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Abstract: The subsurface confinement of anthropogenic carbon dioxide (CO2) demands robust
risk assessment methodologies to identify potential leakage pathways. Legacy wells within the
Area of Review (AoR) represent one potential leakage pathway. Robust methodologies require
enormous amounts of data, which are not available for many old legacy wells. This study strategically
categorizes 4386 legacy wells within the AoR of a potential CO2 storage site in the Illinois basin
and identifies the high-risk wells by leveraging publicly available data—reports and well logs
submitted to state regulatory agencies. Wells were categorized based on their proximity to the
injection well location, depth, the mechanical integrity of well barriers, and the accessibility to
these wells throughout the project lifecycle. Wells posing immediate risks were identified, guiding
prioritized corrective actions and monitoring plans. Out of 4386 wells, 54 have high priority for
corrective action, 10 have medium priority, and the remainder are of low priority. Case study results
from the Illinois basin demonstrate the effectiveness and applicability of this approach, to assess
the risk associated with legacy wells within the AoR of potential CO2 storage site, strategically
categorizing over 4000 such wells despite data limitations.

Keywords: carbon capture and storage (CCS); well integrity; risk assessment; legacy wells; CO2

leakage; Class VI Permit application

1. Introduction

The escalating levels of greenhouse gases, primarily carbon dioxide (CO2), in the
atmosphere are attributed to global climate changes. To mitigate this, Geological Carbon Se-
questration (GCS) or Carbon Capture and Storage (CCS) methods have emerged, enabling
the capture and permanent storage of CO2 underground [1]. Pilot CCS projects worldwide
have capitalized on learnings from CO2-enhanced oil recovery initiatives, as highlighted in
research [2]. The core aim of CCS projects is to securely store CO2 underground, preventing
its escape to underground sources of drinking water (USDW) or surface leakage, which
could contaminate water sources and alter their chemical composition [3,4]. Essential
to safeguarding groundwater quality is a robust testing and monitoring regimen encom-
passing various parameters such as mechanical integrity, injection pressure, corrosion,
and groundwater assessments [5,6]. Understanding CO2 leakage pathways, classified as
artificial penetrations (wellbores) and geological features (faults and fractures), is critical
for effective monitoring [7].

Legacy wellbores, or improperly plugged and abandoned oil and gas wells, act as a
threat to the success of the CCS projects if they remain unidentified and/or if remedial
actions are not taken. The standards for cement compositions and well-plugging procedures
were set up in 1952 by the American Petroleum Institute (API); prior to that, mainly wood
(logs), mud, animal carcasses, etc. were used as plugging materials. With the standardized
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plugging procedures and regulations set by the API, cement and mud became the most
widely used plugging materials [8]. After the discovery of oil in 1859, several thousands of
wells were drilled and left unplugged until the oil and gas divisions for each state were set
up [4,9]. As of April 2022, there were 123,318 documented orphaned oil and gas wells (a
sub-category of unplugged abandoned oil and gas wells) in the US that represent ~3% of
the abandoned wells. This count does not take into account the undocumented orphaned
wells or potential orphaned wells based on experts’ opinions [10]. Cahill and Samano [11]
assessed the long-term integrity of onshore decommissioned oil and gas wells in the UK
and differentiated them into groups based on their potential of integrity failure. There
are several reasons for the improper plugging of wells which could be divided into two
broad categories, regulations and operations. The regulations regarding the plugging and
abandonment of oil and gas wells vary from country to country, as well as the year when
these regulations were implemented [12]. The operational difficulties include the effects
of mud–spacer–cement interactions and the reduction in the effective length of cement
plugs due to mud contamination [13–18]. The way to mitigate improperly plugged wells
is to re-enter the wells and re-plug them using appropriate sealant systems, which is a
very costly operation depending upon the number of wells to be re-plugged [19,20]. If
a large number of wells needs to be re-plugged then the operator has another option of
geosteering the CO2 plume using active reservoir management techniques to avoid some
of the risky wells within the predicted Area of Review (AoR) [21–24]. Thus, the density of
improperly plugged and abandoned wells within the CCS sites is one of the components
that will decide the success of the project.

The cement used to plug these abandoned wells was not CO2-resistant cement. Much
of the research in the previous two decades focuses on the interactions of supercritical
CO2, brine, and oil well cement. The reaction of supercritical CO2 with cement is referred
to as the carbonation rate of cement. It is critical to know this rate, as it can be extrapo-
lated to determine how many years the cement can resist the leakage of CO2, provided
the experimental studies are carried out under field conditions [25–30]. Two studies in
particular, Teodoriu and Bello (2020) and DePaolo and Cole (2013) [31,32], reviewed the
experimental work performed by several research groups and summarized their findings
related to interactions of supercritical CO2, brine, and oil well cement. The length of cement
coverage across the casings was the main concern of the operators, but several other factors
showing the integrity of legacy wells were also highlighted in the survey conducted by
Iyer et al. [5,6]. It is, therefore, critical to evaluate if the well barriers reported in the well
documents can resist the attacks of CO2 throughout the lifecycle of the CCS projects or
whether the well barriers need to be repaired for wells within the AoR of the CCS projects.

