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Abstract: It has been accepted that granitoids of the Irizar unit in the Central Victoria Land (Antarc-
tica), as an important part of the Granite Harbour Intrusives, were formed in a post-collisional setting
during the Ross orogeny along the margin of east Gondwana. However, the emplacement ages of
the Irizar unit remain poorly constrained, making it difficult to form a more complete picture of
the geodynamic evolution of the Ross orogen and its counterpart (Delamerian orogen) in southeast
Australia. In this work, four syenogranite samples from the Irizar unit were chosen for SHRIMP
zircon U-Pb dating, which yielded ages of 507.8–489.7 Ma. The new geochronological data indicate
that the post-collisional extension in the Central Victoria Land had begun by ~508 Ma, much earlier
than previously thought (i.e., 490–480 Ma). Integrated with U-Pb ages for Early Paleozoic granitoids
from the literature, the Ross–Delamerian orogen shows that the post-collisional granitic magma-
tism initiated at ~515 Ma in the Central Transantarctic Mountains and northward systematically
decreased to ~508 Ma in the Victoria Land, and then to ~487 Ma in southeast Australia. This can be
explained well by the propagating northward transition from pre- and syn-collisional compression to
post-collisional extension.

Keywords: SHRIMP zircon U-Pb age; tectonic setting of the Irizar granite; Central Victoria Land;
Antarctica; Ross–Delamerian orogen

1. Introduction

During the Latest Neoproterozoic to Early Paleozoic time, the paleo-Pacific margin
of the Gondwana supercontinent turned from passive margin sedimentation to conver-
gent margin activity [1,2]. This convergent orogeny resulted in the formation of a large
accretionary orogen, in response to the subduction of the paleo-Pacific oceanic lithosphere
beneath the margin of east Gondwana and subsequent arc–continent collision [3–6]. This
orogen is known regionally as Ross in Antarctica and as Delamerian in southeastern Aus-
tralia [3,7–11] (Figure 1A). Due to the geographic remoteness and generous cover of ice
and snow, the tectonic evolution along the Ross orogen remains enigmatic, compared to
orogens in other continents.
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Figure 1. (A) Pre-Gondwana-breakup configuration of Antarctica and Australia, showing Paleozoic 

Ross–Delamerian orogen [11]. (B) Sketch geological map of Victoria Land (Antarctica), showing the 

distribution of the Granite Harbour Intrusives (modified from [12]). Satellite image of the Victoria Land 

is obtained from the Landsat Image Mosaic of Antarctica (LIMA) Project accessed on 11 July 2023 

(http://lima.usgs.gov). 

Figure 1. (A) Pre-Gondwana-breakup configuration of Antarctica and Australia, showing Paleozoic
Ross–Delamerian orogen [11]. (B) Sketch geological map of Victoria Land (Antarctica), showing
the distribution of the Granite Harbour Intrusives (modified from [12]). Satellite image of the
Victoria Land is obtained from the Landsat Image Mosaic of Antarctica (LIMA) Project accessed on
11 July 2023 (http://lima.usgs.gov).

http://lima.usgs.gov


Minerals 2024, 14, 301 3 of 16

One of the hallmarks of the Ross orogen is the widespread emplacement of granitoids,
which, together with minor mafic-ultramafic rocks, are collectively referred to as the
Granite Harbour Intrusives (GHI) [12,13] (Figure 1B). Previous studies have shown that
they were formed through all stages of the Ross orogenic development from pre- and
syn- to post-kinematic settings [14–18]. Available geochronological data for the GHI
magmatism, as well as the metamorphism, deformation, and sedimentation in this orogen,
have indicated an overall northward younging trend of the initiation of subduction from
the Central Transantarctic Mountains at ~580–540 Ma toward Victoria Land at ~550–530 Ma
and to southeastern Australia at ~515 Ma, which supports oblique convergence along
the Gondwana margin [9,14,18–22]. By contrast, Foden et al. [9] and Rocchi et al. [11,23]
proposed that the post-collisional extension occurred synchronously on both the Ross and
Delamerian sides at ~490–480 Ma, according to a comparison of radiometric ages for the
bimodal, post-collisional igneous rocks on both sides. However, many of these ages are less
reliable whole-rock Rb-Sr and mica/amphibole Ar-Ar isochrons [24–26]. Available U/Pb
upper intercept ages of ~490–488 Ma for the post-collisional Irizar granites in the Central
Victoria Land [11] should also be treated with caution. This is because the interpretation
of the zircon ages has not been verified by cathodoluminescence (CL) studies and zircons
from granitoids in the Victoria Land usually display complex internal textures [14,18,27,28].
Consequently, questions remain concerning the timing of the transition pre- and syn-
collisional compression to post-collisional extension, especially in the Central Victoria Land
section, making it difficult to form a more complete picture of the geodynamic evolution
along the Ross (–Delamerian) orogen.

