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Abstract: Many methods have been developed to detect and predict the fracture properties of
fractured rocks. The standard data sources for fracture evaluations are image logs and core samples.
However, many wells do not have these data, especially for old wells. Furthermore, operating both
methods can be costly, and, sometimes, the data gathered are of bad quality. Therefore, previous
research attempted to evaluate fractures indirectly using the widely available conventional well-logs.
Sedimentary rocks are widespread and have been studied in the literature. However, fractured
reservoirs, like igneous and metamorphic rock bodies, may also be vital since they provide fluid
migration pathways and can store some hydrocarbons. Hence, two fractured metamorphic rock
bodies are studied in this study to evaluate any difference in fracture responses on well-log properties.
Also, a quick and reliable prediction method is studied to predict fracture density (FD) in the case
of the unavailability of image logs and core samples. Gene expression programming (GEP) was
chosen for this study to predict FD, and ten conventional well-log data were used as input variables.
The model produced by GEP was good, with R2 values at least above 0.84 for all studied wells,
and the model was then applied to wells without image logs. Both selected metamorphic rocks
showed similar results in which the significant parameters to predict FD were the spectral gamma
ray, resistivity, and porosity logs. This study also proposed a validation method to ensure that the
FD value predictions were consistent using discriminant function analysis. In conclusion, the GEP
method is reliable and could be used for FD predictions for basement metamorphic rocks.

Keywords: fracture density; gene expression programming; well-log; metamorphic rock; basement
rock; Pannonian Basin; fractured reservoir

1. Introduction

Understanding fractured reservoir properties is crucial since they provide valuable
information, especially when developing a reservoir model [1]. Fractures provide fluid flow
in the reservoir and store a significant amount of fluid, be it water or hydrocarbon [2–4].
Interpreting fractured reservoir properties can be achieved using two approaches, which
are direct and indirect methods [5]. Direct methods include evaluating and interpreting
core samples (including analysing the outcrop samples and computed tomography scan of
core samples) and image logs (electrical and acoustic) [6–11]. According to [12], these two
approaches are probably the most essential to evaluate fractures since they have a higher
resolution and a small margin of error, especially for depth conversion, when compared to
the seismic method, but some studies also discussed the limitations of both methods [13–16].
Core samples are not always available, are expensive, and the retrieving process sometimes
fails. Even if the coring process is successful, it often does not target the desired depth
in which fractures are expected [4,6,13]. Another source of direct fracture information is
image logs, which have been widely used in industry and studied in the literature [14,15].
Although image logs can efficiently point out the target depths for core retrieval [6], they
are costly, and very few companies would opt for this option for every single well [16].
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The indirect method of evaluating fractures comes from conventional well-logs:
gamma ray or spectral gamma ray, porosity, and resistivity logs [17]. Many researchers
utilise the widely available conventional well-logs since most wells have conventional
well-log data, especially older wells. It has been agreed that the gamma ray log itself cannot
indicate fractures effectively. However, spectral gamma ray information and potassium,
uranium, and thorium logs help identify the presence of the initial fracture [18,19]. This is
especially true in the case of uranium log readings. Fluid activity is more active in a fracture
zone and will subsequently result in uranium mineral precipitation along the fractures
due to the uranium characteristics of being readily soluble in both water and hydrocar-
bon [18,20]. Although high levels of uranium could also be caused by different factors
and is not necessarily due to fractures, it is a good indirect indicator for initial fracture
assessment [20]. This enrichment of uranium in the formation results in the abnormally
high reading for uranium content in the well-logs [21]. Porosity logs could be beneficial
when interpreting the fracture zones indirectly. Density logs are known for their ability to
read the formation’s bulk density. When there are fractures, the density log readings will
be lower. Hence, the well-logs will show a spike with low-density log readings. Besides the
presence of hydrocarbon and coal seams, the existence of vugs and cavities will also give
similar low readings in density logs [18].

Neutron logs are helpful when combined with density logs to show evidence of
fracture in the well-logs, although it is not a primary use of these logs. Neutron logs are
used to provide the apparent porosity values of the formation. When density and neutron
logs are combined, a sharp decrease in the density log and a sharp increase in the neutron
log can be interpreted as fracture existence [22]. Therefore, density and neutron logs should
be used together to interpret the fracture even though there are several uncertainties and
assumptions that have to be considered [19]. The sonic or acoustic log is another porosity
log that helps to indicate a fracture. The sonic tool emits sound waves to the formation,
and the tool records the travel time from the transmitter to the formation and back to
the receiver on the tool. Depending on the fractures’ fillings and types, the fractures will
eventually reduce the density of the formation; hence, a fractured zone reduces the sound
wave transmission speed. This will result in sharp spikes in the interval transit time, and
cycle skipping might occur on the log [16,17,23]. Therefore, whenever cycle skipping is
shown in the well-logs, this might indicate fracture zones.

Conventional well-logs provide an extensive overview of the physical properties
of the rock [24,25]; hence, many attempts have been made to optimise the functions of
conventional well-logs by applying different kinds of methods by incorporating machine
learning and statistical methods to understand the fracture behaviour of the reservoir and
to provide an automated prediction tool. For instance, ref. [26] implemented multiple linear
regression to predict fracture density (FD) on a claystone formation. Another example
is wavelet transform, which is one of the methods that have been studied extensively
in the literature. One of the earliest attempts was probably made by [27], who studied
the suitability of the wavelet transform method on porosity logs to construct the spatial
distributions of fractures and faults. Ref. [28] applied the wavelet transform method on
fractured igneous rocks for fracture and FD determination, utilising conventional logs as
input data. In [29], a combined Parzen–wavelet method was applied on gamma ray and
three porosity logs to detect vuggy porosity in fractured carbonate rocks. Refs. [30,31] used
similar wavelet transform approaches to detect fractures. However, their studies utilised
conventional logs and water saturation data to improve the prediction results. Most of the
papers, however, studied fractures in sedimentary rocks such as carbonate rocks [32], and
one of the few studies that used the wavelet transform method on metamorphic rock was
caried out by [1], which proved the suitability of this method for different types of rocks.