Various qualitative and quantitative risk assessment methods exist for evaluating
legacy wells, with quantitative methods offering a knowledgeable assessment of risks
and solutions. The literature highlights methodologies utilizing regional well integrity
testing programs, focusing on indicators such as sustained casing pressure (SCP) or casing
vent flow (CVF) data [33–41]. However, SCP reports are scarce and are available for
recently drilled wells where they are mandated by regulations. Other approaches include
using Cement Bond Logs (CBLs) or cement coverage in the annulus as indicators of well
integrity [42–44]. While some studies focus on currently producing or recently drilled
wells, the highest-risk wells are those pre-dating standardized procedures and lacking SCP
reports, CBL data, and cementing or casing details. In instances of missing or inconsistent
data, qualitative assessments are preferred over quantitative methods. The qualitative
risk assessment (QRA) methodology proposed in [45] offers a systematic approach to
evaluate the risks associated with various types of legacy wells, addressing the challenges
posed by limited information and diverse well types. By categorizing legacy wells based
on geological penetrations, accessibility, and barrier integrity, this methodology lays the
foundation for effective risk mitigation strategies and standardized comparisons across
CCS projects globally.



Minerals 2024, 14, 383 3 of 19

Building upon the methodologies outlined in Arbad et al. [46] this study employs
rigorous analysis techniques to evaluate over 4000 legacy wells within the AoR of a potential
geological carbon sequestration site in southern Illinois. By integrating spatial analysis,
geological characteristics, and well integrity assessments based on publicly available data,
this study provides valuable insights into the potential risks associated with the storage site.
The findings serve as a crucial foundation for future decision-making processes, offering
stakeholders a comprehensive understanding of the environmental and safety implications
surrounding the utilization of the site for storage purposes.

2. Materials and Methods
2.1. Categorization Methodology

The qualitative risk assessment (QRA) devised by Arbad et al. [45] centered on evalu-
ating legacy wells within the Area of Review (AoR) using solely well construction details
reported to state agencies, aiding in categorizing and pinpointing wells requiring attention.
The authors delineated nine pre-defined well types based on construction (Figure 1) and
five accessibility levels to these well types, contingent upon their status—Dry and Aban-
doned (DA), Plugged and Abandoned (PA), Injection wells (Inj), Producer (Prod.), and
Observation wells (Obs.)—with detailed definitions provided in Arbad et al. [45]. Assessing
the potential for CO2/brine migration, the methodology considered well integrity barriers
and geologic penetration from publicly available well reports and logs, with well types and
accessibility levels correlating inversely with risk and corrective action costs. A stepwise
procedure to implement this methodology is discussed in Arbad et al. [46] and this study is
the application of the same methodology.
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2.2. Case Study Details

Southern Illinois is a historic coal mining area. The legacy of this area is that it is
home to several coal-fired plants. These coal-fired plants act as point sources of CO2.
A summary of subsurface evaluations for a Southern Illinois site is presented below in
Table 1, which includes the information of the reservoir targets, primary confining units
(seals), USDWs, and legacy wellbore information. The reservoir quality of the St. Peter
Sandstone is well known for historic potable water production across the upper Midwest
and successful natural gas storage operations in Illinois. In the Illinois natural gas storage
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fields, the St. Peter Sandstone has excellent reservoir quality with porosity values of 5%
to over 25% (average 14–16%) and permeability from 10 mD to over 1000 mD (average
150–400 mD). Maquoketa shale acts as a primary confining seal with average porosity deter-
mined using mercury injection of 0.9% and permeabilities near 1.8 × 10−4 mD, indicating
its effectiveness as a barrier to vertical migration of fluids [47].

Table 1. Summary of Subsurface Evaluations—Lively Grove #1 well (LG1) Site.

Storage Reservoir

Name St. Peter Sandstone

Approx. Depth (ft) 3570

Approx. thickness (ft) 170

Primary Confining Seal

Name Ordovician Maquoketa Shale
Group

Approx. Top (ft) 2790

Approx. thickness (ft) 150

Lowermost USDW
Formation name Shallow Bedrock deposits

Approx. Top (ft) Within 500 ft

Legacy Wellbores Well penetrating lowermost
storage reservoir

300 boring records within
25 miles area penetrating

through Maquoketa Shale.