In this contribution, we report new zircon U-Pb ages for the undeformed Irizar granite
in the Central Victoria Land (Antarctica), which displays geochemical features typical
of post-collisional granitoids [11]. The new data allow us not only to provide better
age controls on the emplacement of the Irizar granites, but also to elucidate the tectono–
magmatic evolution of the Ross–Delamerian orogen.

2. Geological Setting

The 3500 km long Transantarctic Mountains, a major tectonic domain in Antarctica, run
across entire Antarctica from the Northern Victoria Land to the Pensacola Mountains and
separate cratonic East Antarctica from tectonically active West Antarctica [29] (Figure 1A).
Bordering the northeast side of the Transantarctic Mountains is the late Neoproterozoic to
Cambrian Ross orogen, [7,12,30] (Figure 1A), which belongs to the greater Terra Australis
orogen developed along the entire eastern margin of the Gondwana supercontinent from
Neoproterozoic to late Paleozoic [3].

The Victoria Land occupies a critical position at the former juncture between southeast
Australia and the Transantarctic Mountains [3,8,30–32] (Figure 1). It is composed of three
fault-bounded litho-tectonic units: the Wilson, Bowers, and Robertson Bay terranes, from
west to east [33,34] (Figure 1B). The Wilson terrane is interpreted as an active continental
margin of the East Antarctic craton during the Ross period [23,35]. It mainly comprises
metasedimentary, like schists, gneisses, migmatites and minor marbles of the Wilson group
in the northern section and the Skelton group in the southern section [12,36,37]. The pro-
tolith of these metamorphic rocks represents the Neoproterozoic rift-margin deposits with
a combined cratonic and early Ross Orogen provenance [38–41]. They were deformed into
overturned folds and thrusts in the latest Precambrian to early Paleozoic. After the Ross
orogeny, they were unconformably overlain by Late Paleozoic and Early Mesozoic sedi-
mentary and volcanic successions of the Beacon supergroup and Ferrar group (Figure 1B).
Both the Bowers and Robertson Bay terranes comprise weakly-metamorphosed turbiditic
greywacke, sandstone, argillite, shale, and locally minor conglomerate [42,43]. Detrital
white micas and zircons yielded depositional ages of ~550–480 Ma and a predominant
sediment provenance from the emerging Ross orogen [39,40]. They are interpreted as a
Late Cambrian or Ordovician turbiditic sequence deposited in an accretionary setting [40].
These rocks were characteristically deformed into upright folds. It is noteworthy that
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the two terranes were separated by faults, but their relationships remain poorly con-
strained. At the boundary between the Wilson and Bowers terranes, a discontinuous
metavolcanic belt occurs of amphibolite- to eclogite-facies mafic-ultramafic rocks with
ages of ~530–500 Ma [6,44] (Figure 1B). They have arc tholeiitic, calc-alkaline and alkaline
geochemical affinities, and are traditionally interpreted as part of an intra-oceanic island
arc [6,34,45,46]. McMurdo volcanics and glacial deposits are common in the eastern mar-
gins of the Wilson, Bowers, and Robertson Bay terranes, and define the Cenozoic phase of
the geological evolution in the Victora Land.

