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Abstract: In this study, the facies and degrees of hydrothermal alteration related to the low-sulfidation
epithermal Kestanelik Au deposit in the Biga Peninsula metallogenic province are identified through
petrographic studies and analysis of geochemical characteristics, such as mass changes, molar element
ratios, and alteration indices. The gold mineralization is located in silicified zones containing veins
and stockwork veinlets of silica. In the Kestanelik Au deposit, common hydrothermal alteration is
mainly found in the Permian-Upper Cretaceous Çamlıca basement metamorphics and the Eocene
granodiorite, and less often in the Eocene Şahinli volcanic rocks of the Karabiga Massif on the Penin-
sula. Based on mineralogical and geochemical studies conducted on altered samples, four different
alteration facies are defined as silicic, sericitic, argillic, and propylitic, which show remarkable differ-
ences in the behavior of REEs, Si, K, Al, Na, and Ca elements. The hydrothermal fluids that caused
alteration in the Kestanelik Au mineralization and host rocks had low REE contents because of REE
mobilization. In addition, the kaolinization of feldspars and micas, and the chloritization of biotite
and feldspars, may have caused negative Eu anomalies. The characterization of rocks subjected to
hydrothermal alteration that are most influenced by diverse K-metasomatism with the largest K
gains and losses in Na–Ca is illustrated by molar element ratio plots. Depending on the intensity of
K-metasomatism, gold mineralization increases with increasing K trends toward gold ore veins. In
the Kestanelik Au field, the argillic, sericitic, and propylitic alteration types from the zones enclosing
the Au ore veins are revealed using the Ishikawa alteration index and chlorite–carbonate–pyrite
index. Mass changes in the altered rocks indicate that there are gains in Si, K, and Al, and losses in
Na and Ca with the increasing intensity of alteration toward the ore veins. The results confirm the
presence of silicic and K–metasomatic (sericite and argillic) and propylitic (Fe-rich chloride) alteration
zoning extending from the inner regions to the outer regions, which characterize the epithermal
ore systems.

Keywords: Biga Peninsula; low-sulfidation epithermal type; hydrothermal alteration; alteration
indices; mass change; molar element ratio; mobility

1. Introduction

Hydrothermal alteration is common around epithermal mineral deposits, and the
alteration types are similar to those found in characteristic epithermal deposits world-
wide and in Turkey [1–11]. One of the most crucial features of epithermal gold deposits
is that they are always included within the host rock alteration. Alteration occurs in
siliceous and clayey zones. Silicification is commonly observed in the upper part of ep-
ithermal veins and in their immediate vicinity, while argillization and propylitization
are observed in the outer zones [12]. The alteration products are usually quartz, adu-
laria, illite, chlorite, alunite, kaolinite, and/or dickite and sericite [13]. Hydrothermal
alteration is one of the most significant features guiding the exploration for epithermal
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deposits. Alteration mineralogy can provide valuable information for determining the
spatial distribution of hydrothermal regions that can indicate mineralization [14,15]. There-
fore, it is important to investigate the mineralogy in alteration zones and specify the
relationship between alteration types and mineralization. Hydrothermal alteration styles
have been defined using alteration mineral assemblages [16,17]. The alteration types in
low–sulfidation epithermal deposits are classified as propylitic, argillic, advanced argillic,
silicic, and sericitic types, respectively [13]. For example, the alteration mineral association
of quartz ± calcite ± adularia ± illite in low-sulfidation deposits, including Au–Ag, or
Ag–Pb–Zn ores [18,19]. Globally, the various alteration types occur at different intensities
in the silicified vein [20–23], monzonite [24], diorite porphyry [5,6], granite-granodiorite
porphyry [22,25,26], and metamorphic [22,27]–volcanic rocks [8,21,28].

Compared to the wealth published in the literature regarding the research into the ori-
gin of epithermal Au–Ag deposits, there are very few detailed clay mineralogy studies on
the alteration zones of epithermal deposits [28–34]. In a mineralogical study on the argillic
alteration zone in the low-sulfidation epithermal type Ovacık–Bergama Au–Ag deposit,
it was noted that telescoping resulted in four episodes of alteration [28]. In nearby areas
of the Cerro Rubio kaolin deposit, it was emphasized that identification of the genesis of
weathering or hydrothermal alteration is important in gold or kaolin explorations, consider-
ing the presence of epithermal deposits showing argillic alteration [30]. The authors of [34]
reported that volcanic rocks forming residual kaolin deposits also host significant Au–Ag
mineralization and are mainly silicification, argillic, sericitic, and propylitic alterated.
Phyllosilicate mineralogy is described as a key element in understanding hydrothermal
processes within adopted epithermal deposit models. The characteristics of phyllosilicate
mineralogy related to hydrothermal alteration assemblages and ore mineralization have
also been discussed [29].

Hydrothermal alteration has been investigated in detail concerning major- and minor
oxides, trace element and rare earth element contents, mass gain and loss, molar ratio, and
alteration indices for some epithermal Au deposits [5,6,8,35–50]. Some researchers [51–54]
have suggested that molar ratio plots are effective in the calculation of mass transfer
related to hydrothermal alteration systems. Pyrite, sericite, and chlorite–carbonate tend
to be associated primarily with argillic and sericite–carbonate–clay minerals in the Siah
Jangal–Sar Kahno epithermal Au vein [6]. In the Tarom–Hashtjin precious and base metal
epithermal deposit, illite–smectite, illite, K–mica, and K–feldspar–biotite areas indicate
argillic, sericitic, and propylitic alteration types, with the presence of K–Al gains [8].

The area of this study encompasses the low-sulfidation epithermal Kestanelik gold de-
posit and its nearby surroundings within the Karabiga Massif, Biga Peninsula, NW Turkey
(Figure 1a,b). Based on the mass changes, molar element ratios, alteration indices, and
alteration facies in the silicified vein–veinlet, quartz–feldspar porphyry, and quartz–mica
schist host rocks reported in this study, the mineralogy and geochemistry of hydrothermal
alteration types related to Kestanelik gold mineralization are characterized in detail for the
first time.
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[59,60]. In Turkey, from the east‒west trending orogenic belts, there are four primary tec-
tonic blocks, i.e., Pontides, Anatolides, Taurides, and Border folds, from north to south. 
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Figure 1. (a) Tectonic map of Turkey [55]; (b) geological map showing the generalized geology of the
Biga Peninsula [56].

2. Regional Geology

With the opening and closing of the Neotethys ocean basin, the Tethyan–Eurasian
Metallogenic Belt developed as a result of the occurrence of the Alpine–Himalayan orogeny
during the Mesozoic–Cenozoic periods [57]. This belt, extending from Southern Europe
in the west to the Western Pacific in the east, is known as one of the richest metal-
producing belts in the world [58]. Turkey forms a part of the western region of this
large magmatic–metallogenic zone and hosts many precious (Au, Ag) and base-metal
(Pb, Zn, Cu) deposits. Western Anatolia, which occupies a significant position in the
Alpine–Himalayan orogenic system, is a critical zone where collisional magmatism is abun-
dant, crust–mantle interaction can be observed, and magmatic–tectonic occurrences occur
collectively [59,60]. In Turkey, from the east–west trending orogenic belts, there are four
primary tectonic blocks, i.e., Pontides, Anatolides, Taurides, and Border folds, from north
to south. The northwest of Turkey is bounded by the Intra-Pontide in the north and the
Izmir–Ankara–Erzincan Suture Zone in the south (Figure 1a). To the north of this zone is a
region known as the Pontides or Sakarya Zone [57,61,62].

Biga Peninsula is one of the areas with the best exposures of the mixed basement rocks
of the Alpine tectonic belt, known as the Sakarya Continent [57,63], Sakarya Zone [64],
and/or Sakarya Composite Belt [65]. The geology of the Sakarya Zone is generally defined
by the Kazdağ, Karadağ, Çamlıca, and Karabiga massifs [64] (Figure 1b). The crystalline
basement of the zone is broadly divided into three parts: (i) High-grade Variscan metamor-
phic succession consisting of gneiss, amphibolite, marble, and rarely metaperidotite—this
metamorphism was determined to be Carboniferous (330–310 Ma) with zircon and mon-
azite ages obtained from the Pulur, Kazdağ, and Gümüşhane massifs [66,67]; (ii) Pale-
ozoic granitoids of Devonian, Carboniferous, and Permian crystallization age [66–70];
(iii) Permo–Triassic and low-grade Lower Karakaya Complex dominated by metabasite,
phyllite, and marble [71]—this complex, which contains Late Triassic blueschist and eclogite,
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expresses the Permo–Triassic subduction-accumulation complex [70]. The complex base-
ment is unconformably covered by a sedimentary and volcanic succession of Early Jurassic
age, which is represented by shallow marine sandstone, shale, and conglomerate [64]. The
Biga Peninsula is the richest Au–Ag and base-metal (Pb, Zn, Cu) mineralization region in
Anatolia. The epithermal mineralization is associated with Cenozoic volcanic rocks and
Eocene granodiorites belonging to the Sakarya Zone.