Recent developments in fracture studies include predicting fracture properties such as
FD, fracture porosity, fracture aperture, fracture orientation, etc. Ref. [33] used a resistivity
dual laterolog as the main input for fracture prediction using a combination of a genetic
algorithm (GA) and a back-propagation neural network. A multi-layer perceptron machine
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learning method was used by [34] to predict the fracture properties of carbonate reservoirs
with a combination of conventional well-log data, and their prediction model reached up
to 82% accuracy. Ref. [17] studied five methods extensively combining hybrid machine-
learning-optimizer models to conventional well-logs, and the best method to predict FD
was the novel dual-layered, distance-weighted, K-nearest neighbour algorithm combined
with a firefly optimiser. Their findings also show that six of nine well-log inputs significantly
predicted FD: corrected gamma ray, neutron porosity, compressional sonic transition time,
interpreted sonic porosity, bulk formation density, and photoelectric absorption factor.

Although some machine learning methods can yield good results and give precise
predictions, some methods can be time-consuming and require high-performance comput-
ing, making some methods not readily available [4]. Many opt for more straightforward
methods, such as gene expression programming (GEP), one of the widely used soft com-
puting methods [35,36]. GEP has gained more attention now as a prediction tool in many
civil engineering applications [37]. As an alternative to traditional regression modelling,
GEP combines both GA and genetic programming (GP) in which GEP takes advantage
of the simplicity of GA-GP and removes their limitations, such as nonlinear configura-
tion in GP, which makes it quite challenging to generate widespread and easy empirical
equations [35,38]. In a genotype/phenotype system, GEP uses populations of individuals,
and then evaluates them according to the fitness criteria and processes them using one
or more genetic operators [39,40]. GEP can produce direct and much simpler equations
that can be used to tackle some complex problems. It is also a more preferred method
than other GP algorithms because it has a fixed chromosome structure that makes GEPs
more robust [36]. GEP has been successfully implemented to predict the mode I fracture
toughness of rock [35], moment redistribution capacity in reinforced concrete beams [37],
and compressive strength in geopolymer concrete [38], to name a few. However, GEP
applications in reservoir studies, especially in FD evaluation, are still in their infancy.

This study aimed to predict the fracture density of metamorphic rocks using gene
expression programming where image logs and core samples are unavailable but conven-
tional well-logs are available. To use the GEP method, wells with image logs were used as
training and testing datasets. Conventional well-logs, which included gamma ray (GR),
potassium (K), thorium (TH), uranium (U), deep resistivity (RD), shallow resistivity (RS),
flushed zone resistivity (RXO), bulk density (D), neutron porosity (N), and sonic porosity (S)
data, were used to predict the FD. Since every fracture characteristic in different reservoirs
acts differently and no two fractured rocks are similar, two different metamorphic rocks,
sillimanite- and garnet-bearing biotite paragneiss (SG) and orthogneiss (OG), were evalu-
ated to investigate any differences between these two rocks in terms of fracture responses
in well-logs.

2. Geological Setting

The Pannonian Basin of Hungary has undergone several geological events that resulted
in a very complex mosaic of basement blocks [41–43]. This pre-Neogene assemblage is
composed mainly of Variscan metamorphic rocks of diverse metamorphic and structural
evolutions [44]. Based on the evidence of previous studies [41,42,45,46], several sections of
the basement act as a buried hill fractured fluid reservoir, which not only acts as a conduit,
but also stores a significant amount of hydrocarbon. The studied area is Mezősas field,
where numerous wells have penetrated the fractured crystalline basement and produced
hydrocarbon [47,48].

During the Cretaceous, complex nappe systems were formed throughout the metamor-
phic realm due to Eoalpine compressional tectonic evolution [41,49]. The basin formation
during the Neogene resulted in the subsidence of deep sub-basins and the exhumation of
crystalline highs among them. Due to such subsequent tectonic activities, blocks of signifi-
cantly different metamorphic evolutions were juxtaposed and built up the basement highs.
These blocks are usually separated by structural features such as normal and overthrust
faults [44,45]. Due to the ongoing subsidence, these highs became buried 1–5 km beneath
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the present surface. These buried hills have been the leading interest for decades since they
are highly fractured and active for hydrocarbon exploration and production [46,47,50].

The Mezősas high and the surrounding basement high (Szeghalom, Furta, etc.) areas
have been studied extensively regarding petrology, structural evolution, and fracture
tendencies [43–46,51]. Three major rock bodies build the basement [52,53]. Orthogneiss
(OG block) dominates the lowermost zone, followed by garnet- and sillimanite-bearing
paragneiss (SG block). Finally, amphibolite and amphibole biotite gneiss (AG block) occur
on the topmost section. Figure 1 shows the simplified geological map of the study area
with the location of several wells that penetrated the basement.

The topmost AG block is the reservoir’s most highly fractured rock body and is respon-
sible for the most significant hydrocarbon accumulation and storage [46,54]. Figure 2a,b
show the cross-sections of the area along the lines marked in Figure 1. The figures also
show the position of the most essential, large-scale structures that define block boundaries
inside the basement. Previous studies proved that these structures are responsible for the
fluid migration inside the reservoir [44,47]. The existence of these structures explains the
accumulation of hydrocarbon in the fractured AG body.

Figure 1. Topographic map of the studied area with interpreted lithology and fault lines from [53].
The number shown on the map is the well number and its location; the isolines indicate the depth
below the present surface in metres. Abbreviations: AG—amphibolite, AG2—amphibole–biotite
gneiss (not shown in this figure, but lies underneath the AG; more details are shown in Figure 2),
SG—sillimanite- and garnet-bearing biotite gneiss, and OG—orthogneiss.
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Figure 2. The cross-section of the studied area is based on the lines shown in the topographic map in
Figure 1. The figures show the basement rock sequence with interpreted fault lines responsible for
fluid migration [53]. (a) The cross-section from A to B; (b) The cross-section from A to C.

Petrography of the Rock Bodies

Both rock bodies compared in this study consist of quartz–feldspar gneisses. The
lowermost structural unit shows unequivocal characteristics of orthogneisses, like relic
polygonal quartz–feldspar microtextures (Figure 3a), myrmecitic feldspar grains (Figure 3b),
and idiomorphic accessories (Figure 3c). As the most frequent rock-forming phases are
quartz and feldspar, and the amount of micas is low, the rock has a gneissic structure.
The most special petrographic feature of the rock type is that it usually contains garnet,
clinopyroxene, and amphibole xenocrysts (Figure 3d). Occasionally, xenoliths of a relatively
broad spectrum of rock types also occur. So far, diverse amphibolite varieties, eclogite,
felsic granulite, and forsterite marble have been described and evaluated petrologically
(Figure 3e,f). Refs. [52,54] found that the xenoliths preserve significantly different metamor-
phic evolutions, but all were recrystallised afterwards under the physical conditions where
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the orthogneiss formed. Based on the current interpretations [54], the original granitoid
protolith of the orthogneiss realm intruded an accretionary prism, where it could pick up
the xenoliths. Such evolution led to the development of the unique and, at large scale,
heterogeneous internal structure of the OG body.