Granitic rocks are widespread in the Victoria Land and can be divided into two major
groups: the GHI confined to the Wilson terrane and the Admiralty Intrusives in the Bow-
ers and Robertson Bay terranes [31]. The former comprises a variety of lithologies from
hornblende-biotite tonalite and granodiorite to granite, leucogranite, and syenite. They
show meta-luminous I-type to peraluminous S-type and high-K calc-alkaline to shoshonitic
affinities [17,18,31,47–49]. Zircon U-Pb dating shows that they were emplaced over a long
period from ~580 Ma to 470 Ma, with the main magmatic pulse between ~530 Ma and
480 Ma [11,12,18,27,28,50–54]. Petrographic, mineralogical and geochemical data have
demonstrated that they originated from melting of heterogeneous crustal sources with
varying mixtures of mantle-derived components [14–18]. In contrast, the Admiralty Intru-
sives refers to a granitic suite, mainly of granodiorite, tonalite, diorite, monzogranite, and
related aplitic dikes and pegmatite with calc-alkaline to calcic and I-type affinities [12,31,47].
At present, there are no published zircon U-Pb age constraints on the Admiralty Intrusives,
and less reliable K-Ar and Rb-Sr whole rock-mineral isochron ages indicated that they were
emplaced at ~390–280 Ma [55,56]. The age and the chemical composition of Admiralty’s
plutonic rocks are different from those of the GHI.

The Central Victoria Land, bounded by the Reeves and Fry Glaciers, is located within
the Wilson terrane [57] (Figures 1B and 2). Based on field relationships, and the petro-
logical, mineralogical and geochemical compositions, the GHI rocks in this area can be
subdivided into three main units: the Larsen granodiorite, Irizar granite, and Vegetation
lamprophyre [11,58,59] (Figure 2). The Larsen granodiorite is distributed along the entire
coast of the Central Victoria Land (Figure 2) and extends southwards to the South Victoria
Land [58]. This unit has a wide compositional range spanning from quartz diorite and
tonalite, through granodiorite, to adamellite and monzonitic granite. The strong deforma-
tion evidenced by the development of augen gneiss, with a strong foliation, suggests the
pre- to syn-tectonic nature of the Larsen granodiorite [58]. To date, reliable radiometric
dates are still lacking for the Larsen granodiorite. The Irizar granite occurs as stock-like
syenogranite bodies throughout the Central Victoria Land (Figure 2). It intruded into the
Larsen granodiorite with steep and sharp contacts and chilled margins [58]. The Irizar
granite is characteristically undeformed and much more homogeneous in composition,
compared to the Larsen unit. The Vegetation lamprophyre crops out dominantly in the
northern section (Figure 2), as NE–NNE-trending subvertical dike swarms, with widths of
an individual dike ranging from a few centimeters to over 30 m. Skinner and Ricker [58]
noted that the Vegetation lamprophyre dikes crosscut both the Larsen and Irizar units
(Figure 2), but zircon U-Pb, whole-rock Rb-Sr, and biotite/amphibole Ar-Ar dating yielded
indistinguishable ages of ~490 Ma for the two units [11,26,60]. Based on the similar geo-
chemical features and Sr-Nd isotope compositions, Rocchi et al. [11] proposed that the two
units were genetically related, with the Irizar granite resulting from high-degree partial
melting of underplated, mantle-derived materials similar in composition to the Vegetation
lamprophyre.
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Figure 2. Sketch map of the Central Victoria Land, showing the distribution of Larsen granodiorite
and Irizar granite (modified from [57]). Abbreviations: GHI, Granite Harbour Intrusives; Mt., Mount.

3. Petrology of the Irizar Granite

The Irizar unit consists of pinkish, medium- to coarse-grained syenogranite, and
mainly comprises K-feldspar (43–50 vol.%), plagioclase (20–25 vol.%), quartz (20–25 vol.%),
biotite (2–5 vol.%) and, locally, amphibole (1–3 vol.%), with accessory zircon, allanite, and
Fe-Ti oxides (Figure 3). K-feldspar is mainly subhedral to anhedral orthoclase and perthite,
forming large crystals with diameters of up to 7 mm (Figure 3A,D,E). It is often intergrown
with quartz and plagioclase (Figure 3A,D), and occasionally includes fine-grained euhedral
to subhedral plagioclase (Figure 3E). Plagioclase crystals with diameters of up to 5 mm
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are euhedral to subhedral with obvious polysynthetic twinning (Figure 3A,D). Locally,
sericitized cores can be observed in plagioclase (Figure 3B). Quartz is mostly present as
subhedral to anhedral grains (Figure 3). Biotite is mainly present as subhedral fine-grained
flakes, occurring interstitially between K-feldspar, plagioclase, and quartz (Figure 3B,D).
Locally, biotite is altered to chlorite. Amphibole is also observed in some samples, and it
occurs as subhedral crystals with diameters up to 2 mm and diagnostic cleavages at ~120◦