3. Local Geology

The study area is located within the Karabiga Massif, which is developed in the
Sakarya Zone of the Biga Peninsula. In the massif, the Çamlıca metamorphic basement
rocks, which are from the Permian to the Upper Cretaceous, and the Çetmi Mélange from
the Upper Cretaceous with tectonic contact, are cut by the Kestanelik granodiorite and
silicified veins of the Eocene. The Eocene Soğucak Formation, Şahinli Formation, and
Quaternary alluviums unconformably overlie these units (Figure 2).
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The Çamlıca metamorphic rocks, named by the authors of [64], include sericite schist,
chlorite schist, and slate–marble levels. They crop out in a wide area to the west and south
of Kovanlık Hill and to the east and southeast of Kara Hill (Figure 2). The metamorphic
rocks range from white, brown and gray, well-foliated, and medium-to coarse-grained
mica schists at the bottom and continue with the brown-green colored phyllites upwards
to the top [64,74,75]. They also include the basic rocks, marble lenses, and silicified veins.
The degree of greenschist facies regional metamorphism in the clastic sedimentary rocks
decreases toward the upper levels of the unit, passing into overlying schists and phyllites
characterized by low-grade greenschist facies [62,75]. Based on phengite in quartz–mica
schists in the Çamlıca metamorphic rocks, the ages of 65–69 Ma (Late Cretaceous) were
determined using the Rb/Sr method. This result shows that Çamlıca metamorphic rocks are
also affected by eclogite facies metamorphism [74]. The metamorphic rocks are intersected
by Middle–Late Eocene Kestanelik granodiorite and display a tectonic connection with the
Maastrichtian-Çetmi Mélange.

The intrusive mass, which was effective in the formation of the gold deposit, was
emplaced as a stock into the Çamlıca metamorphic rocks [64]. This granodiorite, named the
Kestanelik granodiorite [72], has been identified as quartz–feldspar–hornblende porphyry.
Its N–S trend can be observed in the central part of the field (Figure 2). The granodiorite
has a brecciated structure as the mine area contains many fractures due to tectonism. In the
study area, the Kestanelik granodiorite intersects the Çamlıca metamorphite and the Çetmi
Mélange and lies unconformably above the Soğucak Formation (Figure 2). The Laledağ
granodiorite, located near the study area, was determined using the Ar/Ar method to be
Middle–Late Eocene [76] (biotite 42.08 ± 0.09 and hornblende 39.21 ± 0.11 Ma). Because
of the similarities in field observations, petrographic features, and geochemical features
of the Laledağ and the Kestanelik granodiorites, the age of the Kestanelik granodiorite is
assumed to be Middle-Late Eocene.

4. Materials and Methods

Numerous exploration drillings were carried out in the mineralized and alteration
zones in the study area, and core samples were taken from some selected drillings, including
KED 02, KED 06, KED 17, KED 44, KED 70, and KED 135. A total of 31 core samples
taken from these drillings consist of 11 silicified veins, 12 quartz–feldspar porphyries, and
8 quartz–mica schists (Figure 3).

To determine the mineral assemblages and alteration types of these samples, thin-
section analysis for 15 samples, and X-ray diffraction (XRD)-detailed clay analysis and
geochemical analysis for 31 samples were carried out. At the laboratory in the Department
of Geological Engineering, Süleyman Demirel University, thin-section samples were pre-
pared, and the mineralogical-petrographic sections were examined under an polarizing
microscope equipped with a 5.1 mega-pixel camera, and images were obtained using the
Image Pro Plus 5.1v image analysis system.

XRD analyses of the investigated alteration samples were carried out at the Technology
Application and Research Center Laboratory–TUAM, Afyon Kocatepe University, using a
Shimadzu XRD-6000 model X-ray diffractometer with a Ni filter, CuKα radiation, and CuKα
X-ray with a 1.544 Å wavelength. For the analysis, 40 kV and 30 mA working condition
values were chosen. Alteration samples were scanned at 2◦/min and analyzed at a peak
intensity of 2000 cps in the goniometer diffraction angle range of 2–70◦ (2θ). The mineralogy
of these samples was determined by using a thorough analysis of the mineral composition
of whole rocks, which were air-dried (AD) and treated with ethylene glycol (EG) at 550 ◦C.
For the annealed phase analysis of the samples, guide samples were prepared from the
clay-sized crushed samples, and about 20–30 g of samples with a grain size of 250 µm were
used. After performing a series of standard secondary procedures on the prepared samples,
artificial changes were created in the basal diffraction of clay minerals, particularly in the
low 2θ angle region. The diffraction profiles of these artificial changes were examined
systematically, and similar clay minerals were distinguished and defined precisely.
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Thirty-one samples were ground to 200 mesh for the chemical analyses performed
at the Mineral Laboratories of Bureau Veritas (BVM), Canada. The major and minor
oxides of the whole-rock samples were analyzed using emission spectrometry (ICP–OES)
methods. Additionally, the trace and rare earth elements were analyzed using inductively
coupled plasma-mass spectrometry (ICP–MS) after dissolving the element contents with
lithium metaborate/tetraborate fusions following dilute nitric acid digestion. The detection
limits are typically 0.01–0.1 wt.% for major elements, 0.01–8 ppm for trace elements, and
0.1–0.3 ppm for REEs. For evaluation of the accuracy of analytical data, the geochemical
standards STD SO-18, STD DS10, STD OREAS45EA, STD GS311-1, and STD GS910-4 were
used. The quality of the analyses was determined using a range of reference materials.
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5. Results
5.1. Hydrothermal Alteration and Au Mineralization

Hydrothermal alteration is a common feature in epithermal mineral deposits and
exhibits similar characteristics in typical epithermal deposits worldwide [8,10,11]. The
hydrothermal system that formed the Au mineralization in the Kestanelik deposit occurs
extensively in varying volumes and intensities, creating vein-type hydrothermal alteration
zones. The deposit exhibits various alteration associations based on cutting relations,
mineralogy, and distance from ore bodies. The Çamlıca quartz–mica schist rocks, Kestanelik
granodiorite, and Şahinli Formation andesite–basalt rocks, which crop out in the Kestanelik
gold mine area, have undergone intense alteration. Different alteration zones are clearly
visible in the mine area, distinguished by their greenish-yellowish, brownish, claret, grayish,
and whitish colors (Figure 4). The dominant minerals in the zones are quartz (including
amethyst), hematite, limonite, goethite, opal, chalcedony, and clay minerals. The gold-
bearing silicified veins in the deposit exhibit predominantly argillic, sericitic, and propylitic
alteration zones, with lesser K-silicate, chloritization, and carbonation-type alteration zones
observed from the inside to the outside (Figure 4).
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The Kestanelik Au deposit is located in and around Lapseki–Şahinli village, 45 km
from Çanakkale in northwestern Turkey. The Au deposit occurs in a low-sulfidation pa-
leoenvironment [3,22,73,77–79] within the Karabiga Massif observed along the Sakarya
Zone on the Biga Peninsula. The gold-bearing ore body at Kestanelik is emplaced within
silicified zones of vein–stockwork veinlets that cut through the Maastrichtian-Çamlıca
metamorphites and the Eocene Kestanelik granodiorite. The Kestanelik deposit’s gold min-
eralization consists of four primary silicified veins: Karakovan (KK1, KK2, KK3, KK4), Kara
Hill (KT), Kestanelik (K1, K2, K3), and S veins. The silicified vein lengths are approximately
500 m for the Karakovan (KK1, KK2, KK3, KK4) veins, 1050 m for the Kara Hill (KT) vein,
2480 m for the Kestanelik veins (K1 vein 480 m, K2 vein 350 m, K3 vein 1650 m), and 500 m
for the S vein. The deposit has an average gold grade of 2.27 g/t in the KK vein, 1.37 g/t
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in the KT vein, 1.61 g/t in the K1 vein, 2.0 g/t in the K2 vein, 2.87 g/t in the K3 vein, and
2.06 g/t in the S vein [73].

The Kestanelik gold deposit is mainly accumulated in the vein–stockwork veinlets
controlled by tectonic lineaments, which are represented by silicification veins and faults
in the mine area. Within this area are normal faults that trend NW–SE, NE–SW, and E–W,
with the Meydan and Kestanelik faults being the most significant. The ore-bearing silicified
veins are intersected by NW–SE and E–W trending faults, along with NE–SW trending
faults (Figure 2). Fault breccia and fault clay are present in the areas of fault deformation,
and as a result of cataclastic deformation, brecciated structures are visible in the Çamlıca
metamorphites, Kestanelik granodiorite, and ore-bearing silicified veins. According to [73],
the Kestanelik gold deposit’s host rocks and early quartz underwent cataclastic deformation
and exhibit tectonic brecciation; additionally, hydrothermal fractured breccias are present,
and the pre-existing vein filling displays matrix-supported chaotic breccias. Two primary
permeable enrichment mechanisms responsible for the reactivation of blocked permeable
pathways are co-seismic and hydraulic fracturing.

Silicified veins in the study area are typically found in the form of parallel or inter-
secting veins and veinlets within a silicified zone. In the silicified zones, quartz occurs in
both fine and coarse crystals, while chalcedonic quartz, chalcedony, and amethyst have
a fine-grained texture. The silicified zones often manifest as resistant knobs, ledges, and
carapaces, with the original rock texture rarely preserved. Epithermal systems exhibit
primary growth structures in the form of breccia, substitutional thrust structures, and
massive, comb, crustiform–colloform, cockade, lattice-bladed, saccharoidal, moss, and
banded open void fillings (Figure 5). The origin of the gold deposits at Şahinli and Tespih
Dere is defined as intermediate sulfidation [3]. The deposit contains plumose quartz, comb
and cockade, and matrix-supported brecciated epithermal textures. Gold and base metal
minerals occur in relatively deep seated epithermal silicified veins.

