc rocks (263–256 Ma; Figure 1). The εHf(t)
values of zircon (with U-Pb ages of 251–269 Ma) from the Late Permian in Qingyin,
Puan, Sidazhai, Jingxi, Pingguo, and Chongzuo are –1.85–11.50, –14.60–14.40, –14.27–5.50,
–7.69–11.17, –10.23–17.88, –26.70–12.60, and –6.88–17.87, respectively. The εHf(t) values
of zircon in ELIP intermediate-felsic rocks exhibit positive values, whereas the εHf(t)
values of zircon in Truong Son medium-acid island arc magmatic rocks show negative
values [17]. From the intermediate zone to the outside zone of ELIP, the εHf(t) peak values
gradually change from positive values to negative values (Figure 7). According to the
Hf/Th-Th/Nb discrimination diagram of detrital zircons (Figure 8), the detrital zircons
in the intermediate zone of the ELIP mostly fall into the within-plate/anorogenic region,
whereas those in the outside of ELIP mostly fall into the arc-related/orogenic region, with
those in the outer zone of ELIP falling into the region between arc-related/orogenic and
within-plate/anorogenic. The zircon U-Pb ages and Lu-Hf isotope data indicate that the
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intermediate-felsic components of the coal measures in the intermediate zone, outer zone,
and outside zone of ELIP are derived mainly from intermediate-felsic volcanic rocks from
the ELIP, the mixture from ELIP and the Truong Son orogenic belt, and the Truong Son
orogenic belts, respectively [4,21].
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4.2.2. Modes of Occurrence

It is generally accepted that zircon, the major host mineral of Zr and Hf, is one of the
most stable heavy minerals in the process of supergenesis [36]. There is a strong positive
correlation between Zr and Hf (R2 = 0.95, Figure 9a) in the Late Permian coal measures.
The ratios of Zr/Hf ranged from 19.43 to 77.55, with an average ratio of 39.65, which is
close to the theoretical Zr/Hf ratio of zircon (~40) [67], providing further evidence that
zircon is the main carrier mineral of Zr (Hf). It is generally believed that Nb and Ta in coal
measures occur by absorption in the clay minerals, by constituent admixture in zircon, and
by isomorphic replacement of Ti in Ti-bearing minerals (e.g., rutile and anatase) [3,8,68].
Nb content is positively correlated with Zr content in the Late Permian coal measures
(R2 = 0.87, Figure 9b), probably suggesting that zircon is also the main carrier mineral of
Nb. Nb-bearing rutile and anatase were detected by SEM-EDS in the Late Permian coal
measures from Shanglin [5], Yiliang [7], Xuanwei [18], and Tongzi [16], indicating that
rutile and anatase are also carriers of Nb (Ta) in certain coal measures.
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REY commonly occurs in coal measures in the following three forms: (1) as REY pri-
mary or REY-bearing minerals, including detrital minerals and authigenic minerals [3,69],
(2) as organic association [70,71], and (3) as ion absorbed on the clay minerals [72]. REY
correlates negatively with Al2O3 in the Late Permian bauxite and Al-claystone (Figure 9c),
showing that most of the REY migrated during the bauxite formation process. REY corre-
lates weakly positively with Al2O3 and ash yields in the Late Permian coal (Figure 9d,e),
indicating that clay minerals are important carrier minerals of REY in the Late Permian
coal. Although there is no obvious correlation between REY and P2O5 in the Late Per-
mian coal measures (Figure 9f), REY-bearing phosphate minerals, including monazite,
florencite, and rhabdophane, have been found in Yiliang, Liupanshui, Yudai, and Xinde
coalfields [7,10,18,49,51], which indicates that a small amount of REY occurs in REY-bearing
phosphate minerals.

In bauxite and Al-claystone, the detrital material from Emeishan basalt gradually
decreased, and the clastic material from intermediate-felsic volcanic rocks from Truong Son
orogenic belt gradually increased from the intermediate zone to the outside zone of ELIP.
The contents of main carrier minerals of Nb and Zr (e.g., zircon and rutile) in intermediate-
felsic volcanic rock are higher than those in Emeishan basalt. With the weathering, zircon
and rutile preferentially accumulate in situ, whereas part of REY tended to transport away
from the parent rocks. In conclusion, the material source, modes of occurrence, weathering,
and transportation together lead to the increase in Zr and Nb content and the decrease in
REY content from the northwest to southeast (Figure 3).