Figure 3. Typical microphotos of the Mezősas orthogneiss. (a) Polygonal microtexture of feldspar
grains (XPL); (b) myrmekitic and perthitic K-feldspar porphyroclast (XPL); (c) idiomorphic zircon
crystal (XPL); (d) garnet and clinopyroxene xenocrysts in the quartz–feldspar matrix (PPL); (e) am-
phibolite xenoliths (the length of the core is ~20 cm); (f) typical texture of a felsic granulite xenolith.

In contrast, the overlying block is interpreted as paragneiss. It lacks all of the above
textural and structural features; the accessories are xenomorphic in shape, but these samples
contain significantly more mica than the typical orthogneiss. As a consequence, this
rock type is more foliated. Moreover, it exhibits a polymetamorphic texture with early
metamorphic garnet1 + kyanite followed by late garnet2 + sillimanite (Figure 4a,b). As the
most characteristic distinctive feature of the paragneiss samples is the common presence of
sillimanite bundles, this block is called sillimanite gneiss (SG) in summary.

Previously, refs. [44,50] found that the two bodies are systematically separated by
a brittle tectonic zone dominated by cataclasite and fault breccia. Later, ref. [53] proved
that the two gneiss varieties can be clearly distinguished using geophysical well-log data,
suggesting that the above-written mineralogical and structural differences also cause
reliable differences in the physical conditions of the two gneiss varieties. From a reservoir
geological point of view, the critical question is whether or not the two gneiss varieties,
which are slightly different in mineralogy and structure, are also different in terms of
fracture density.
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Figure 4. Typical microphotos of the Mezősas garnet-bearing sillimanite paragneiss. (a) Early kyanite
and late sillimanite (XPL); (b) the major foliation is defined by biotite and sillimanite (PPL).

3. Samples and Methods

This study selected two different metamorphic lithologies that made up the basement
reservoir of the Mezősas field, namely, SG and OG. Conventional well-logs are available
for analysis: GR, K, TH, U, RD, RS, RXO, D, N, and S. In addition, image logs are also
available for some wells. For SG, three wells with image logs were available and used as
training datasets: Wells 7, 10, and 13. In the case of OG, Wells 7, 13, and 27 were used
as training datasets. The descriptive statistics of all wells are shown in Tables 1 and 2
for SG and OG, respectively. The data show each of the well-log parameters’ minimum,
maximum, mean, and standard deviation values of each training well, including the data
of all wells combined.

The analysis started with image log processing. The type of image log used in this
study is the Circumferential Borehole Image Log (CBIL). As mentioned, the available raw
data from image logs for certain wells were interpreted, and fracture zones were determined.
CBIL scans the borehole in a rotational manner and, as a result, the cylinder images are
produced as raw data. These raw data are then displayed in rectangular form using image
processing software. The images are presented in static and dynamic normalized form
in which the latter normally shows the enhanced contrast for recognizing the fractures
more easily [55]. These static and dynamic images are shown after corrections such as
speed correction, eccentering correction, normalization, and image filtering have been
conducted [56–58]. The image logs recorded the sonic travel time and amplitude [59].
The dark sinusoidal wave displayed on the image logs normally indicate fractures with
low acoustic amplitudes [60]. Each fracture was handpicked, and the fracture type was
determined. The fractures were classified into open, closed, partially open, and induced
fractures. On the dynamic normalized image log, the open fractures are shown by both the
amplitude and travel-time images while closed fractures are indicated by the amplitude
image [61]. Once the fractures had been identified, the FD was calculated. In general, FD is
the number of fractures per unit length, and in this study, the number of fractures per metre
was used. Therefore, the unit is m−1. By definition, fracture density can also be defined as
cumulative fracture trace length per unit area (sometimes referred to as areal intensity) or
cumulative fracture area per unit volume [12].

The well-log data were then integrated with the FD data calculated earlier. The quality
of the well-log data was checked thoroughly so that bad data such as missing points were
assessed, and extreme outliers were removed. Since the FD data were calculated per metre
length, the well-log data were also calculated per metre length. The descriptive statistics
shown in Tables 1 and 2 are based on these resampled data. After that, the data from all
three training wells for SG and three wells for the OG rock column were divided into two
sets: the training set and the testing set. The workflow of this study is shown in Figure 5.
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Table 1. Descriptive statistics of Wells 7, 10, and 13, including the combination n of all three wells.

Well
(Unit)

GR
(API)

K
(%)

Th
(ppm)

U
(ppm)

RD
(ohm·m)

RS
(ohm·m)

RXO
(ohm·m)

D
(g/cc)

N
(v/v)

S
(us/f)

7 (n = 92) Min 60.97 2.19 3.08 1.98 0.06 0.06 0.07 2.49 4.17 57.83
(2746 m Max 122.12 4.16 10.69 4.20 0.14 0.18 0.42 2.69 15.41 65.88

– Mean 78.47 2.80 5.49 2.70 0.10 0.12 0.20 2.63 10.55 61.33
2896.5 m) SD 14.50 0.41 1.79 0.64 0.02 0.03 0.09 0.05 2.40 1.94

10 (n = 114) Min 83.90 1.85 5.79 2.33 0.10 0.08 0.10 2.59 10.00 60.31
(2641 m Max 176.61 3.46 15.24 5.33 0.18 0.23 0.21 2.81 19.00 68.03

– Mean 115.09 2.74 9.53 3.52 0.14 0.16 0.16 2.68 14.09 63.34
2813 m) SD 19.93 0.45 1.99 0.76 0.02 0.04 0.03 0.06 2.47 2.15

13 (n = 96) Min 63.29 1.29 2.23 4.29 0.12 0.18 0.12 2.63 3.49 58.60
(2690 m Max 153.39 3.95 11.38 5.59 0.30 0.44 0.33 2.89 15.48 74.44

- Mean 104.78 2.52 5.98 4.97 0.20 0.31 0.21 2.73 10.65 66.09
2769.8 m) SD 29.42 1.01 2.60 0.34 0.06 0.08 0.07 0.08 3.70 5.27

All wells (7,
10, 13)

Min 60.97 1.29 2.23 1.98 0.06 0.06 0.07 2.49 3.49 57.83
Max 176.61 4.16 15.24 5.59 0.30 0.44 0.42 2.89 19.00 74.44

Mean 97.81 2.68 7.14 3.45 0.14 0.17 0.18 2.67 12.00 62.86
SD 28.00 0.58 2.98 1.06 0.05 0.08 0.07 0.07 3.29 3.62

Abbreviations: gamma ray (GR), potassium (K), thorium (TH), uranium (U), deep resistivity (RD), flushed zone
resistivity (RXO), bulk density (D), neutron porosity (N), sonic porosity (S), and photoelectric effect (PE). Min:
minimum value; Max: maximum value; SD: standard deviation.