Minerals 2024, 14, x FOR PEER REVIEW 8 of 32 
 

 

metamorphites and the Eocene Kestanelik granodiorite. The Kestanelik deposit’s gold 
mineralization consists of four primary silicified veins: Karakovan (KK1, KK2, KK3, KK4), 
Kara Hill (KT), Kestanelik (K1, K2, K3), and S veins. The silicified vein lengths are approx-
imately 500 m for the Karakovan (KK1, KK2, KK3, KK4) veins, 1050 m for the Kara Hill 
(KT) vein, 2480 m for the Kestanelik veins (K1 vein 480 m, K2 vein 350 m, K3 vein 1650 m), 
and 500 m for the S vein. The deposit has an average gold grade of 2.27 g/t in the KK vein, 
1.37 g/t in the KT vein, 1.61 g/t in the K1 vein, 2.0 g/t in the K2 vein, 2.87 g/t in the K3 vein, 
and 2.06 g/t in the S vein [73]. 

The Kestanelik gold deposit is mainly accumulated in the vein‒stockwork veinlets 
controlled by tectonic lineaments, which are represented by silicification veins and faults 
in the mine area. Within this area are normal faults that trend NW–SE, NE–SW, and E–W, 
with the Meydan and Kestanelik faults being the most significant. The ore-bearing silici-
fied veins are intersected by NW–SE and E–W trending faults, along with NE‒SW trend-
ing faults (Figure 2). Fault breccia and fault clay are present in the areas of fault defor-
mation, and as a result of cataclastic deformation, brecciated structures are visible in the 
Çamlıca metamorphites, Kestanelik granodiorite, and ore-bearing silicified veins. Accord-
ing to [73], the Kestanelik gold deposit’s host rocks and early quartz underwent cataclastic 
deformation and exhibit tectonic brecciation; additionally, hydrothermal fractured brec-
cias are present, and the pre-existing vein filling displays matrix-supported chaotic brec-
cias. Two primary permeable enrichment mechanisms responsible for the reactivation of 
blocked permeable pathways are co-seismic and hydraulic fracturing. 

Silicified veins in the study area are typically found in the form of parallel or inter-
secting veins and veinlets within a silicified zone. In the silicified zones, quartz occurs in 
both fine and coarse crystals, while chalcedonic quartz, chalcedony, and amethyst have a 
fine-grained texture. The silicified zones often manifest as resistant knobs, ledges, and 
carapaces, with the original rock texture rarely preserved. Epithermal systems exhibit pri-
mary growth structures in the form of breccia, substitutional thrust structures, and mas-
sive, comb, crustiform–colloform, cockade, lattice-bladed, saccharoidal, moss, and banded 
open void fillings (Figure 5). The origin of the gold deposits at Şahinli and Tespih Dere is 
defined as intermediate sulfidation [3]. The deposit contains plumose quartz, comb and 
cockade, and matrix-supported brecciated epithermal textures. Gold and base metal min-
erals occur in relatively deep seated epithermal silicified veins. 

 

Figure 5. Ore structures indicating low-sulfidation epithermal systems in the study area;
(a) quartz–feldspar porphyry with silica stockworks, crustiform–colloform bands with pyrite, cock-
ade (KED 17, 22.70 m); (b) silica–breccia–quartz vein, chalcedonic, saccharoidal quartz clast in
sulphide-goethite matrix (KED 06, 27.40 m); (c) silicified vein with quartz–feldspar poprhyry clasts in
matrix crustiform–colloform banded, cockades (KED 17, 28.40 m); (d) amethyst–crystalline quartz
veinlets (KED 63, 174.50 m); (e) lattice bladed, chalcedonic, saccharoidal, moss (KED 02, 28. 50 m);
(f) quartz stringer, saccharoidal, crystalline, lattice bladed, hematite, limonite (KED 135, 94.40 m);
(g) bladed texture in silicified zones; (h) cavity texture in silicified zones; (i) cockade texture in
silicified zones [22].
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5.2. Petrography–Mineralogy of Alteration Forms
5.2.1. Polarizing Microscope Investigations

The thin sections of core samples from silicified veins, Kestanelik granodiorite, and
Çamlıca mica schists were examined under a polarizing microscope, and photomicrographs
were taken (Figure 6a–h). Coarse-crystalline quartz typically presents a comb structure with
an observed vein style for epithermal gold deposits (Figure 6a). The relationship between
vein-shaped quartz, locally chloritized feldspar crystals, and a siliceous microcrystalline
texture can be clearly observed in the sections (Figure 6b). Figure 6c,d shows cataclastic-
textured and coarse-grained quartz and muscovite, with lesser amounts of biotite and
opaque minerals. Another examined thin-section sample suggests a rhyolitic composition,
with coarse crystalline quartz and locally corroded opaque minerals present (Figure 6f).
In certain sections of the area, feldspars and amphiboles underwent chloritization, while
micas experienced sericitization in some areas (Figure 6e–h).
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Figure 6. Photomicrographs in cross polarized and plane polarized light of various rock samples;
(a) quartz (qz1, qz2) with two stage and comb structure; (b) feldspar (fsp) and vein quartz (qz1);
(c) the relationship between quartz (qz1, qz2) and muscovite (ms)–biotite (bt); (d) coarse crystalline
quartz (qz1) and muscovite (ms); (e) coarse-grained quartz (qz1), feldspar (fsp) and euhedral opaque
mineral (opq); (f) chloritization (chl) and sericitization (ser); (g,h) feldspar (fsp), amphibole (amp),
sericitization (ser) and chloritization (chl) [22].

5.2.2. X-ray Diffraction-Mineralogy of Alteration

X-ray diffraction (XRD) clay analysis was conducted on core samples taken from the
Kestanelik gold ore deposit, specifically from silicified vein, altered quartz–feldspar por-
phyry, and quartz–mica schist rocks. The results of the analysis and representative patterns
of samples taken from the silicified vein, quartz–feldspar porphyry, and quartz–mica schist
can be found in Figure 7. The mineral compositions of these altered rocks are listed sepa-
rately in Table 1. All of the samples were mainly composed of illite–mica and quartz. Minor
amounts of calcite, dolomite, feldspar, and hornblende are also present. Smectite, chlorite,
and kaolinite are alteration minerals (Figure 7). Smectite minerals are characterized by
d(001) values of 12.98–14.29 Å in air-dried clay mineral samples (AD). In samples treated
with ethylene glycol (EG), the d(001) surfaces expand to the range 16.90–17.45 Å. However,
at a temperature of 550 ◦C, the samples’ surface d(001) shrinks to the range 9.98–10.06 Å
(Figure 7). Chlorite minerals are characterized by surface reflections at 12.23–12.40 d(001),
7.11–7.18 d(002), and 3.57 d(003). They can be distinguished from smectite and kaolinite by
observing that their characteristic peaks remain unchanged after ethylene glycol and heat
treatments. Upon heating to 550 ◦C, the reflection of kaolinite’s (001) plane at 7.11–7.18
d-spacing disappears due to the dehydroxylation process [80].
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Figure 7. Representative XRD patterns of bulk samples and clay fraction of the samples from silici-
fied veins (KED 02-06), quartz+–feldspar porphyry (KED 06-04), and quartz–mica schist (KED 44-
02), AD: air dried, EG: ethylene glycolated, (550): heated at 550 °C [22]. Abbreviations: Qtz: quartz, 
I-M: illite-mica, Kln: kaolinite, Fld: feldspar, Chl: chlorite, Kln+Chl: kaolinite+chlorite, Sme+Chl: 
smectite+chlorite, Sme: smectite, Sme+I-M: smectite+illite-mica, Cal: calcite, Dol: dolomite, Hbl: 
hornblende. 

  

Figure 7. Representative XRD patterns of bulk samples and clay fraction of the samples from
silicified veins (KED 02-06), quartz+–feldspar porphyry (KED 06-04), and quartz–mica schist (KED
44-02), AD: air dried, EG: ethylene glycolated, (550): heated at 550 ◦C [22]. Abbreviations: Qtz:
quartz, I-M: illite-mica, Kln: kaolinite, Fld: feldspar, Chl: chlorite, Kln+Chl: kaolinite+chlorite,
Sme+Chl: smectite+chlorite, Sme: smectite, Sme+I-M: smectite+illite-mica, Cal: calcite, Dol: dolomite,
Hbl: hornblende.

Table 1. Mineral abundances of core alteration samples in the study area [22].

Sample Number Sample
Type Qtz I-M Sme+I-M Kln Fld Chl Kln+Chl Sme+Chl Sme Cal Dol Hm Alu Hbl

KED02-02 SV 16 3 0 2 0 0 0 0 0 2 0 0 0 0

KED02-06 SV 16 10 0 3 0 6 0 0 2 3 1 0 0 1

KED02-07 SV 16 6 0 4 0 0 0 0 0 1 0 0 0 0

KED02-13 SV 17 0 0 0 0 0 0 0 0 1 0 0 0 0

KED17-08 SV 15 0 0 2 0 0 0 0 0 3 0 0 0 0

KED63-02 SV 17 8 1 2 4 11 2 1 1 0 0 0 0 0

KED63-03 SV 8 9 0 2 1 10 2 0 0 3 1 0 0 0

KED63-05 SV 17 8 1 5 1 0 0 0 4 2 1 0 0 0

KED63-09 SV 15 3 0 0 0 0 0 0 0 2 0 0 0 0

KED63-10 SV 17 8 0 6 1 0 0 0 0 2 0 1 0 0
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Table 1. Cont.