4.2.3. Acidic Aqueous Solution and Organic Matter

Mineral dissolution, element migration, and redistribution are induced by acidic
aqueous solutions, affecting the enrichment and mineralization of REY, Zr, Nb, and other
critical metal elements. Kaolinite is very stable under acidic conditions (pH = 3.0–6.0). In
addition, other aluminosilicates (e.g., feldspar, illite, and smectite) are more susceptible
to leaching by acid solution and are eventually converted to kaolinite [73]. Kaolinite is
the most abundant clay mineral (more than 50%) in the Late Permian coals in Tongzi [16],
Shanglin [14], Panxian [74], Fusui [39], Xinde [75], Yudai, and Jinqi [10], indicating that
the critical metals in the Late Permian coal measures were probably affected by acidic
aqueous solutions during coalification. Ti minerals (e.g., anatase and rutile) can corrode and
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mobilize under highly acidic conditions (pH < 3), although they are very resistant [76,77].
The phenomenon of anatase corrosion was found in Yudai and Jinqi coals, indicating the
activity of strongly acidic solutions. Emeishan eruptions released ∼1×1017 g bulk sulfur
into the higher atmosphere. The S gasses would be emitted in the form of both H2S and SO2,
and converted into sulfate aerosols, leading to cooling of the surface climate and formation
of acid rain [46], which is confirmed by tuff and tuffaceous clayrock widely exposed in
eastern Yunnan and western Guangxi, as the roof and floor of coal measures [7,41,44].
The dominance of the inertinite content over vitrinite in Yudai and Jinqi coals indicates
relatively oxidized peat-forming conditions, which facilitates the abundant generation of
humic acid [10,77]. Volcanism-related acidic rain and the oxidation of local peatlands may
have jointly caused the highly acidic conditions [10].

High-field-strength elements (e.g., REY, Zr, Hf, Nb, and Ta) are generally considered
immobile elements in aqueous solutions at low temperatures but can be mobilized by
strongly acidic solutions [78]. The twin pairs Zr-Hf and Nb-Ta were modified by acidic
aqueous solutions, with Zr and Nb having a higher mobility capacity than Hf and Ta [79].
The ratios of Nb/Ta and Zr/Hf in the parting and roof were generally lower than those
in the underlying coal seams (Figure 10a,b), indicating that Nb, Ta, Hf, and Zr were
released from the parting and roof and leached into the underlying coal seams under acidic
conditions. These elements were deposited as authigenic minerals or adsorbed ions on
organic matter with water–rock interactions [3,10,80].
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The adsorption experiments show that REE can combine with -COOH and -OH
to form a stable compound after replacing the Na+, K+, Ca2+, and Mg2+ ions in coal
through cation exchange under acidic conditions [81]. Meanwhile, compared to LREY,
HREY are more likely to combine with organic compounds and form more stable organic
compounds [71]. The ratios of REY/Ta in the parting and roof were generally lower
than those in underlying coal seams (Figure 11a). However, the LREY/HREY ratios in the
parting and roof were generally higher than those in the underlying coal seams (Figure 11b),
indicating that REY, especially HREY, tended to combine with organic matter in acidic
solution during coalification.
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4.3. Metallogenic Model