(Figure 3F). Locally, amphibole encloses fine-grained biotite flakes. The accessory allanite
and Fe-Ti oxides are typically intergrown with or enclosed by the mafic minerals. Previous
whole-rock elemental compositions of the Irizar granite [11] are plotted in the granite and
syenogranite fields in the TAS (SiO2 vs. Na2O + K2O; [61]; Figure 4A) and Q–A–P ([62];
Figure 4B) diagrams, respectively, consistent with the petrographic observation. The biotite
and amphibole compositions also indicate an alkaline affinity for the Irizar granite [11].
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Figure 3. Representative microphotographs of the Irizar granite. (A) Syenogranite of the Irizar
unit at Cape Irizar; (B,C) syenogranite of the Irizar unit at D’Urville; (D) the Irizar granite consists
of coarse-grained quartz, plagioclase, and K-feldspar (cross-polarized light); (E) allanite occurs
locally in the Irizar granite (cross-polarized light); (F,G) the Irizar granite consists of coarse-grained
quartz, plagioclase, K-feldspar, and biotite (cross-polarized light); (H) plagioclase is enclosed by
K-feldspar (cross-polarized light); (I) amphibole occurs locally in the Irizar granite (cross-polarized
light). Abbreviations: Amp, Amphibole; Qtz, quartz; Pl, plagioclase; Kfs, K-feldspar; Bt, biotite;
Ttn, titanite; Aln, allanite.
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Figure 4. (A) SiO2–Na2O + K2O [61], (B) Q–A–P modal classification [62]. Elemental composition
for the Irizar granite is collected from [11]. Compositions of the Irizar syenogranite are shown as
orange squares.

4. Analytical Methods

Four syenogranite samples of the Irizar granite from the Central Victoria Land (sam-
ples 35LC107-2 and 35LC107-3 from the Cape Irizar, sample 35LC110-2 from the Cape
Philippi, and sample 35LC111-1 from the D’Urville Wall; Figure 2), were selected for
SHRIMP zircon U-Pb dating. Zircons in the samples were separated using conventional
density and magnetic separation techniques, and then handpicked under a binocular mi-
croscope. The zircon grains were mounted in epoxy for polishing. Cathodoluminescence
(CL) images were acquired at the Beijing SHRIMP Center, Chinese Academy of Geological
Sciences, Beijing, China, to examine their internal structure prior to the U-Pb dating. Zircon
U-Pb dating was carried out using SHRIMP II at the Beijing SHRIMP Center (Beijing,
China). The SHRIMP II analytical procedure was similar to that described by Williams [63].
A primary 25 µm O2− ion beam of 3–6 nA was used to bombard the surfaces of the zircons.
Prior to each analysis, the surface common Pb was reduced or eliminated by rastering of
the primary beam for 120–200 s, with five scans for each analysis. Standard zircons for
elemental abundance calibration included 91,500 (U = 91 ppm), SL13 (U = 238 ppm), and
M257 (U = 840 ppm) [63–65]. TEMORA with a 206Pb/238U age of 417 Ma was used for
calibration [66] and was analyzed after every three sample analyses. Data processing was
carried out with the Squid and Isoplot programs [67]. Common Pb corrections were based
on the measured 204Pb contents. Uncertainties for individual analyses are quoted at 1σ,
and errors for weighted mean ages are quoted at the 95% confidence level.

5. Results

The analytical results of the zircon U-Pb dating are listed in Supplementary Table S1.
The analyzed zircon grains are typically colorless to light yellow and transparent.

Apart from the influence of comminution, the zircon grains occur as subhedral to euhedral
prismatic crystals, with lengths varying from 30 to 180 µm and length/width ratio in the
range of 1:1 to 3:1 (Figure 5). As shown in the representative CL images (Figure 5), most
of the zircons have concentric oscillatory zoning, indicating a magmatic origin [68]. Some
zircon grains show chaotic textures and poorly-developed oscillatory zoning, and they often
contain dark zones or bands (Figure 5A—35LC107-2@13 and C-35LC110-2@17), indicative
of high U concentrations and consequent metamictization by radioactive damage [69]. A
few zircons have inherited cores, which are generally smaller than the spot size (<25 µm) of
the SHRIMP zircon U-Pb dating technique (Figure 5C—35LC110-2@12). Zircons analyzed
from the four samples have Th/U ratios ranging from 0.09 to 1.27 with average values
0.48–0.59 (Table S1), consistent with a magmatic origin for these zircons [68].
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(D) sample 35LC111-1. The yellow circles indicate zircon in situ U-Pb isotope analyses. Apparent
ages are also shown.