2.3. Data Collection and Quality Control

Illinois State Geological Survey (ISGS) sent the existing database and the related well
reports of legacy wells within a 15-mile radius of the LG1 well. The center of the 15-mile
radius is the LG1 location, i.e., one of the 10-acre spots in the following quarter: SW quarter
of T5W R2W Section #15 at approximately (38.353028, −89.644836) WGS84. The data
package contained 6454 documents (well files in PDF format, and logs in either LAS, TIF,
or pdf format). The existing database provided information on 4386 wellbores with a depth
greater than 100 ft—well data mainly comprised latitude, longitude, proximity to proposed
injection location, completion and plug dates, depths, target formations, formation tops,
and other relative information. The quality and quantity of the data within the files varied
greatly as the wells were drilled and reported during different years ranging from 1893 to
2018. The wellbores of interest for the qualitative risk assessment were shortlisted based on
the following criteria:

• Formation code filtering: All the 4386 wellbores in the existing database were filtered
based on the formation codes, i.e., the deepest formation penetrated by the well. All
the formation codes for formations below the primary confining seal were selected
and all the wells penetrating those formations were shortlisted for evaluation. Table 2
provides the list of formations that are classified as primary confining seals, formations
below the primary confining seals, and the storage reservoir complex for the target
site.

• Depth filtering: As the approximate top of the Maquoketa seal near the LG1 is 2790 ft
and its thickness is approximately 150 ft, wells with TD greater than 2470 ft were
considered for preliminary risk assessment. This eliminated thousands of wells and
only 521 wells with depths greater than 2470 ft were shortlisted.

• AoR filtering: Once the AoR was predicted for a 3-year post-injection differential
pressure based on a 20-year injection period using ISGS, the shapefiles of AoR were
imported into Petra to identify the wells within the predicted AoR. Once the above-
mentioned filters were applied, 94 wells that were penetrating the primary confining
seal (i.e., Maquoketa formation) were evaluated using the qualitative risk assessment
(QRA) methodology developed by Arbad et al. [45,46].
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Table 2. Lively Grove 1 site formation code summary.

Southern Illinois Northern Illinois

Primary Confining Seal

System Group Formation Formation Group System

Ordovician
(209ODVC)

Maquoketa
Fm

(203MQKT)

Brainard
(203BRRD)

Maquoketa
Fm

(203MQKT)

Ordovician
(209ODVC)

Ft. Atkinson
(203FRAK)

Cape Ls
(352CRPR)

Scales Sh
(203SCLS)

Below Primary Confining Seal

Ordovician
(209ODVC)

Galena
(202GLEN)

Kimmswick
Ls

(202KMCK)

Dubuque
(203DUBQ)

Galena
(202GLEN)

Ordovician
(209ODVC)

Wise Lake
(203WSLK)

Decorah
(202DCRH)

Dunleith
(202DNLT)

Decorah
(202DCRH)

Platteville
(202PLVL)

Plattin Ls
(202PLTN)

Quimbys
Mill

(202QMBY)

Platteville
(202PLVL)

Nachusa
(202NCHS)

Grand
Detour

(202GRDD)

Mifflin
(202MFLN)

Pecatonica
(202PCNC)

Pecatonica
(202PCNC)

Ancell
(202ANCL)

Joachim Dol
(202JCHM)

Joachim Dol
(202JCHM)

Ancell
(202ANCL)Dutchtown

Ls

Storage Reservoir

Ordovician
(209ODVC)

Ancell
(202ANCL)

St Peter
(202SPTR)

St Peter
(202SPTR)

Ancell
(202ANCL)

Middle
Ordovician
(209ODVC)

Secondary Storage Reservoir

Cambrian
(159CMBR)

Knox
(169KNOX)

Potosi
(153POTS)

Potosi
(153POTS)

Knox
(169KNOX)

Cambrian
(159CMBR)

2.4. Well Record Evaluation

The well reports of 521 wells were manually evaluated to extract the necessary informa-
tion for QRA, such as casing details, cementing data, well depths, plugging information, etc.
The log files were uploaded to IHS Markit Petra™ software (Version 3.13.2) for geospatial
mapping, well log correlation, and for estimating formation tops for wells with missing in-
formation. The structural elevation of the Maquoketa formation, mapped with the 94 wells
penetrating the primary confining seal as per the ISGS database, is shown in Figure 2. The
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yellow circles represent the wells evaluated using the proposed risk assessment methodology.
These wells may serve as a potential leakage pathway for CO2 if their well integrity is com-
promised. Similarly, Figure 3 shows the structural elevation of the storage complex evaluated
for this site, i.e., the St. Peter Sandstone. The red star on all the maps (Figures 2 and 3) denotes
the LG1 well, and the red solid box indicates the hypothetical injection well location.
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3. Results
3.1. Summary of Wells Evaluated