Sample Number Sample
Type Qtz I-M Sme+I-M Kln Fld Chl Kln+Chl Sme+Chl Sme Cal Dol Hm Alu Hbl

KED63-11 SV 16 8 0 2 1 9 2 0 0 4 1 0 0 0

KED06-03 QFP 15 0 0 2 5 7 0 0 3 2 1 1 0 0

KED06-04 QFP 16 7 0 1 13 9 0 0 4 3 1 1 0 0

KED06-05 QFP 14 6 0 2 11 6 0 0 5 3 1 1 0 0

KED06-06 QFP 15 6 1 1 12 6 0 1 9 1 1 0 0 0

KED06-07 QFP 18 3 0 1 11 5 0 1 7 2 1 0 0 0

KED06-08 QFP 13 4 0 2 9 4 0 0 3 0 0 0 0 0

KED06-10 QFP 15 4 0 1 11 9 0 0 4 1 1 0 0 0

KED17-01 QFP 11 7 0 0 9 0 0 0 3 1 0 1 0 0

KED17-02 QFP 12 6 0 0 10 0 0 0 0 0 0 0 0 0

KED17-06 QFP 16 0 0 0 3 0 0 0 0 0 0 0 0 0

KED17-07 QFP 15 3 0 0 8 0 0 0 0 2 0 0 0 0

KED135-3 QFP 17 7 1 4 12 0 0 0 9 3 0 1 2 0

KED02-05 QMS 16 8 0 2 0 0 0 0 0 3 0 0 0 0

KED02-11 QMS 16 8 0 2 0 0 0 0 0 2 0 0 0 0

KED06-11 QMS 14 9 0 6 8 0 0 0 2 3 0 0 0 0

KED44-02 QMS 16 6 3 2 3 8 0 1 2 2 0 0 0 0

KED44-03 QMS 17 9 0 0 1 7 0 0 0 3 1 0 0 0

KED44-12 QMS 15 2 0 0 5 13 0 0 0 3 1 1 0 0

KED70-01 QMS 18 0 0 2 0 0 0 0 0 2 0 0 0 0

KED70-02 QMS 15 9 0 0 2 12 0 0 0 4 1 0 0 0

Abbreviations: SV: silicified vein, QMS: quartz–mica schist, QFP: quartz–feldspar prophyry, Qtz: quartz,
I-M: illite-mica, Sme+I-M: smectite+illite-mica, Kln: kaolinite, Fld: feldspar, Chl: chlorite, Kln+Chl: kaolin-
ite+chlorite, Sme+Chl: smectite+chlorite, Sme: smectite, Cal: calcite, Dol: dolomite, Hm: hematite, Alu: alunite,
Hbl: hornblende.

5.3. Geochemistry
5.3.1. Petrogenic Elements

Thirty-one samples were taken from silicified vein, quartz–feldspar porphyry, and
quartz–mica schist. The samples were collected from 7 drillings obtained in the drilling
cores in the Kestanelik gold mine area. Table A1 presents the results of the analysis of major
and minor oxides and trace and rare earth elements in the alteration samples.

The major oxide contents of silicified vein samples reveal the following ranges:
57.74–98.02 wt.% SiO2, 0.50–14.33 wt.% Al2O3, 0.60–8.03 wt.% Fe2O3, 0.03–3.59 wt.% K2O,
and 0.04–4.13 wt.% MgO, according to the results. The altered quartz–feldspar porphyry
samples have values that range as follows: 64.79–89.52 wt.% SiO2, 3.34–16.61 wt.% Al2O3,
2.10–3.61 wt.% Fe2O3, 0.38–1.51 wt.% MgO, 0.07–8.00 wt.% Na2O, and 2.06–9.21 wt.% K2O.
The altered quartz–mica schist samples indicate the following elemental content ranges:
52.92–95.78 wt.% SiO2, 1.19–14.85 wt.% Al2O3, 0.65–14.06 wt.% Fe2O3, 0.09–4.78 wt.% MgO,
0.01–3.61 wt.% K2O, and 0.01–1.63 wt.% TiO2. Other major oxide concentrations are below
1% and insignificant (Table A1). When comparing all three rock types in terms of major
oxides, SiO2 in the silicified vein; Al2O3, K2O, and Na2O in the quartz–feldspar porphyry;
and Fe2O3, MgO, and TiO2 in the quartz–mica schist shows higher values.

Au, Ag, Sb, As, Hg, Bi, Se, Te, and base metals (Pb, Zn, Cu) are trace elements
commonly found in epithermal gold deposits. In the zone of silicification alteration, Sb, Hg,
and Bi elements are present, along with Au and Ag. These elements are also accompanied
by Cu, Mo, and Te, which are found in propylitized zones. Manganese and zinc, which
characterize the propylitization areas, are accompanied by Cu, Mo, and Te [81]. The surface
or shallower levels of the metal zoning contain Tl, Hg, As, and Sb, followed by Au and
Ag. The Ag/Au ratio increases with depth, and the mineralization ends in a deep zone
characterized by base metal (Cu, Pb, Zn) enrichment containing Cd and Se [82–84]. The
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trace element contents in different rock types associated with gold mineralization were
compared. The silicified veins were found to have slightly higher average concentrations
of Au (784 ppb), Sb (40.1 ppm), and Pb (54.1 ppm). The quartz–mica schist samples show
slightly higher average levels of Ag (1.8 ppm), As (158.6 ppm), Cu (28.9 ppm), and Zn
(62 ppm) compared to the reference values presented in Table A1. The Kestanelik field;
samples show an average Au grade of 2.27 g/t in the KK vein samples, 2.0 g/t in the K2
vein samples, and 2.87 g/t in the K3 vein samples [73]. In contrast, the average gold content
of the core samples taken from the silicified vein (KK1, K2, K3) analyzed in this study was
determined to be less than 1 g/t.

5.3.2. Rare Earth Elements

Rare earth elements (REEs), particularly those found in K-silicate, sericitic, argillic,
and propylitic alteration types, may be reactivated during the alteration process [6,85–88].
Figure 8 shows separate plots of chondrite-normalized [85] REE models for the samples of
silicified vein, quartz–feldspar porphyry, and quartz–mica schist. The (∑REE) values of the
mineralized epithermal silicified vein and quartz–mica schist rock samples are depleted
and similar (65.95 and 63.24 ppm). However, an increase in ∑REE content is observed from
slightly altered porphyries to silicified veins.
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In contrast, the quartz–feldspar porphyry rock samples have the highest ∑REE values
(81.06 ppm) and are enriched in total REE contents. However, the REE patterns in rocks
indicating LREE enrichment show similar trends, as the average LREE/HREE ratio is
2.85, 4.04, and 3.12 for silicified vein, quartz–feldspar porphyry, and quartz–mica schist,
respectively (Table 2). The concentration of REEs in all rocks tends to decrease with
increasing hydrothermal alteration intensity (Figure 8). The mean (La/Yb)n and (La/Sm)n
values of samples from silicified vein, altered quartz–feldspar porphyry, and quartz–mica
schist are 5.87–3.30, 9.84–4.41, and 7.49–3.21, respectively. Table 2 shows that the (La/Yb)n
and (La/Sm)n values of quartz–feldspar porphyry are slightly higher than the others.
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Table 2. REE values of variable altered rocks.

Sample Type Mean Eu/Eu* La/Yb La/Sm LREE/HREE ΣREE

Silicified vein 0.72 5.87 3.30 2.85 65.95

Quartz–feldspar porphyry 0.82 9.84 4.41 4.04 81.06

Quartz–mica schist 0.66 7.49 3.21 3.12 63.24

The REE distribution patterns of epithermal silicified vein, quartz–feldspar porphyry,
and quartz–mica schist samples, normalized to chondrite, exhibit negative Eu anomalies.
The mean Eu/Eu* values for these samples are 0.72, 0.82, and 0.66, respectively. Negative Eu
anomalies indicate the presence of Eu2+, while positive Eu anomalies suggest the presence
of Eu3+. As Eu2+ has nearly the same radius as Ca2+, it naturally substitutes into the Ca
site [89]. These negative Eu2+ anomalies indicate low oxygen fugacity during plagioclase
crystallization from the magma, followed by divalent mobilization.

The correlation between ΣREE and P2O5, Al2O3, TiO2, and K2O values suggests an
increase in REE-bearing minerals in the altered rocks (Figure 9).
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5.4. Hydrothermal Alteration Indices

To determine the alteration in silicified vein, quartz–feldspar porphyry, and
quartz–mica schist samples in the study area, we used the Ishikawa alteration index (AI),
chlorite–carbonate–pyrite index (CCPI), sericite index (SI), and chemical alteration index
(CIA). The Ishikawa alteration index (AI), as described by [36], is one of the most widely
used indices for determining hydrothermal alteration. This index calculates the ratio of the
basic rock-forming elements gained during the chlorite and sericite exchange (MgO + K2O)
to the elements lost and gained (Na2O + CaO + MgO + K2O). The chlorite–carbonate–pyrite
index is calculated as CCPI = 100 × MgO + FeO)/(MgO + FeO + Na2O + K2O) [47] and is
used as the second index for determining alteration types. The rock’s FeO is the total Fe
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content (FeO + Fe2O3). The index measures the increase in MgO and FeO resulting from
the development of Mg-Fe chlorite in igneous rock. This process often replaces albite, K
feldspar, or sericite, leading to the loss of Na2O and K2O [47].