Eighteen zircon spots were analyzed for sample 35LC107-2. Most analyses are slightly
discordant, with 207Pb/206Pb apparent ages ranging from ~527 Ma to 355 Ma (Table S1).
Among them, the 15 least discordant spots fall on or near the concordia curve and have
206Pb/238U apparent ages varying from ~485 Ma to 506 Ma (Table S1), yielding a weighted
mean age of 498.3 ± 3.2 Ma (MSWD = 0.8; Figure 6A). In addition, one data point from zircon
with a CL-dark band has high U concentration of 1275 ppm and yields an older 206Pb/238U
apparent age of ~527 Ma (Figure 5C—35LC107-2@13; Table S1). This is probably related to the
high-U matrix effect in zircon [70]. Another two data points from structure-damaged zircon
have much younger 206Pb/238U apparent ages of ~462–355 Ma (Figure 5C—35LC107-2@18;
Table S1), probably due to the metamictization of zircons. The three abnormal data points are,
thus, not used in the age calculations.

Sixteen zircon spots were analyzed for sample 35LC107-3. Among them, 11 spots with
206Pb/238U apparent ages of ~479–497 Ma fall on or near the concordia curve, yielding
a concordia age of 488.9 ± 1.9 Ma (MSWD = 22) and a consistent weighted mean age of
489.7 ± 3.3 Ma (MSWD = 1.1; Figure 6B). Another four data points from zircon with chaotic
textures have much younger 206Pb/238U apparent ages of ~426–235 Ma (Table S1), which
are excluded in the age calculations due to apparent Pb-loss.

Seventeen zircon spots were analyzed for sample 35LC110-2. The 15 least discordant
data points fall on or near the concordia curve, and the 206Pb/238U apparent ages vary from
~487 Ma to 520 Ma (Table S1), yielding a weighted mean age of ~508 ± 5 Ma (MSWD = 1.7;
Figure 6C). Two data points from zircon with chaotic textures have younger 206Pb/238U
apparent ages of ~437–379 Ma (Table S1), which are not included in the age calculations.

Fifteen zircon spots were analyzed for sample 35LC111-1. Their 206Pb/238U apparent
ages vary from ~484 Ma to 507 Ma (Table S1), and fall on or near the concordia curve,
yielding a concordia age of 496.5 ± 1.7 Ma (MSWD = 22) and a consistent weighted mean
age of 498.0 ± 4.2 Ma (MSWD = 1.6; Figure 6D).
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6. Discussion
6.1. Timing of the Post-Collisional Magmatism

Until now, geochronological data for the Irizar granite have been limited, although
numerous individualized granite plutons, as an important part of the GHI, have been
outlined in this area. Di Vincenzo et al. [26] dated biotite and amphibole within the Irizar
granite from the Cape Irizar area using Ar-Ar spectrometry and reported cooling ages
of ~485–481 Ma. Later, Rocchi et al. [11] reported a whole-rock Rb-Sr isochron age of
486.1 ± 8.4 Ma and two zircon U-Pb upper intercept ages of 489.9 ± 4.4 Ma and 488.1 ±
8.7 Ma for the Irizar granite from the same area. It is noteworthy that the zircon U-Pb
upper intercept age was defined by only three analyses of separated zircon grains [11].
Considering the low closure temperatures and susceptibilities to later hydrothermal dis-
turbances of K-Ar and Rb-Sr radiometric systems [71–73], the coincidence of the Ar-Ar
and Rb-Sr ages with the zircon U-Pb upper intercept age may indicate that these ages are
minimum estimates for the granitic magmatism in the Central Victoria Land. In this study,
we obtained two zircon U-Pb ages of ~498–490 Ma for the Irizar granite from the Cape Irizar
area (Figure 6A,B), which are broadly in agreement with the previous results. However,
the other two samples of the Irizar granite from the Cape Philippi and D’Urville Wall areas
provide U-Pb ages of ~508–498 Ma (Figure 6C,D), much older than the emplacement ages
for samples from Cape Irizar. Thus, we infer that the Irizar granitic magmatism initiated as
early as ~508 Ma and lasted over ~20 Ma to 488 Ma.