Table 2. Descriptive statistics of Wells 7, 13, and 27, including the combination n of all three wells.

Well
(Unit)

GR
(API)

K
(%)

Th
(ppm)

U
(ppm)

RD
(ohm·m)

RS
(ohm·m)

RXO
(ohm·m)

D
(g/cc)

N
(v/v)

S
(us/f)

7 (n = 78) Min 45.56 2.02 2.29 1.06 0.04 0.05 0.07 2.57 6.79 54.00
(2896.5 m Max 63.22 2.75 3.47 1.90 0.13 0.16 0.55 2.67 13.45 60.35

– Mean 55.30 2.40 3.10 1.48 0.10 0.12 0.26 2.63 10.29 57.55
3080 m) SD 4.84 0.23 0.34 0.17 0.03 0.03 0.13 0.03 1.53 1.83

13 (n = 122) Min 89.42 2.05 2.48 4.65 0.03 0.07 0.03 2.63 1.71 53.36
(2769.8 m Max 175.25 3.95 16.64 6.30 0.14 0.34 0.18 2.86 9.97 65.14

– Mean 116.66 2.73 6.77 5.38 0.07 0.14 0.08 2.72 4.59 57.20
2955 m) SD 17.74 0.43 3.18 0.46 0.03 0.06 0.04 0.06 2.62 2.77

27 (n = 46) Min 75.01 2.35 4.22 1.26 0.03 0.04 0.04 2.64 7.25 56.47
(2885 m Max 85.66 3.13 6.18 4.27 0.08 0.10 0.12 2.69 10.85 59.59

- Mean 80.07 2.77 5.16 2.13 0.06 0.07 0.08 2.66 8.44 57.96
2945 m) SD 3.62 0.23 0.70 0.95 0.01 0.02 0.03 0.02 1.16 0.86

All wells
(7, 13, 27)

Min 45.56 2.02 2.29 1.06 0.03 0.04 0.03 2.57 1.71 53.36
Max 156.13 3.51 14.44 6.30 0.14 0.34 0.55 2.86 13.45 65.14

Mean 88.23 2.57 4.99 3.55 0.08 0.12 0.14 2.68 7.10 57.29
SD 29.07 0.33 2.15 1.96 0.03 0.05 0.13 0.06 3.36 2.38

Abbreviations: gamma ray (GR), potassium (K), thorium (TH), uranium (U), deep resistivity (RD), flushed zone
resistivity (RXO), bulk density (D), neutron porosity (N), sonic porosity (S), and photoelectric effect (PE). Min:
minimum value; Max: maximum value; SD: standard deviation.

The training set consisted of 70% of the data (taken from the upper section of the well),
and the testing set consisted of 30% (taken from the lower section). The illustration of this
concept is also shown in Figure 5. The training set from all SG rock column wells was
combined and was run for the GEP modelling using GeneXpro Tools 5.0. The same process
was applied to the OG rock column dataset as well.
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Figure 5. The workflow used in this study.

Before running the GEP simulation, a correlation study was conducted between input
variables (well-log parameters) and output variables (FD values) to see whether or not any
well-log parameters highly correlate to FD. The correlation results are shown in Figure 6
for all wells used for SG training data and Figure 7 for all wells used for OG training data.
Individual well correlation studies were also conducted, but generally, the results for each
correlation study were the same throughout all wells. Hence, in this paper, we combined
all data from all wells to show that none of the well-log parameters were highly correlated
to FD. Therefore, all of these well-log parameters were selected for input parameters for
GEP. As GEP is a robust method, it means that the prediction or input variables for GEP
are not required to be normally distributed. GEP works by identifying the best functions
by generating and iterating chromosomes when necessary.

GEP is an advanced machine learning method that mimics human genetics [62]. As
the genes in the human chromosome contain heads and tails, so does the chromosome
structure in GEP. The chromosome structure is produced vigorously, as shown in Figure 8.
The process starts with the creation of the initial population’s chromosome, and these
chromosomes are expressed in the expression tree (ET) [63,64]. The mathematical equation
can be written from the ET [65,66]. Each chromosome is executed, and the fitness is
evaluated. If the best solutions are met, then the process will be stopped. However, if it is
not, the chromosome will be reiterated by numerous processes such as mutation, replication,
transposition, and recombination to create new ETs [39,67]. The same evaluation process is
repeated until the best solutions or predefined fitness are achieved [68–70].
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Figure 6. Correlation results of each well-log parameter with fracture density for sillimanite- and
garnet-bearing biotite gneiss training data.



Minerals 2024, 14, 366 11 of 30

Figure 7. Correlation results of each well-log parameter with fracture density for orthogneiss
training data.
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Figure 8. The general gene expression programming workflow (modified from [39]).

Figure 9a shows an example of chromosome structure in ET. Chromosomes can be
made up of one or more genes. The gene contains a head and a tail, as shown in Figure 9b.
The head in GEP can contain both function and terminal, while the tail contains only the
terminal [39,71]. For example, in Figure 9, a mathematical expression is written as the√
(x1 + c) + ln(x2 − x3); the expression is written based on the ET and Karva language

developed by [39].

Figure 9. Example of an expression tree and chromosome structure.

Once the results and equations had been generated by GeneXpro Tools 5.0, the equa-
tions were applied to the other remaining wells without image logs or FD data. To evaluate
the performance of the models developed by GEP, RMSE and MAE were calculated as
proposed by previous studies [72–78]. The equations for calculating RMSE and MAE are
shown in Equations (1) and (2), respectively.

RMSE =

√
Σn

i=1(ei − mi)
2

n
(1)

MAE =
Σn

i=1|ei − mi|
n

(2)
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where n is the overall data points, mi is the model outcome value, and ei is the experimental
value. Low RMSE and MAE show a well-calibrated model. Additionally, the results from
GEP modelling produced functions consisting of well-log parameters. From this result,
a sensitivity analysis (SA) was performed to investigate the relative contribution of the
well-log variables generated by the GEP model. In this case, SA was calculated using
Equations (3) and (4), as proposed in the literature [79–82].