In the study area, the alteration index (AI) values range from 54.17 to 95.90, while
the chlorite–carbonate–pyrite index values range from 57.67 to 98.08 in geochemical stud-
ies. The Ishikawa alteration index and chlorite–carbonate–pyrite index diagrams indi-
cate the samples’ hydrothermal decomposition and alteration trend in the following or-
der of abundance: Chlorite–pyrite, sericite–chlorite–pyrite, chlorite–pyrite–sericite, and
chlorite–carbonate. Figure 10a shows the areas of the diagram where the alteration samples
fall. All rock samples exhibit hydrothermal alteration types that are mainly argillic- and
chlorite type. Propylitic alteration is only present in the vein–veinlet silicification zone
(Figure 10b).
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Figure 10. (a) Ishikawa alteration index (AI) and (b) chlorite–carbonate–pyrite index (CCPI) trend dia-
grams [47]. Abbreviations: chl-carb: chlorite-carbonate, chl-py-ser: chlorite-pyrite-sericite, ser-chl-py:
sericite-chlorite-pyrite, carb-ser: carbonate-sericite, K-fsp: K-feldspar, ser: sericite, ab-calc-ep: albite-
calcite-epidote, ab-chl: albite-chlorite, K-fsp-ab: K-feldspar-albite, par-ab: paragonitic-sericite-albite.

The alteration samples from the study area show a dominant presence of chlorite–sericite
and sericite alteration minerals, with fewer samples falling in the adularia–sericite mineral
assemblage field (Figure 11). The relationship between the Na2O, K2O, Al2O3, CaO, MgO,
and FeO values of the samples and the Ishikawa alteration index was also analyzed. This
paragenesis indicates the existence of argillic, sericitic, and propylitic alteration types that
are characteristic of epithermal deposits with low sulfidation. As a result of the increase in
the alteration index towards the ore veins, the potassium and aluminum contents, as well
as the sericite–clay minerals, increased in quartz–mica schist rocks compared to other rock
groups due to K–Al metasomatism. Conversely, the sodium, calcium, magnesium, and iron
contents decrease (Figure 11).

The efficiency of sericitization alteration in rocks was determined by calculating the
sericitization index (SI), defined as SI = K2O/(K2O + Na2O) [38]. Plotting the SI values
versus (K2O + Na2O) values on a diagram shows that all the alteration samples from the
study area fall within the hydrothermal alteration area. SI index values of most of the
vein–veinlet silicified samples and quartz–mica schist samples, as well as all samples
of quartz–feldspar porphyry in the hydrothermal alteration area, are above 1.0 and ex-
hibit a linear relationship (Figure 12a). The SI values versus the CaO values increase in
quartz–feldspar porphyry, but there is an increase and decrease in the vein–veinlet silicified
rocks and quartz–mica schists, indicating weak carbonation (Figure 12b).
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in the study area [39].

The triangular diagram for Al2O3–MgO–(CaO + Na2O + K2O) and the K2O versus
CaO + Na2O variation diagram clearly show evidence of sericitization in all rocks due to
mica and/or plagioclase alteration (Figure 13a,b). In the graph of K2O versus CaO + Na2O,
CaO + Na2O values decrease in the vein–veinlet silicification zone and quartz–feldspar
porphyry, while K2O values increase in the quartz–mica schist samples. This suggests that
sericite formation began with the decomposition of mica (Figure 13b). According to the
authors of [89], this is due to the alkali change in the sericitization process and the addition
of K from hydrothermal fluids.
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The chemical weathering index (CIA) and the Al2O3–(CaO + Na2O)–K2O (A–CN–K)
triangle diagram [37] were used to assess alteration trends. The diagram shows that
the vein–veinlet silicification zone in the study area contains mostly illite and smectite;
quartz–feldspar porphyries with muscovite, biotite, and smectite; and quartz–mica schists
with illite, muscovite, biotite, and smectite (Figure 14a). Based on the Al2O3–(Na2O +
K2O)–(Fe2O3 + MgO)–K2O triple diagram [18], the vein–veinlet silicification zone and
quartz–mica schist samples are classified as falling within the potassium silicate (K-silicate),
propylitic, and sericitic categories. The quartz–feldspar porphyry samples, however, are
mostly classified as falling within the propylitic category and, to a lesser extent, the potas-
sium silicate category (Figure 14b).
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5.5. Molar Ratio and Mass Gain/Loss

Molar ratio graphs are useful in calculating the mass loss and gain resulting from
alteration in magmatic rocks [40–42] and mineral deposits, particularly in relation to large
hydrothermal systems [51–54]. Several methods have been used to calculate mass loss
and gain in ore deposits [22,35,46,48]. The process of mass exchange via hydrothermal
alteration minerals is also explained. These methods offer a graphical means for evaluating
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the extent of K and Ca-metasomatism, as well as Ca and Na depletion, in altered rocks. The
methods also provide comparisons for geochemical assessment of mineralogical tendency
that is focused on epithermal ore bodies and the compositions of hydrothermal minerals
and altered rocks contained therein.

The resulting data were used to plot the (2Ca + Na + K)/Al and K/Al molar element
ratios, as shown in Figure 15. The process of mass exchange via hydrothermal alteration
minerals is also explained. In the study area, the quartz–feldspar porphyry samples fall
into the category of feldspar composition and biotite mixes on the left side of the vertical
line, where the 2Ca + Na + K/Al value is 1.0 on the x-axis. This suggests the presence of
intense alteration, with an increase in K-metasomatism and a decrease in Ca and/or Na
metasomatism. The vein–veinlet silicification zone and quartz–mica schist samples fall
into the K-mica area. These data indicate the presence of sericitic and argillic alteration
types. In the study area, a sample from the vein–veinlet silicification zone and a sample
from quartz–feldspar porphyry fall within the range to the right of the vertical line on the
x-axis, where the 2Ca + Na + K/Al value is 1.0 (Figure 15). This suggests an increase in Na,
Ca, and K in these samples, with propylitic alteration in the quartz–feldspar porphyry and
silicic alteration in the vein–veinlet silica zone.
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+ K)/Al–K/Al molar element ratio graph, mass transfer and related alteration minerals [45].

The study area’s alteration sample data are plotted using the molar K2O/
Al2O3–Na2O/Al2O3 diagram of [41]. The vein–veinlet silicified zone is observed on the left
side of the albite–muscovite line, on the right side of the quartz–feldspar porphyry line, and
on both sides (left side strong-to-medium argillic alteration, right side strong-to-medium
sericitic alteration). Additionally, quartz–mica schists are located on the albite-muscovite
line (Figure 16a). The examined samples exhibit argillic, sericitic, and propylitic alter-
ation, as evidenced by the presence of the chlorite, adularia, clay minerals, muscovite
(sericite), and epidote mineral associations. Additionally, silicic alteration is observed
in silica veins located near the Na2O/Al2O3 y-axis. All samples analyzed fall below the
plagioclase–K-feldspar (biotite) line, indicating depletion in Na2O and enrichment in K2O.
The plot showing the molar ratio of K2O/Al2O3 versus MgO/Al2O3 [41] demonstrates the
relationship between muscovite and chlorite (Figure 16b). This suggests that muscovite
(sericite) and minerals rich in K and Al (such as clay minerals, adularia, and alunite),
and Al-enriched chlorite, are the most abundant minerals in altered rocks. As shown in
Figure 16b, the vein–veinlet silicified zone is located in the low-Mg chloride field of the
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plot, while the quartz–feldspar porphyry muscovite and the quartz–mica schist are mostly
found in the field characterized by low-Mg chloride and less muscovite.
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The TiO2–Al2O3 graph [35] indicates a single alteration trend from weak to strong for
the silica vein, quartz–feldspar porphyry, and quartz–mica schist altered rocks (Figure 17).
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6. Discussion

The Çamlıca metamorphic rocks, Kestanelik granodiorite, and Şahinli Formation
volcanics in and around the Kestanelik Au mine deposit have undergone intense alteration.
XRD results show the presence in all samples of mineral associations characterized by
mainly quartz, illite/muscovite, and chlorite, with lesser amounts of calcite/dolomite,
kaolinite, smectite, hematite, and alunite. These mineral assemblages and their various
parageneses are similar to those observed in typical low-sulfidation epithermal deposits.
Based on the petrographic studies, XRD results, and mass balance calculations, the gold-
bearing silicified veins in the deposit display various types of hydrothermal alteration,
including predominantly sericitic, argillic (K-metasomatic), and propylitic (Fe-rich chlorite),
with lesser K-silicate, chloritization, and carbonation observed from the inside to the
outside. Figure 18 shows a schematic model of the alteration zone halos of the Kestanelik
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Au deposit, as presented in the genetic model developed by [13,91] for low-sulfidation
epithermal gold deposits.
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Figure 18. Schematic model showing the alteration zone halos of the Kestanelik low-sulfidation
epithermal Au deposit.