The tectonic evolution of orogenic belts is recorded by changes in the associated
magmatic composition [74]. The transition from calc-alkaline to alkaline magmatism is
indicative of a geodynamic switch from compressive to extensional regimes [75–78]. In
the Victoria Land, the Larsen granodiorite, which extends south of the Fry glacier, has
calc-alkaline affinities, similar to the ~505 Ma Bonney pluton (a portion of the GHI in



Minerals 2024, 14, 301 10 of 16

southern Victoria Land) comprising foliated diorite, monzodiorite, and granodiorite [49,79].
Although the Larsen granodiorite in the Central Victoria Land remains poorly studied,
it probably has similar geochemical features. By contrast, the undeformed Irizar granite
in the Central Victoria Land is dominated by potassic syenogranite with alkaline affin-
ity and its genesis has been ascribed to remelting of a juvenile crust in a post-collisional
setting [11,23]. Such a transition in magmatic composition and the different deformation
features should be associated with the geodynamic change, from pre- to syn-collisional
compression to post-collisional extension. Besides, granitoid-mafic dike associations are
common in extensional tectonic regimes linked to post-collisional events [80–84]. The
emplacement of the Irizar granite in the Central Victoria Land is accompanied by coeval
and genetically related Vegetation lamprophyre dikes with alkaline affinity [11] (Figure 2).
The Vegetation lamprophyre magma originated from the melting of previously enriched
subcontinental lithospheric mantle, probably linked to asthenospheric upwelling during
the post-collisional slab rollback and convective thinning and/or delamination of over-
thickened lithosphere [11]. Thus, the Irizar granite is representative of post-collisional
intrusive rocks in the Central Victoria Land [11], and the new geochronological data in
this study confirm that the post-collisional extension had begun by ~508 Ma in the Central
Victoria Land.

6.2. Implications for the Tectonic Evolution of the Ross–Delamerian Orogen

The Ross (and Delamerian) orogen is characterized by large volumes of Late Neopro-
terozoic to Early Paleozoic granitoid rocks, which have been widely accepted as important
indicators of subduction and subsequent arc-continental collision along the eastern margin
of Gondwana supercontinent [9,12,16,18,20,31,79]. Although the GHI rocks are collectively
described as a suite of granitoids, in fact they vary marked in composition and emplace-
ment ages [13,18,31]. Regional geochemical and isotopic variations in the GHI, as a result
of increasing involvement of old continental crustal materials in the magma source from
east to west, have indicated a continental-margin setting above the west-directed sub-
duction zone [18,47,48]. Geochemistry of the igneous rocks and magmatic–stratigraphic
relationships in the Delamerian orogen are also consistent with the westward subduction
model [9,84,85], although some have suggested that the Delamerian orogen involved the
development of an east-dipping subduction zone during Early Paleozoic [86,87]. Despite
the increasing number of geochronological studies on the Ross granitoids during the
last decade, the temporal–spatial distributions of magmatism along the Ross–Delamerian
orogen and their tectonic implications remain poorly known.

To improve our understanding of the tectonic evolution of the Ross–Delamerian oro-
gen, we compiled and synthesized as much U-Pb geochronological data as available from
the literature [9,11,13,16,18–20,22,27,28,32,41,52–54,60,76,79,88–98] (Table S2), which are
graphically shown in Figure 7. The geochronological data for the pre- to syn-tectonic
calc-alkaline granitoids are systemically younger northward from ~590–520 Ma in the
Central Transantarctic Mountains, through ~565–505 Ma in the Southern Victoria Land,
and ~535–500 Ma in the Northern Victoria Land to ~520–490 Ma in the Southeast Aus-
tralia (Figure 7). This is broadly consistent with the conclusions by Foden et al. [9] (2006)
and Rocchi et al. [11,23] that the subduction propagated northward from ~540 Ma at the
Ross orogen to ~514 Ma at its Southeast Australia counterpart. However, a much earlier
initiation of the subduction-related magmatism in the Central Transantarctic Mountains
than previously recognized is implied by the recent zircon U-Pb ages of ~590 Ma for
the foliated muscovite-biotite granite clasts [18]. This is also in good agreement with
previous speculation based on compositions and U-Pb ages for detrital zircons from the
major Neoproterozoic and lower Paleozoic siliciclastic rocks in the Central Transantarctic
Mountains [38].