According to paleomagnetic and paleoclimatic reconstruction, the South China Block
straddles the equator, and the study area was probably located near the equator [82]. In
addition, previous studies have shown that the South China Block underwent significant
clockwise rotation during the Middle–Late Paleozoic and the ELIP was located to the west
of the study area during the Late Permian [83]. The southern margin of the South China
Block was a passive continental margin that merged with the Paleo-Tethys oceanic crust,
which in turn subducted beneath the Indochina block, formed the Permian Island arc,
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and finally coalesced into the Truong Son orogenic belt at the end of the Triassic [20,22]
(Figure 12).
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In the Late Permian, Emeishan basaltic magma erupted over a relatively short time
span, generating massive mantle-derived flood basalts [32]. At the same time, the Paleo-
Tethys oceanic crust subducted to the Indosinian Block, resulting in the eruption of a large
amount of intermediate-felsic volcanic ash that was dispersed by easterly trade winds and
deposited on the Maokou Formation limestone in the east of the study area (Figure 13a).
The study area was situated close to the equator, characterized by a warm and humid
climate, which resulted in intense chemical weathering of the Emeishan flood basalts and
intermediate-felsic volcaniclastic rocks. This process led to the loss of Si, the accumulation of
Al in situ (Figure 13b), and the formation of bauxite and Al-claystone over the limestone [35].
With the formation of bauxite, Nb, Ta, and Zr in basalt and intermediate-felsic volcanic
ash remained in the form of heavy minerals in situ (e.g., rutile, zircon, and anatase), which
led to enrichment of Nb, Ta, and Zr in bauxite and Al-claystone. Because a large amount
of REY was lost with flow transportation in the form of dissolved, suspended, or detrital
material, REY is relatively enriched only in Al-claystone, with a weak weathering degree.

In the late stage of the Emeishan volcanism, the warm, humid climate in the study area
was conducive to plant growth, resulting in the accumulation of peat and the formation
of peatlands (Figure 13c). The intermediate-felsic volcanic ash of ELIP and the Truong
Son orogenic belt was ejected into the atmosphere, and then fell into peatlands, providing
Nb, Ta, Zr, and REY for the Upper Permian coal-bearing strata (Figure 13d), which was
evidenced by the existence of tuffaceous claystone, tuff, tonsteins, and K-bentonites in
the coal measures in eastern Yunnan and western Guizhou [84]. The intermediate-felsic
volcanic ash from ELIP deposited mainly in the intermediate–outer zone of ELIP, while the
Truong Son orogenic belt deposited mainly on the area outside of ELIP, and the deposition
decreased with the increase in the distance from the eruption center. At the same time,
volatiles (e.g., SO2 and H2S) were absorbed by rain, resulting in acid rain and strongly acidic
conditions. Nb, Ta, Zr, and REY in the claystone and volcanic ash interlayer were leached by
acidic aqueous solution and migrated into the underlying peat layers (Figure 13e), leading
to enrichment and ore formation in coal.
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Figure 13. (a) The formation of Emeishan basalt and the deposition of intermediate-felsic volcanic
ash on Maokou Formation limestone. (b) The transportation of Si and REY during the formation of
bauxite and Al-claystone. (c) The accumulation of peat and the formation of coal and clastic rock.
(d) The intermediate-felsic volcanic ash of ELIP and the Truong Son orogenic belt fell into peatlands.
(e) The leaching of Nb, Zr, and REY in acidic solution.

5. Conclusions

The Late Permian coal measures in Yunnan, Guizhou, and Guangxi were abnormally
enriched in Nb (Ta), Zr, and REY, and the contents of these elements exceeded the cut-
off grade with high economic value in some areas. The bauxite and Al-claystone in the
bottom of the Upper Permian in the intermediate zone of ELIP were mainly derived from
Emeishan mafic magmatic rocks, while the detrital mineral matter within coal measures in
the middle and upper parts of the Upper Permian in the intermediate zone, outer zone, and
outside zone of ELIP were derived from intermediate-felsic volcanic rocks from the ELIP,
the mixture from ELIP and the Truong Son orogenic belt, and the Truong Son orogenic
belts, respectively. Nb (Ta) and Zr were enriched in bauxite and Al-claystone in the form of
heavy minerals (e.g., rutile, zircon, and anatase) during the weathering of Emeishan flood
basalt. Acidic solutions, including acid rain and humic acid, led to the leaching of Nb (Ta),
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Zr (Hf), and REY from the parting and roof to underlying coal seams during coalification,
which generated enrichment and ore formation in coal in the form of organic compounds.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/min14020206/s1, Table S1: Major and trace elements data of the coal
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area; Table S3: The average content of Zr, Nb and REY in bauxite and Al-claystone.
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