These findings are based on field observations, mineral contents, mineral associa-
tions from polarizing microscope studies, and XRD analysis [22]. The alteration minerals
and Au–silica in the alteration zone are assumed to have formed from hydrothermal pro-
cesses that led to alteration of the metamorphic and granodiorite rocks. These processes
were controlled by faults and fractures under specific temperature and acidic pH condi-
tions. The presence of argillic (illite/muscovite) and advanced argillic (alunite + dickite/
nacrite + pyrophyllite) alteration has been reported [3] in the vicinity of the study area.
According to petrographic observations, silicification occurs in and around the main
proximal alteration veins at Karatepe [92], located north of the study area. Additionally,
quartz–sericite/illite ± adularia alteration surrounds the silicification zone. Furthermore, a
distal to proximal change has been described in the silica ± smectite ± kaolinite ± Fe–Mg
chlorite assemblage away from the mineralized veins. The outermost part of the alteration
halo contains relatively less smectite and more Fe–Mg chlorite. In the argillic alteration
zone of the Ovacık–Bergama Au–Ag deposit [28], biotite was transformed into Fe–Mg
chlorite and smectite between 300 and 250 ◦C, pure illite was formed at 200 ◦C and pH
5–6, and silica was transported out to open the path for the hydrothermal system and
to form the siliceous cap in and around the deposit. Smectite–illite mixed layers formed
under acidic conditions (200–80 ◦C), and this allowed for the Au–silica mineralization. As
the temperature decreased to 130 ◦C and the pH decreased to 3, the mineralized parts of
the epithermal system and the non-ore rocks were affected. The precipitation of a silica
cap in the Karaçayır kaolin deposit was caused by the release of silica during silicification
processes, indicating hydrothermal activity within the rhyolitic tuffs and schists [31]. The
silicified zones and Fe–oxyhydroxides were formed by alteration processes that occurred
within kaolinized Miocene volcanics and Paleozoic shales.
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The origin, temperature conditions, and hydrothermal activity of mineralization fluids
have been determined for the Koru, Tesbihdere, and Kumarlar mineralization areas near
the Kestanelik gold field [32]. The Kübler index for illites indicates low temperature
(high-grade diagenesis) for the Koru deposit and high temperature for the Tesbihdere
and Kumarlar deposits, and the major-trace element composition and low octahedral
Mg + Fe contents are compatible with hydrothermal illites. The Çöpler Cu–Au deposit
exhibits potassic, phyllic, propylitic, and, argillic (quartz + smectite + kaolinite), and
advanced argillic (quartz + illite–smectite, quartz + crandallite + jarosite, and cristobalite)
hydrothermal alteration zones in the Middle Eocene granodiorite-diorite porphyries and
Late Paleozoic–Mesozoic metapelite–metacarbonate rocks [33].

Rare earth elements (REEs) play an important role in interpreting the nature of hy-
drothermal solutions that alter host rocks in and around mineralization. Although previ-
ously considered immobile, recent studies have shown that REEs can be mobilized through
the circulation of hydrothermal fluid [93–95]. The distribution patterns of REEs in various
rocks, as well as the abundance of light rare earth elements (LREEs) compared to heavy rare
earth elements (HREEs), and the concentrations of REEs in all rocks, tend to decrease with
increasing hydrothermal alteration intensity. Apparently, the hydrothermal fluids responsi-
ble for alteration in the Kestanelik Au deposit and host rocks had low REE contents, which
were mobilized. Negative Eu anomalies are caused by the kaolinization of feldspars and mi-
cas and the chloritization of biotite and feldspars. It has been reported [32] that illites from
the Tesbihdere and Kumarlar deposits have low chondrite-normalized abundances and
negative Eu anomalies similar to the samples from the Kestanelik field. The alteration (hy-
drothermal and supergene) of granitic rocks in SW England may have caused the mobility
of REEs, particularly trivalent REEs extracted from the system during K-silicate alteration,
Eu lost during sericitic alteration, and light REEs removed from hydrothermal systems
throughout chloritization and argillic alteration. Analysis of the separated minerals has
revealed significant negative Eu anomalies in the micas and a positive Eu anomaly in the
K-feldspar [92]. REEs were mobilized and fractionated during the supracrustal alteration
of the Torrongo granodiorite, and the primary and moderately altered rocks are especially
enriched in heavy REEs, whereas the strongly altered components are particularly depleted
in heavy REEs. Furthermore, the mobility of REEs is likely controlled by pH variations in
soil and groundwater. As different chemical environments are encountered, fractionation
may also occur due to mineralogical controls [96].

Hydrothermal alteration results in significant variations in the elemental content and
mineralogical composition of the host rocks through which hydrothermal fluids have
circulated. These metasomatic exchange reactions can be calculated using various methods,
such as mass exchange computations, alteration indices, and molar element ratios. Some
researchers have frequently used molar element ratios to identify the dominant alteration
minerals, which form through the replacement of primary minerals, mainly in magmatic
rocks [8,49,50,97]. In a low-sulfidation epithermal system in New Zealand, the authors
of [97] used the molar ratios of rock-forming elements in feldspars and phyllosilicate
alteration minerals to determine the abundance of alteration minerals.

Molar elemental ratios indicate the presence of unaltered rocks, K gain, and Na-Ca
loss, as well as the existence of illite–smectite–kaolinite associations. The ratios suggest the
existence of illite–smectite–kaolinite when K/Al is between 0.2 and 0.33, less than 0.2, and
equals zero, respectively.

The quartz–feldspar porphyry samples in the Kestanelik gold field fall within the
range of 2Ca + Na + K/Al and K/Al values of the feldspar compositions and biotite
mixtures. Furthermore, the vein–veinlet silicified zone and quartz–mica schist samples fall
into the K-mica area. The presence of alteration samples in these areas indicates sericitic
and argillic alteration types. Additionally, there is propylitic alterations in quartz–feldspar
porphyry and silicic alteration in silica veins resulting from the gains in Na, Ca, and K.
According to the authors of [8], illite–smectite, illite, K-mica, and K-feldspar–biotite areas
are found in the NW Iran Tarom–Hashtjin precious and base metal epithermal deposits,
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indicating propylitic and argillic alteration types. Additionally, there is propylitic alteration
in quartz–feldspar porphyry and silicic alteration in silica veins resulting from the gains in
Na, Ca, and K.

In the vein–veinlet silicified zone, quartz–feldspar porphyry, and quartz–mica schist
samples obtained from the Kestanelik Au deposit, the Ishikawa alteration index and
chlorite–carbonate–pyrite index diagram show that the most abundant alterations were
chlorite–pyrite, sericite–chlorite–pyrite, chlorite–pyrite–sericite, and chlorite–carbonate,
and these indices also revealed the presence of argillic, chlorite, and propylitic alterations.
Comparison of Na2O, K2O, Al2O3, CaO, MgO, and FeO contents of hydrothermal alter-
ation samples in the Kestanelik gold deposit with the Ishikawa alteration index revealed
mainly chlorite–sericite, and sericite mineral associations, and less adularia–sericite. This
association indicates sericitic (argillic), propylitic, and adularia alteration types, which is
characteristic of low-sulfidation epithermal deposits. In a previous study, the pyrite, sericite,
and chlorite–carbonate in the epithermal vein samples of the Siah Jangal–Sar Kahno gold
deposit in SE Iran tended to be argillic, sericite–carbonate, and clay minerals in most of the
samples [6].

The diagram showing the sericitization index plotted against K2O + Na2O and CaO
content indicates that all samples were within the hydrothermal alteration area and that the
variation in the sericitization index indicates weak carbonation. It was reported [49] that
the samples from the Zigana volcanics generally indicate some degree of hydrothermal
alteration, according to the K2O + Na2O sericitization index. Additionally, carbonation is
the dominant alteration type in the Arzular epithermal gold mineralization area, based on
K2O + Na2O and CaO diagrams plotted for andesite samples [50].

Based on the chemical alteration index, the Kestanelik gold field mostly displays vein–
veinlet silicified zone samples in the illite and smectite areas, quartz–feldspar porphyry
samples in the muscovite, biotite, and smectite areas, and quartz–mica schist samples in the
illite, muscovite, biotite, and smectite areas. The Al2O3–(Na2O + K2O)–(Fe2O3 + MgO)–K2O
triple diagram indicates that the vein–veinlet silicified zone and quartz–micaschist samples
plot in the K-silicate, propylitic, and sericitic fields, while the quartz–feldspar porphyry
mainly plots in the propylitic and less within the K-silicate field. The quartz–feldspar
porphyry samples from the Kestanelik gold deposit plot within the range of 2Ca + Na +
K/Al and K/Al values of the feldspar compositions and biotite mixtures. Additionally,
the vein–veinlet silicified zone and quartz–mica schist samples fall into the K-mica field.
The presence of alteration samples in these fields indicates sericitic and argillic alteration
types. Additionally, there are propylitic alterations in quartz–feldspar porphyry and silicic
alterations in silicified veins because of gains in Na, Ca, and K.

The diagram displaying the molar K2O/Al2O3–Na2O/Al2O3 ratio indicates mod-
erate to strong argillic and sericitic, silicic, and propylitic alterations. The K2O/Al2O3–
MgO/Al2O3 molar ratio plot shows the recovery of K and Al after the relationship between
muscovite and chlorite. The molar ratio graph for the porphyry unit in the Karatepe sector
shows that most of the data indicate interlayered illite–smectite, illite, and K-mica with high
Na and Ca loss. This suggests a correlation between the proximity to Au mineralization
and the gain and loss of K [89]. The TiO2–Al2O3 graph shows a single trend from weak to
strong for all rock groups in terms of hydrothermal alteration. In a previous study using
this method [8], the main types of alteration in the Tarom–Hashtjin epithermal deposits
were identified as argillic, sericitic, and propylitic. Similarly, the authors of [9] detected a
single alteration trend from dioritic rocks and weakly altered rocks to strongly altered flysch
host rocks and epithermal veins in the Siah Jangal–Sar Kahno epithermal gold deposit.
Additionally, the authors of [6] reported moderate composition and mass gain when this
method was applied to samples from the epithermal gold deposit.
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7. Conclusions

The Kestanelik gold deposit is a low-sulfidation epithermal deposit that developed
during intense hydrothermal alteration. Alterations primarily occurred in metamorphic
rocks and granodiorite and occurred less often in volcanic rocks. Mineralization was
controlled by silicified veins, stockwork veinlets, and tectonic elements.

The dominant alteration type observed in the central area of the chlorite–pyrite zone
is the silicified vein and breccia system that contains ore. The ore is frequently located
in close proximity to fluid channels. Trending toward the periphery, the ore mineral-
ization is surrounded by zones of sericite–chlorite–pyrite, chlorite–pyrite–sericite, and
chlorite–carbonate alteration mineral assemblages.