Ni = fmax(xi)− fmin(xi) (3)

SA =
Ni

∑
j=1
n Nj

(4)

where xi is the ith input variable, fmax(xi) is the maximum value of outcome, and fmin(xi) is
the minimum value of the outcome that depends on its ith input dominion, in which other
input variables are maintained at a constant average value. The difference between fmax(xi)
and fmin(xi) gives the range Ni of the ith input variable.

Then, the results were validated using the discriminant function analysis (DFA)
method. DFA is a multivariate statistical approach used to predict group memberships
based on prior knowledge of existing group memberships [83]. In DFA, there are inde-
pendent variables and dependent variables. The aim is to predict group memberships
or dependent variables based on the input from independent variables [84,85]. In this
case, the results from GEP were used as inputs for the DFA that was run using IBM SPSS
Statistics 24 software. A more detailed flow process of this method is shown in Figure 10.
Finally, a well-to-well correlation model was proposed based on the overall FD values from
other wells.

Figure 10. The flowchart of the discriminant function analysis process for the validation of predicted
fracture density results.

4. Results
4.1. Training and Testing for SG Rock Column

As mentioned earlier, for the SG rock column, Wells 7, 10, and 13 with measured FD
data from the image logs were used as the training and testing sets in the GEP. The results
from the GEP process are shown in Figure 11. The blue lines are the measured FD from the
image logs, the orange line is the section taken for the training set, and the green line is the
dataset used as the testing set. The results show that the predicted FD values for the lower
section of the well were consistent with the measured FD values.
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Figure 11. Results for fracture density prediction using gene expression programming. Three wells
were used as training and testing datasets. The blue line is the measured fracture density values
based on image logs. The training dataset was collected from the upper part of each well, indicated
by the orange line, and the green line on the lower part of each well is the testing section.

To evaluate the results produced by GEP, the coefficient of determination (R2) was
used to determine whether the results were acceptable. The measured and predicted FD
values were plotted, and R2 values were calculated, as shown in Figure 12. All three wells
showed good R2 values. For instance, Well 7 showed an R2 value of 0.86, Well 10 showed a
value of 0.86, and Well 13 showed a value of 0.88. After GEP produced the results, Equation
(5) was generated. The equation was produced based on the expression tree shown in
Figure 13. Finally, four sub-ETs were produced based on the GEP modelling. Each of these
sub-ETs makes up Equation (5). The equations for each sub-ET are shown in Equations (6)
to (9), in which Equation (6) is for sub-ET 1, Equation (7) is for sub-ET 2, and so on.

FDSG = SG1 + SG2 + SG3 + SG4 (5)

SG1 =

[
1

(D∗TH)−Exp(U)

]
+

[
(D + (−1.85))2 +

(
(K+(−0.71))

2 + U
)]

2
(6)

SG2 =

([(
1

RD
+ (K + TH)

)
+ ((D − 9.39)− (RX0 − (−9.10)))

]
− RXO

)1/3

(7)

SG3 = (K)1/3 ∗ Atan
[(

TH − K
RD

)∗(min(7.91, TH) + (−7.12)
2

)]
(8)

SG4 = Atan




(
−8.58+1.72

2

)1/3

+
(
(TH−U)+K

2

)
2

 ∗
(

Exp(U) ∗
(

RXO + D
2

)) (9)

Equation (5) was then applied to the other wells with no image logs to predict the FD
values. The equation was applied to the SG rock column of Wells 4, 6, 8, 11, and 26. The
results of this process are shown in Figure 14. Although it cannot be confirmed at this point
that the predicted FD values are accurate, based on the results shown in Figure 14, the range
of FD values is consistent between wells and comparable to the training wells. Notice that
from Equations (6) to (9), although ten well-log parameters were entered as inputs, only six
parameters appeared in these equations. GR, RS, N, and S did not appear in these equations.
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Figure 12. The predicted and measured fracture density values are plotted for each well, and the R2

values are calculated. All wells show an R2 value above 0.85.

Figure 13. Expression tree results for the SG rock column generated from GeneXpro Tools 5.0.

Figure 14. The results of the predicted fracture density of selected wells are shown. These fracture
density values were calculated based on Equation (5).
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4.2. Training and Testing for OG Rock Column

The same process for the SG rock column was applied to the OG rock column data.
Three wells with image logs and fracture density data were processed in the GEP tool. As
shown in Figure 15, the training section dataset was taken from the upper part of each well
and combined. As for the testing section, the lower part of the dataset for each well was
used, and the testing section results aligned with the measured fracture density data.

Figure 15. Results from training wells of OG rock column. The training and testing dataset results
from gene expression programming agree with the measured fracture density values from the
image logs.

The R2 values for each well were calculated by plotting the predicted FD values against
the measured FD values. The results are shown in Figure 16, in which for Well 7, the R2

value is 0.85, for Well 13 is 0.86, and for Well 27 is 0.90. These results show that the model
prediction can be accepted.

Figure 16. The R2 results of OG rock column wells with image logs. The R2 values were calculated
based on the plot of predicted versus measured fracture density value.

The expression tree results produced by GEP modelling are shown in Figure 17. Based
on this expression tree, Equation (10) was derived. The equation was then applied to the
other five wells without image logs and FD data: Wells 4, 8, 9, 10, and 11. As in the results
for OG, there were four sub-ETs, and Equation (10) was a combination of Equations (11) to
(14), which were written based on the four sub-ETs in Figure 17. Equation (11) was written
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based on sub-ET 1, Equation (12) was based on sub-ET 2, and so on. Figure 18 shows the
results of the FD calculation using Equation (6) for Wells 4, 8, 9, 10, and 11.

FDOG = OG1 + OG2 + OG3 + OG4 (10)

OG1 =
U +

[(
RD − 1

0.89

)∗(
(U − TH)∗(RD∗N)

)]2

2
(11)

OG2 = Atan
[
(max(U, TH) + (−4.98 + RXO))∗(max(N2, 3.25))− ln

(
1

RXO

)]
(12)

OG3 = min
(

1 − (ln(U ∗ U) ∗ (RD∗K)) ∗ 3.32, (U)2
)

(13)

OG4 =
1

[max((8.49 + TH), (K + N))− ((−4.95) ∗ (−2.99))]−
[
((−2.95 )∗TH)+(9.90−U)

2

] (14)

Figure 17. The expression tree results for the orthogneiss rock column generated by GeneXpro Tools 5.0.