Minerals 2024, 14, 301 11 of 16Minerals 2024, 14, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 7. Summary of U-Pb isotopic age data for the Paleozoic granitoids in the Ross and Delame-

rian orogens. Sources of age data are listed in Table S2. Abbreviations: CTM, Central Transantarc-

tic Mountains; CVL, Central Victoria Land; NVL, Northern Victoria Land; SE Australia, Southeast-

ern Australia; SVL, Southern Victoria Land. 

As mentioned previously, a synchronous transition to post-collisional extension at 

~490–480 Ma in both the Ross (slab rollback) and Delamerian (slab tear) orogens was pro-

posed by Foden et al. [9] and Rocchi et al. [11,23]. At the time, however, there were too few 

well-constrained ages for the post-collisional granitoids in Antarctica to establish the gen-

eral time–space relations of the Ross magmatism. It also seems unlikely that the post-col-

lisional extension occurred simultaneously along the >5000 km strike length of the Ross–

Delamerian orogen. Numerical modeling and seismic tomography models have demon-

strated that the slab break-off propagates laterally from one edge of the slab to the other 

[99,100], as is evidenced by the westward propagating slab tear in the Late Triassic Qinling 

Orogenic Belt, central China [101]. This model approximates the situation in the Ross–

Delamerian Orogen. As is shown in Figure 7, the ages of the undeformed, post-collisional 

granitoids become systemically younger northward from ~515–484 Ma in the Central 

Transantarctic Mountains, through 508–468 Ma in the Victoria Land, to ~487–470 Ma in 

the Southeast Australia. This indicates the possible propagating northward transition 

from pre- and syn-collisional compression to post-collisional extension. 

  

Figure 7. Summary of U-Pb isotopic age data for the Paleozoic granitoids in the Ross and Delamerian
orogens. Sources of age data are listed in Table S2. Abbreviations: CTM, Central Transantarctic
Mountains; CVL, Central Victoria Land; NVL, Northern Victoria Land; SE Australia, Southeastern
Australia; SVL, Southern Victoria Land.

As mentioned previously, a synchronous transition to post-collisional extension at
~490–480 Ma in both the Ross (slab rollback) and Delamerian (slab tear) orogens was
proposed by Foden et al. [9] and Rocchi et al. [11,23]. At the time, however, there were
too few well-constrained ages for the post-collisional granitoids in Antarctica to establish
the general time–space relations of the Ross magmatism. It also seems unlikely that the
post-collisional extension occurred simultaneously along the >5000 km strike length of
the Ross–Delamerian orogen. Numerical modeling and seismic tomography models have
demonstrated that the slab break-off propagates laterally from one edge of the slab to the
other [99,100], as is evidenced by the westward propagating slab tear in the Late Triassic
Qinling Orogenic Belt, central China [101]. This model approximates the situation in the
Ross–Delamerian Orogen. As is shown in Figure 7, the ages of the undeformed, post-
collisional granitoids become systemically younger northward from ~515–484 Ma in the
Central Transantarctic Mountains, through 508–468 Ma in the Victoria Land, to ~487–470 Ma
in the Southeast Australia. This indicates the possible propagating northward transition
from pre- and syn-collisional compression to post-collisional extension.
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7. Conclusions

1. The undeformed Irizar syenogranite, representative of the post-collisional intru-
sive rocks in the Central Victoria Land, was emplaced between 507.8 ± 4.8 Ma and
489.7 ± 3.7 Ma.

2. The northward younger trend in emplacement ages of post-collisional granitoids in the
Ross–Delamerian orogen is consistent with the northward transition and propagation,
from pre- and syn-collisional compression to post-collisional extension.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min14030301/s1, Table S1: Analytical results of SHRIMP zircon
U-Pb dating for the Irizar syenogranite in the Central Victoria Land, Antarctica; Table S2: Summary
of U-Pb isotopic age data for the Paleozoic granitoids in the Ross and Delamerian orogens.
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