The Kestanelik Au mineralization was accompanied by hydrothermal fluids that caused
alteration, including REE mobilization, kaolinization of feldspars and micas, and chloritiza-
tion of biotite and feldspars. This alteration likely resulted in negative Eu anomalies.

Results from the mass balance calculations indicate that analyzing intensely to moder-
ately altered source rocks is a valuable method for measuring elemental changes during
metasomatic reactions.

The petrographic studies and mass balance calculations based on the analysis of
geochemical characteristics indicate the type and intensity of hydrothermal alteration. The
zoned alteration comprises silicic, argillic (K-metasomatic), sericitic, and propylitic (Fe-rich
chlorite) types, which are commonly found in epithermal ore systems.

The chemical composition of the hydrothermal fluid was investigated by calculating
the elemental gains and losses. The results show that the fluid was enriched in Si, K, and
Al, but depleted in Na and Ca.

The Ishikawa alteration index and chlorite–carbonate–pyrite index were effective in
determining alteration types. Additionally, the sericitization index and chemical alteration
index provided helpful information.
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Appendix A

Table A1. Major- and minor oxide, compositions with trace and rare earth element contents of the drilling samples from the study area [22].

Silicified Vein

Major Oxides (wt.%) DL KED 2-2 KED2-6 KED2-7 KED2-13 KED17-8 KED63-2 KED63-3 KED63-5 KED63-9 KED63-10 KED63-11

SiO2 0.01 96.32 84.32 96.50 98.02 95.37 74.04 57.74 83.90 93.53 86.04 69.14

Al2O3 0.01 1.20 6.67 1.23 0.55 0.97 11.89 10.85 6.41 1.19 6.36 14.33

Fe2O3 0.04 0.77 3.18 0.60 0.61 1.45 4.49 8.03 3.87 3.46 3.09 6.09

MgO 0.01 0.09 0.76 0.05 0.04 0.04 1.90 4.13 1.07 0.10 0.41 1.79

CaO 0.01 0.06 0.06 0.06 0.10 0.10 0.29 4.75 0.13 0.13 0.09 0.12

Na2O 0.01 0.02 0.07 0.02 <0.01 0.01 0.42 0.16 0.06 0.02 0.06 0.24

K2O 0.01 0.20 1.84 0.17 0.03 0.09 3.11 2.54 1.51 0.13 1.35 3.59

TiO2 0.01 0.05 0.37 0.02 <0.01 <0.01 0.57 0.64 0.36 0.02 0.31 0.75

P2O5 0.01 0.02 0.05 <0.01 <0.01 0.02 0.13 0.16 0.07 0.02 0.03 0.10

MnO 0.01 0.01 0.02 <0.01 <0.01 <0.01 0.11 0.47 0.03 0.02 <0.01 0.03

Cr2O3 0.002 0.002 0.022 0.002 <0.002 <0.002 0.015 0.013 0.012 <0.002 0.009 0.015

Total/C 0.02 0.02 0.04 0.02 0.03 0.03 0.03 2.54 0.04 0.07 0.04 0.10

Total/S 0.02 <0.02 <0.02 <0.02 <0.02 0.46 0.07 0.13 <0.02 <0.02 <0.02 <0.02

LOI 0.1 1.20 2.60 1.30 0.60 1.47 2.90 10.30 2.50 1.35 2.20 3.6

Total 0.01 99.94 99.96 99.95 99.95 99.98 99.94 99.91 99.92 99.97 99.95 99.80

Trace-REE (ppm)

Ba 1 199.00 225.00 18.000 252.00 27.00 428.00 305.00 173.00 21.00 165.00 405.00

Rb 0.1 0.20 2.50 0.20 <0.10 0.20 2.90 3.20 2.00 0.10 1.80 4.5

Sr 0.5 1.80 6.60 0.90 0.50 0.60 9.40 10.00 6.10 0.60 5.50 13.3

Nb 0.1 12.70 90.90 11.90 4.00 7.20 99.90 106.90 72.90 11.50 71.90 173.6

Hf 0.1 12.60 27.00 17.30 10.00 20.30 14.90 44.40 21.20 14.10 23.70 59.2

Ta 0.1 0.60 4.40 0.70 <0.20 <0.20 6.50 9.60 5.60 0.90 4.60 9.8
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Table A1. Cont.

Silicified Vein

Trace-REE (ppm)

V 8 12.00 61.00 <8.00 <8.00 20.00 107.00 119.00 60.00 19.00 63.00 125

Zr 0.1 7.60 89.70 6.30 2.00 5.10 104.50 115.70 78.70 4.50 69.50 165.0

Y 0.1 1.70 23.00 5.90 0.20 10.40 14.50 24.90 19.10 1.80 14.70 25.4

Cu 0.1 15.80 11.30 9.70 6.80 20.10 62.30 75.90 16.20 8.30 9.50 18.1

Pb 0.1 171.30 57.9 93.50 65.30 60.90 18.40 44.50 16.60 28.90 20.00 17.9

Zn 1 65.00 86.000 32.00 18.00 25.00 62.00 88.00 54.00 24.00 21.00 86

As 0.5 15.20 36.40 10.10 9.70 615.20 37.00 37.60 48.60 318.10 151.10 41.8

Sb 0.1 5.80 12.00 4.70 1.50 17.20 21.20 3.10 25.00 258.00 76.30 15.7

Ag 0.1 2.40 0.20 0.70 1.00 2.90 <0.10 0.30 0.20 0.50 0.50 0.3

Au (ppb) 0.5 266.20 80.80 64.70 434.20 7060.70 4.00 2.50 140.10 95.20 432.00 42.8

Hg 0.01 0.08 0.02 0.05 0.02 0.09 0.11 0.05 0.02 0.06 0.05 0.04

La 0.1 2.10 16.20 2.20 0.60 2.20 14.20 25.90 18.00 2.50 17.80 27.7

Ce 0.1 2.50 32.70 3.50 0.50 3.00 29.80 48.50 32.80 3,00 33.20 56.6

Pr 0.02 0.32 3.77 0.47 0.08 0.39 3.36 5.84 3.79 0.38 3.84 6.33

Nd 0.30 1.40 14.30 1.80 0.30 1.70 12.10 22.50 14.20 1.40 14.70 22.6

Sm 0.05 0.35 3.04 0.49 0.16 0.60 2.85 4.66 3.06 0.41 3.01 4.53

Eu 0.02 0.07 0.64 0.16 0.02 0.29 0.73 1.16 0.79 0.11 0.78 1.09

Gd 0.05 0.58 3.13 0.92 0.36 1.31 2.84 5.01 3.22 0.57 2.95 4.44

Tb 0.01 0.04 0.54 0.12 0.02 0.21 0.44 0.81 0.52 0.07 0.44 0.74

Dy 0.05 0.28 3.36 0.72 0.10 1.43 2.45 4.43 3.15 0.37 2.54 4.37

Ho 0.02 0.06 0.75 0.19 <0.02 0.30 0.56 0.90 0.68 0.07 0.47 0.90

Er 0.03 0.21 2.13 0.52 0.03 0.88 1.77 2.76 1.97 0.20 1.47 2.58

Tm 0.01 0.03 0.33 0.08 0.01 0.12 0.25 0.41 0.28 0.04 0.21 0.39

Yb 0.05 0.17 1.98 0.54 0.10 0.81 1.87 2.74 1.80 0.19 1.49 2.71

Lu 0.01 0.04 0.28 0.09 0.02 0.12 0.30 0.40 0.27 0.03 0.24 0.40
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Table A1. Cont.

Quartz–Feldspar-Porphyry

Major Oxides (wt.%) DL KED6-3 KED6-4 KED6-5 KED6-6 KED6-7 KED6-8 KED6-10 KED17-1 KED17-2- KED17-6 KED17-7 KED135-3

SiO2 0.01 67.88 70.41 69.97 67.10 71.32 6618 73.71 64.79 75.49 89.52 83.08 67.69

Al2O3 0.01 14.99 13.77 13.45 16.39 13.62 14.04 11.48 16.00 11.92 3.34 7.37 16.61

Fe2O3 0.04 3.05 3.61 2.52 2.59 2.79 3.48 3.46 4.57 2.10 3.35 2.35 2.31

MgO 0.01 1.51 1.30 0.89 0.94 0.90 1.15 0.83 1.03 0.38 0.10 0.47 0.56

CaO 0.01 0.30 0.33 0.26 0.31 0.34 0.28 0.22 0.35 0.13 0.07 0.15 0.17

Na2O 0.01 2.82 1.30 0.31 0.71 1.16 0.34 0.69 0.25 0.19 0.09 0.08 0.25

K2O 0.01 7.00 6.61 8.90 8.27 6.68 9.21 6.79 9.03 6.89 2.06 4.34 8.13

TiO2 0.01 0.36 0.40 0.39 0.44 0.40 0.42 0.35 0.45 0.34 0.08 0.19 0.48

P2O5 0.01 0.14 0.14 0.13 0.15 0.13 0.14 0.12 0.13 0.03 0.03 0.05 0.05

MnO 0.01 0.07 0.07 0.05 0.04 0.05 0.06 0.05 0.03 0.01 <0.01 0.03 0.02

Cr2O3 0.002 0.004 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002

Total/C 0.02 0.02 0.03 0.02 0.03 0.03 0.06 <0.02 0.04 0.04 0.04 0.03 <0.02

Total/S 0.02 0.45 0.05 0.62 0.38 0.11 1.22 1.22 <0.02 <0.02 0.54 <0.02 <0.02

LOI 0.1 1.31 1.90 2.35 2.51 2.50 3.30 0.95 3.20 2.40 0.78 1.80 3.60

Total 0.01 99.88 99.89 99.84 99.83 99.97 99.82 99.87 99.83 99.88 99.96 99.91 99.87

Trace-REE (ppm)

Ba 1 230.00 670.00 674.00 791.00 668.00 647.00 583.00 836.00 575.00 190.00 142.00 866.00

Rb 0.1 3.50 3.30 3.10 3.30 3.00 3.00 2.60 3.20 2.80 0.60 1.40 2.90

Sr 0.5 3.70 6.40 6.30 7.10 6.70 6.30 5.50 7.10 5.70 2.00 3.00 6.70

Nb 0.1 365.00 315.80 426.70 404.40 319.70 442.20 307.50 420.60 325.50 97.20 217.00 371.80

Hf 0.1 65.60 159.00 124.70 114.30 171.80 143.40 72.20 78.60 90.30 30.80 36.90 96.60

Ta 0.1 3.90 9.10 10.00 11.10 9.70 9.60 9.10 10.80 8.10 2.40 4.30 10.80

V 8 50.00 76.00 74.00 74.00 68.00 74.00 59.00 83.00 51.00 23.00 43.00 75.00
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Table A1. Cont.