Figure 18. The fracture density values as predicted by the gene expression programming model;
these predictions were made for wells without image logs at the orthogneiss rock column.
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From Equations (11) to (14), it can be seen that not all ten parameters appeared in all
equations. Only six parameters appeared in these equations from the original ten well-log
parameters. GR, RS, D, and S parameters did not appear in any of them.

4.3. Performance Evaluation of GEP Models

GEP models can be evaluated statistically using RMSE and MAE results. Other than
these two parameters, R2 is a good performance indicator as well, which was described in
the previous section. A well-calibrated model will have low RMSE and MAE values. Based
on these criteria, the calculated values of RMSE and MAE are shown in Table 3. The results
for SG and OG are shown, and the training and testing results are shown separately. It is
indeed proven that the developed model based on GEP simulation works well based on
the RMSE and MAE values in Table 3. For the SG rock body, for instance, the RMSE and
MAE values are low for the training dataset and the values are even lower for the testing
dataset. The same trend is seen for the OG results, in which both RMSE and MAE values
are low for the training dataset and even lower for the testing dataset. This shows that the
GEP model is well calibrated statistically.

Table 3. Statistical results for evaluating the GEP model’s performance.

SG OG

Training Testing Training Testing

RMSE 0.63 0.4 0.55 0.42

MAE 0.49 0.34 0.38 0.30

4.4. Validation of Fracture Density Predictions

It is challenging to validate the predicted FD values of wells without image logs and
core samples. However, this can be achieved by comparing the well-log properties and the
trends of the wells with image logs with those of the wells without the image logs using
statistical analysis. In this case, DFA was chosen. As can be seen from Equations (5) to
(9) for SG FD predictions, six well-log properties appeared in the equations out of the ten
initial well-log properties used as inputs for GEP modelling. The properties are K, TH,
U, RD, RXO, and D. Similarly, for OG FD predictions, six well-log properties appeared in
Equations (10) to (14): K, TH, U, RD, RXO, and N. These well-log properties were used
as predictor variables or independent variables in the DFA, as shown in Figure 10. The
FD values were grouped into the low FD and high FD groups, which were the dependent
variables in the DFA. This grouping is illustrated in Figure 19a. In Figure 19a, the data
selected for the low FD zone are highlighted in red, and the high FD zone is highlighted
in blue. The red and blue highlights were placed on the black dashed line that shows the
FD values. Using this method, the primary assumption is that the low and high FD values
were correctly measured and determined, while the middle FD values were not grouped,
as these middle values were considered grey areas. This means that the FD values in the
middle neither belong to low nor high FD values. If a cutoff line were to be drawn to
separate the low and high FD values, there is no concrete way to do this accurately. A
simple average method could be adopted; however, it may underestimate or overestimate
the separation.

The results for the SG group are shown in Figures 19 and 20. Figure 19 shows the
results of the DFA applied to Well 10. Figure 19a shows the measured FD values in a
black dashed line with the highlighted dataset selected for low and high FD values. After
running the DFA using the inputs shown in Figure 18 for the SG group, the results were
obtained and are shown in Figure 19b, which shows the eigenvalue, canonical correlation,
and histogram plot of the discriminant score. The function generated from the DFA was
then applied to the whole dataset of Well 10; the discriminant score results are plotted in
Figure 19a and are shown as a blue line. Comparing the FD and discriminant score plots in
Figure 19a, both plots are in agreement with one another and have similar trends. These
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results show that the inputs chosen to predict FD values from the earlier GEP modelling
can be accepted. However, at specific depths on the plot, the discriminant scores suggest
lower or higher trends than the FD values. Hence, the validation method shown here is
suitable for validating and checking the consistency of the predicted FD values through
GEP modelling. Therefore, the same DFA method was applied to the wells without an
image log to ensure that the predicted FD values from the GEP modelling can be validated.
Similar trends are expected from wells without the image logs.

Figure 19. Discriminant function analysis results of one of the SG training wells with image logs: Well
10. The fracture density (FD) values were grouped into two categories, namely, high FD (highlighted
in blue) and low FD (highlighted in red).

Figure 20 shows two wells without image logs, but the FD values were generated from
GEP modelling prediction. Figure 20a shows the FD values of Well 6. For this well, it is
clear that two separate FD values can be grouped into low and high FD values, showcased
by a black dashed line. DFA was conducted for this well using the inputs mentioned
in Figure 18, and the results of the DFA are shown in Figure 20b. The eigenvalue and
canonical correlation results are in the acceptable range. Based on this result, a function
was generated and applied to the Well 6 dataset; hence, a blue line was plotted, as shown
in Figure 20a, which is the discriminant score. The FD values and discriminant score show
similar trends, and the results agree with the result for Well 10 shown in Figure 19. This
means that the FD values generated by GEP modelling can be accepted and validated in
the case of Well 6. Similarly, the same process described above was applied to another well,
Well 8, and the results are shown in Figure 20c,d. Although the discriminant score shown
in Figure 20c at specific depths shows high values, for instance, at depths from −2765 m to
−2790 m, the discriminant score still has a similar trend as the predicted FD values on the
same plot, and the results are consistent with the trend of the results for Well 10 shown in
Figure 19. Hence, the predicted FD values from GEP for Well 8 are also validated.

The same method was applied to the OG group. As a primary reference, the DFA
method was applied to the well with image logs, and an example for this case, Well 13, was
selected and is shown in Figure 21. Figure 21a shows the FD values with highlighted zones
where low and high FD values were chosen for the DFA process. The results of the DFA
are shown in Figure 21b, with an eigenvalue of 1.142. Based on this process, the generated
function was applied to the Well 13 dataset, and a plot of the discriminant score is shown
in Figure 21a as a blue line. The results show that the FD values and discriminant score
have similar trends and can predict the low and high FD zones well.
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Figure 20. The discriminant function analysis results for wells without SG wells’ image logs. (a) frac-
ture density and discriminant score plot of Well 6. The FD data of Well 6 can be easily separated
into low and high FD values since the trend is obvious and there is no grey area for this dataset;
(b) histogram and results of DFA of Well 6; (c) fracture density and discriminant score plot of Well 8;
(d) histogram and results of DFA of Well 8.
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Figure 21. Discriminant function analysis results of one of the OG training wells with image logs
(Well 13). The fracture density (FD) values were grouped into two categories, namely, high FD
(highlighted in blue) and low FD (highlighted in red).