Quartz–Feldspar-Porphyry

Trace-REE (ppm)

Zr 0.1 134.90 121.30 105.60 113.20 108.30 109.50 99.00 113.60 93.00 19.60 53.40 109.00

Y 0.1 26.00 10.50 11.60 13.90 14.50 13.60 12.00 12.30 10.30 4.10 8.60 12.20

Cu 0.1 12.80 10.40 12.40 16.10 26.60 34.60 9.30 8.30 7.10 22.50 20.80 6.60

Pb 0.1 60.90 35.90 53.40 29.40 13.50 102.10 32.40 31.40 34.70 69.60 46.80 7.20

Zn 1 93.00 49.00 34.00 31.00 32.00 54.00 40.00 97.00 33.00 26.00 62.00 22.00

As 0.5 413.70 5.50 340.90 458.20 175.50 1376.50 213.60 154.20 85.60 356.00 68.40 43.60

Sb 0.1 7.30 1.00 10.60 8.20 3.90 28.80 3.00 23.00 9.80 19.40 14.70 6.60

Ag 0.1 0.20 0.10 0.20 0.40 0.20 0.30 0.70 0.20 0.20 2.60 0.30 0.10

Au (ppb) 0.5 26.10 39.60 25.70 2.30 2.40 59.20 436.00 71.10 171.50 1205.10 461.20 136.20

Hg 0.01 0.11 0.03 0.29 0.24 0.11 0.66 0.10 0.01 0.02 0.16 0.03 <0.01

La 0.1 13.50 20.60 22.30 26.00 20.50 25.00 22.30 21.20 20.70 7.50 11.20 23.60

Ce 0.1 26.30 37.10 39.70 47.80 37.10 45.30 39.10 38.90 34.10 12.60 20.00 40.20

Pr 0.02 3.40 4.02 4.28 5.08 3.85 5.06 4.32 4.57 3.78 1.43 2.18 4.49

Nd 0.30 11.20 14.80 14.70 18.30 13.10 18.20 16.00 16.50 13.40 5.70 8.00 16.30

Sm 0.05 2.58 2.95 2.93 3.42 2.87 3.65 2.95 3.13 2.70 1.09 1.60 3.44

Eu 0.02 0.75 0.80 0.80 1.09 0.79 0.96 0.82 0.92 0.77 0.22 0.44 0.85

Gd 0.05 2.97 2.84 2.68 3.40 2.74 3.30 2.93 2.98 2.59 1.12 1.75 2.98

Tb 0.01 0.55 0.39 0.40 0.47 0.42 0.47 0.40 0.42 0.37 0.13 0.25 0.41

Dy 0.05 3.55 1.99 2.01 2.52 2.39 2.53 2.19 2.43 1.98 0.78 1.33 2.18

Ho 0.02 0.82 0.37 0.43 0.49 0.55 0.49 0.43 0.52 0.38 0.13 0.31 0.45

Er 0.03 2.32 1.12 1.17 1.49 1.56 1.43 1.24 1.43 1.19 0.43 0.89 1.24

Tm 0.01 0.37 0.19 0.20 0.27 0.25 0.22 0.19 0.23 0.18 0.06 0.15 0.18

Yb 0.05 2.30 1.30 1.28 1.59 1.59 1.56 1.40 1.63 1.21 0.44 0.95 1.48

Lu 0.01 0.37 0.21 0.20 0.28 0.24 0.25 0.23 0.27 0.19 0.09 0.15 0.23
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Table A1. Cont.

Quartz–Mica Schist

Major Oxides (wt.%) DL KED2-5 KED2-11 KED6-11 KED44-2 KED44-3 KED44-12 KED70-1 KED70-2

SiO2 0.01 90.65 95.19 80.37 87.95 78.10 52.92 95.78 71.54

Al2O3 0.01 2.79 1.88 9.22 4.66 8.78 14.85 1.19 9.37

Fe2O3 0.04 2.88 1.15 2.91 2.67 4.66 14.06 0.65 7.92

MgO 0.01 0.21 0.16 0.49 0.73 2.00 4.78 0.09 3.08

CaO 0.01 0.004 0.06 0.09 0.13 0.15 0.44 0.07 0.17

Na2O 0.01 0.03 0.03 0.09 0.03 0.04 0.06 0.01 0.03

K2O 0.01 0.99 0.37 3.61 1.60 2.44 3.56 0.11 2.77

TiO2 0.01 0.13 0.07 0.45 0.22 0.50 1.63 0.01 0.68

P2O5 0.01 0.07 0.02 0.06 0.05 0.07 0.15 0.07 0.09

MnO 0.01 0.02 0.02 <0.01 0.01 0.03 0.07 <0.01 0.04

Cr2O3 0.002 0.008 0.004 0.010 0.004 0.035 0.036 <0.002 0.030

Total/C 0.02 0.08 0.03 0.04 <0.02 0.03 0.02 0.79 0.07

Total/S 0.02 0.06 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

LOI 0.1 2.10 1.00 2.60 1.90 3.10 7.20 2.00 4.10

Total 0.01 99.98 99.95 99.90 99.95 99.91 99.77 99.98 99.82

Trace-REE (ppm)

Ba 1 90.00 92.00 281.00 120.00 279.00 95.00 36.00 208.00

Rb 0.1 0.80 0.60 3.30 1.30 2.80 2.80 0.20 2.30

Sr 0.5 2.50 1.70 8.60 4.10 8.90 1.80 0.40 11.00

Nb 0.1 49.40 21.80 191.10 67.80 113.00 177.80 10.20 132.40

Hf 0.1 16.20 19.00 58.00 24.50 18.40 75.20 149.60 47.60

Ta 0.1 2.10 1.00 6.70 4.00 6.60 <0.20 0.80 5.90

V 8 25.00 18.00 71.00 41.00 75.00 319.00 10.00 103.00
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Table A1. Cont.

Quartz–Mica Schist

Trace-REE (ppm)

Zr 0.1 33.90 24.10 129.70 47.30 105.00 100.50 6.0 94.60

Y 0.1 5.30 2.70 14.60 13.10 20.50 30.10 4.000 17.50

Cu 0.1 33.50 15.90 13.90 16.70 22.30 40.60 54.60 33.70

Pb 0.1 128.10 95.10 27.90 24.80 13.70 21.80 26.00 28.00

Zn 1 49.00 54.00 21.00 38.00 88.00 128.00 16.00 101.00

As 0.5 169.80 16.10 99.50 105.60 118.60 326.20 10.90 422.40

Sb 0.1 7.80 3.60 18.90 25.80 17.00 40.70 8.90 58.90

Ag 0.1 0.70 0.70 0.30 0.20 <0.10 0.20 10.40 0.40

Au (ppb) 0.5 376.40 376.70 552.1 79.4 18.70 128.00 903.10 158.10

Hg 0.01 0.06 0.04 0.04 0.01 <0.01 0.020 2.87 0.02

La 0.1 7.60 2.40 19.5 19.6 23.30 3.70 5.20 22.90

Ce 0.1 11.30 3.40 37.6 33.8 45.40 6.50 6.70 43.80

Pr 0.02 1.19 0.54 4.51 4.58 5.54 1.23 0.84 5.02

Nd 0.30 4.40 2.00 17.5 17.0 21.80 6.30 4.00 19.90

Sm 0.05 0.99 0.55 3.57 3.37 4.29 2.19 1.10 4.03

Eu 0.02 0.20 0.10 0.75 0.74 0.94 0.74 0.24 0.85

Gd 0.05 1.04 0.72 3.13 3.08 4.19 3.87 1.12 3.85

Tb 0.01 0.15 0.08 0.47 0.41 0.62 0.76 0.12 0.57

Dy 0.05 0.88 0.48 2.47 2.21 3.30 5.10 0.64 3.07

Ho 0.02 0.20 0.09 0.56 0.44 0.69 1.17 0.13 0.64

Er 0.03 0.58 0.25 1.58 1.28 2.01 3.31 0.35 1.84

Tm 0.01 0.10 0.05 0.24 0.20 0.30 0.50 0.05 0.27

Yb 0.05 0.67 0.29 1.74 1.30 1.92 3.27 0.31 1.77

Lu 0.01 0.11 0.05 0.25 0.21 0.32 0.50 0.05 0.27
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