The method was then applied to the wells without image logs, as shown in Figure 22.
For example, Wells 4 and 10 are shown in this case. The results of Well 4 are shown in
Figure 22a,b, and the results of Well 10 are shown in Figure 22c,d. The results of both wells
show that the DFA method can be used to group and separate the low and high FD groups;
the generated function from the DFA can also be used to confirm the grey area values and
trends. Most importantly, the results of these wells without image logs have similar trends
to the wells with image logs. In this case, the predicted FD values from GEP modelling are
validated and can be used.

Figure 22. Cont.
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Figure 22. The discriminant function analysis results for wells without OG wells’ image logs. (a) Frac-
ture density and discriminant score plot of Well 4; (b) histogram and results of DFA of Well 4;
(c) fracture density and discriminant score plot of Well 10; (d) histogram and results of DFA of Well 10.

5. Discussion
5.1. Well-Log Responses towards Fracture Characteristics

This study explored the potential of using GEP to predict FD in metamorphic rock
bodies using inputs from 10 conventional well-log data. The study used wells with image
logs to extract FD data and used these data as the primary training sets in GEP. The results
of the GEP modelling can be used for wells without image logs; subsequently, the FD data
of those wells can be predicted. Using this method, two different rock types in a produced
buried hill hydrocarbon reservoir were assessed to evaluate any differences between the
fracture characteristics of the two metamorphic rocks: SG and OG.

Based on the above results, there is not much difference between the SG and OG
fracture density from the well-log perspective. For SG, the results from GEP modelling
show that the significant well-log parameters that might have contributed to the prediction
of FD based on Equation (5) are potassium, thorium, uranium, deep resistivity, flushed
zone resistivity, and bulk density. In contrast, for OG, the parameters processed by GEP
modelling that contributed to FD predictions based on Equation (10) were potassium, tho-
rium, uranium, deep resistivity, flushed zone resistivity, and neutron porosity. These results
show that spectral gamma ray, resistivity, and porosity are significant for FD prediction,
as reported in the literature. Furthermore, there is no significant difference between SG
and OG fracture properties. However, sensitivity analysis was conducted to evaluate the
relative contribution of each well-log parameter to the FD prediction. These analysis results
for SG and OG are shown in Figures 23a and 23b, respectively. Although the six parameters
narrowed down from GEP are not much different between the two rocks, based on this SA,
the contribution of each well-log parameter differs.

For instance, for SG, the main three parameters based on this SA result are Th, RD,
and K, while the main three parameters for OG are Th, RXO, and N. Th happens to be the
highest contributing well-log parameter for both rocks. The difference between the well-log
contribution of both rocks is probably due to the difference in the mineral properties of
these two gneisses that might affect the responses in the well-logs. Also, as well-logs mainly
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measure the physical properties of the rocks and fractures being filled, there might be some
differences between the log responses on this matter.

Figure 23. Relative contribution of input parameters of both SG and OG.

As expected, based on the reported studies, the gamma ray log did not appear in both
SG and OG GEP models. GR is handy for lithology identification and can contribute to
determining fracture properties, but the spectral gamma ray log is superior [19]. Uranium
content, for instance, can indicate a fracture zone quite well, as uranium is soluble in water
and hydrocarbon [20]. Uranium concentration appeared in both equations for SG and OG.
Although uranium is not a significant chemical component that makes up SG and OG, its
presence in these metamorphic rocks can point to the precipitation of uranium-bearing
minerals in the veins, or it could also be present in the fluids that fills the open fractures.

Due to its resolution and the nature of the operation that uses a transmitter and receiver,
resistivity is one of the more valuable tools used to detect fracture zones, especially in
tight formations and low-permeability reservoirs such as crystalline rock bodies [13,16,26].
During drilling, fractured rocks surrounding the well will be filled with mud or mud filtrate,
usually recorded by the resistivity logs [1,33]. Since most resistivity tools can show shallow
and deep resistivity values, open fracture zones will show significantly lower shallow or
flushed zone resistivity values than deep resistivity values. Although resistivity tools are
mainly used for the differentiation of fluids in the formation, in the context of this study,
deep and flushed zone resistivities are significant for detecting fractures, as they appear in
both modelled rock bodies.

Out of the three porosity logs, only bulk density appeared in the equation for the
SG group, and neutron porosity appeared in the OG group equation. The porosities may
have influenced the fracture characteristics of the SG and OG rocks differently; however,
evaluating porosity logs might contribute to indirect indications regarding fracture detec-
tion. For bulk density logs, fractures will lower the density values of metamorphic rocks.
Depending on the type of fluids in the fracture openings, the presence of gas will lower the
density readings. The hydrocarbon presence in the fracture openings will affect the reading
of neutron porosity as the neutron tool reads the amount of hydrogen in the rock or, in
this case, the fractures. Hence, higher neutron porosity readings can indicate that fluids
exist in the fractured metamorphic rocks. To effectively evaluate the fractures, bulk density
and neutron porosity logs should be used and plotted together to visualise the effects of
fractures on porosity logs.

In Equations (5) and (10) from the GEP modelling, the sonic porosity parameter did
not appear in either equation. However, sonic porosity contributions towards fracture
determination cannot be neglected. Sonic porosity is one of the best indicators of fractures,
especially when image logs are unavailable [16]. Many studies in the past have been con-
ducted in this regard, especially on older wells, and some equations have been introduced
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as well [6]. The fact that the sonic log parameter did not appear in both SG and OG GEP
models is probably due to the close range of sonic log readings that makes the values
insignificant when there are high or low FD values. However, detecting and interpreting
the cycle skipping of sonic logs manually will help in terms of fracture evaluation, since it
is a valid indication of fractures. The fractures eventually lower the apparent density of
rock bodies, increasing the porosity readings and sonic transit time.

Evaluating fractures from conventional well-logs alone is challenging, and the integra-
tion of data from various sources such as core samples and image logs would be the best
method [86]. However, due to the limitations of data, predicting fracture properties such as
FD using GEP could help. In order to ensure that the GEP model could be used for this
purpose, DFA was proposed in this study. The main idea of validating the GEP modelling
results by DFA was to ensure that the predicted FD values of wells without image logs were
in an acceptable range, or at least comparable with those of image logs. The results from
GEP modelling were used as the input parameters for the DFA. If the pattern of wells with
image logs is comparable and similar to those without image logs, especially for low and
high FD groups, the GEP results can be accepted and validated. Hence, this analysis shows
that all wells without image logs had similar trends and patterns to wells with image logs
using the inputs that had been narrowed down using the GEP results.

5.2. Theoretical Concept of the Fracture Network of the Studied Area

Figure 2 shows the structural model [53] proposed in the area under study. From the
model, it was proposed that normal and thrust faults separate OG and SG realms and also
allow for fluid migration. Reservoir quality and fluid flow can be influenced by faulting
and fault zone deformation, as reported by [3], which has been proven previously in this
area [44]. Based on the FD values calculated in this study, a well-to-well correlation was
carried out for four wells, as shown in Figure 1. Wells 7, 27, 26, and 13 were close to one
another, and their FD logs were plotted (Figure 24). In this plot, the black dashed lines
are the overthrust zones separating SG and OG, so SG is in the upper section of the well,
and OG is in the lower section. Well 26 only penetrated SG. The figure suggests that the
two overlying rock bodies have a similar fracture density. If most of the fractures define
an interconnected fracture system, they may help fluid migration towards the overlying
sedimentary reservoir [87]. In this case, the faults, overthrust zones, and complicated
fracture networks provide possible pathways for fluid migration, as suggested by [21].
They mention that the system of open fractures is usually the main pathway for fluids
to move in a fractured reservoir. Furthermore, a well-developed fracture network may
explain significant fluid accumulation inside the basement metamorphic rock bodies. It is
best to assume that most fractures in this system are open, because open fractures act as a
corridor for fluids to move. In contrast, they act as a fluid migration barrier below specific
depths where most fractures are closed or occur as mineralised veins [88].

In a typical sedimentary rock where the primary porosity and permeability are good
enough for the fluid to move, fracture porosity might not contribute much to the fluid
movement inside the sedimentary reservoir. However, fracture porosity in crystalline rock
plays a vital role in fluid movement as it provides the conduit for the fluids to move from the
source rock to the reservoir rock and within the reservoir rock. A mutually interconnected
fracture network of a rock body usually dominates the fluid storage capability, permeability,
and the direction of the fluid flow inside the reservoir [3]. Based on [89], higher FDs
coincide more at large-scale fault zones. Looking at the plot in Figure 23, Wells 13 and 27
tend to have higher FD readings near the overthrust zones that separate the two lithologies.
It is assumed that at the depths far from the significant overthrust horizons (i.e., at depths
of −2750 m to −2850 m for Well 7 and from −2850 m to −2950 m for Well 13), the FD
values are higher due to unknown fault zones at those particular depths.

Also, the distributions of fracture densities calculated for the two rock bodies reveal
that they have essentially identical fracture density (Figure 25). Both FD distributions follow
a negative power law distribution with somewhat similar exponents. Petrologically speak-



Minerals 2024, 14, 366 25 of 30

ing, different rock bodies usually react differently during deformation, which could cause
fracture networks of different geometric and hydrodynamic features [90,91]. However, this
study shows that although SG and OG exhibit slightly different metamorphic evolutions
and mineralogy, they have similar fracture types in terms of fracture density. Ref. [17]
mentioned that some fracture prediction algorithms did not work in their study because of
various fracture types and geometries. However, this is not the case for this study, since,
from GEP modelling, the well-log responses and FD frequencies show similar parameters.

Figure 24. Well-to-well correlation of four nearby wells in the studied area: Wells 7, 27, 26, and 13.
The black dashed lines are the separation boundaries between two lithologies based on the study
from [53] in which the upper part of the well is sillimanite- and garnet-bearing biotite gneiss (SG),
and the lower part of the well is orthogneiss (OG). Well 26 only penetrated SG.

Figure 25. Fracture density frequency plot of (a) sillimanite- and garnet-bearing biotite gneiss (SG)
and (b) orthogneiss (OG).

The similar FD patterns of SG and OG conform with the geological model that the rock
bodies with different metamorphic evolutions became juxtaposed during the Cretaceous
nappe tectonics and became intact before the whole buried hill structure was uplifted and
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underwent the major brittle deformation processes that led to the formation of cracks and
fractures in the rock body.

6. Conclusions

This study aimed to predict fracture density (FD) when image logs and core samples
are unavailable using the nonlinear regression method of gene expression programming
(GEP). The process was successfully applied to two different gneiss varieties, which exist on
top of one another; sillimanite- and garnet-bearing biotite gneiss (SG) and orthogneiss (OG).
Previous evidence shows that they are different in mineralogy and underwent different
metamorphic evolutions. This study utilised the widely available well-log data, which are
gamma ray (GR), potassium (K), thorium (TH), uranium (U), deep resistivity (RD), shallow
resistivity (RS), flushed zone resistivity (RXO), bulk density (D), neutron porosity (N), and
sonic porosity (S). The main conclusions are summarised below.

1. The results from GEP modelling show that the fracture density prediction between
SG and OG rock bodies has no significant difference regarding the well-log responses.
The significant parameters for SG are K, TH, U, RD, RXO, and D, while the significant
parameters for OG are K, TH, U, RD, RXO, and N.

2. The results of this study show that spectral gamma ray, composed of K, TH, and U,
is one of the critical parameters for FD predictions in a metamorphic rock body. The
results confirmed and were consistent with the previous studies that GR alone did
not contribute as much to fracture detection. However, it is one of the most helpful
well-log parameters for lithology identification.

3. GEP modelling could be used to predict FD in cases where image logs and core
samples are unavailable. The GEP method has been proven helpful in this prediction
by using only conventional well-logs as input data. This shows that the nonlinear
method could solve a nonlinear and complex problem.

4. The prediction of FD to wells without image logs can be validated by comparing the
well-log pattern of wells with image logs. In this case, an analysis of all fracture indi-
cations from conventional well-logs was carried out, and the results were consistent
throughout all wells, either with or without image logs.

5. The study also proposes a method to validate the FD predictions using the statisti-
cal analysis method of discriminant function analysis (DFA). The results from GEP
modelling were used as inputs for the DFA, and the results show the consistency of
the results between wells with image logs and wells without image logs in terms of
patterns and trends.

6. There are limitations to this study. The study used samples from the basement
metamorphic rocks. Although the application of the GEP method seemed to work in
the case of this study, the generated functions and methods cannot be generalized for
all other fractures since each fracture and rock acts differently. However, this study
provides evidence that in the case of two different gneisses, predicting FD without
core samples and image logs but using conventional well logs is possible.

7. There are many advanced methods that have been developed that utilise the advan-
tages of different machine learning methods. This study proposes that an extended
study could be carried out in a similar manner by employing these different methods.
However, it is also safe to say that although these model predictions could work, these
methods could not replace geophysical analysis, especially image logs.
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