Based on the depth and formation code filtering mentioned in the previous section,
521 wells were thoroughly evaluated, and a QRA was performed. Figure 4A shows the
age distribution of these 521 wells, while Figure 4B shows the availability of well logs.
Most of the wells were between 32 and 52 years old, with 70 wells aged between 62 and
72 years. These wells were drilled and/or plugged before the standardization of plugging
practices. Approximately 266 wells had electric logs available on the ISGS website, and
203 wells did not run electric logs as mentioned in their well reports. Similarly, the logs of
15 wells were missing, and 37 wells did not mention anything about well logs. Out of the
521 wells, 8 wells had three-hole sections (surface, intermediate, and production), while
the rest had just two-hole sections (surface and production). The statistics regarding the
depths of hole sections and the top of cement (TOC) are presented in Figure 5. Cementing
details were inconsistently reported for the wells under evaluation. The authors contacted
a cementing service provider to gain additional insights into the cement slurries, such as
Class A Portland cement, used to cement most wells (yield—1.18 ft3/sack). If the top of
cement (TOC) was not reported in the well reports, then it was estimated by multiplying the
yield with the number of cement sacks and dividing the product by the annular capacity.
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Out of 521 wells, 327 were plugged and abandoned status or dry and abandoned
status, and plugging reports were available for 311 wells. Since some of the wells were
plugged before the establishment of plugging standards, the number of plugs within each
well varied, as described in Table 3. The length of individual plugs for wells with one, two,
and three plugs is depicted in Figure 6.

Table 3. Number of plugs in abandoned wells.

Number of Cement Plug (s) Number of Wells

1 135

2 115

3 56

4 3

5 1

6 1
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3.2. Qualitative Risk Assessment Summary

Out of 521 wells, only 94 wells within the AoR penetrated the primary confining seal,
and their QRA results are presented in Figure 7. Upon detailed investigation, 85 wells
penetrated the primary confining seal, and 4 wells reached the storage reservoir. There
were two Type 1 wells, i.e., undocumented wells; zero Type 2 and Type 4 wells, two Type
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3 wells, eight Type 5 wells, and fifty-two Type 6 wells. Fifty-four wells had a high priority
for corrective action due to the lack of documentation and/or uncertainty of barriers
across the primary confining seal, while ten wells had medium priority as their status was
active. Twenty-nine wells had a low or the least priority for corrective action as they did not
penetrate the primary confining seal. There was a total of 4312 Type 9 wells (not penetrating
the primary confining seal) within the AoR, including the 10 listed in Figure 7. However,
the 10 listed in Figure 7 were reported as penetrating the primary confining seal according
to the ISGS database, but they were not actually penetrating the primary confining seal
based on the authors’ evaluation of the well logs and regional stratigraphy.
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Figure 7. LG 1 site risk assessment results.

The combined map with the risk assessment of all the wells within the AoR of the
LG 1 site is displayed in Figure 8. The inner circles are color-coded according to their
accessibility, and the outer circles are color-coded based on the well type. The hollow
black circles represent shallow wells that did not penetrate the confining zones and were
filtered out. Figure 9 illustrates the risk assessment of the 94 wells that penetrated the
primary confining seal according to the ISGS database. The pink polygon in Figures 8 and 9
represents the pressure front of the St. Peter Sandstone (storage reservoir) after 20 years
of CO2 injection and a 3-year post-injection period, indicating the maximum size of the
AoR. The red star denotes the LG1 well, and the red solid box indicates the hypothetical
injection well location. This type of map facilitates the easy identification of high-risk wells
and suggests phased corrective actions if there are numerous wells requiring remedial
actions. Additional information, such as faults, surface bodies of water, springs, mines,
quarries, water wells, territory boundaries, and roads, could also be displayed on the
maps using their shapefiles and Geographic Information System (GIS) software. However,
this information is not shown in Figures 8 and 9 to avoid confusion and to highlight the
identification of risky wells with respect to the hypothetical injection location. Presently,
the map component of the UIC Class VI Permit application submitted to the US EPA
merely conveys the surface location of all wellbores, faults, surface bodies of water, springs,
mines, quarries, water wells, territory boundaries, and roads within the AoR. The proposed
categorized mapping of risky legacy wells provides much more information about the
geological penetrations and protections than solely the surface locations submitted to the
US EPA.
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4. Discussion
4.1. Salient Features of Wells within AoR

In Appendix A, one example of each well type is discussed in detail. However, the
well schematics of all the wells penetrating the primary confining seal were drawn, and
leakage pathways were identified. The absence of plugging reports for Type 5 wells
suggests that had these reports been accessible, these wells could have either retained
their Type 5 classification or potentially transitioned to less risky categories, such as Type
6 or 8, contingent upon their evaluations. Similarly, the well reports for both Type 3 wells
mention that they were plugged back to the TD and produced from a shallower depth
(Devonian formation), but they failed to report the plugging details. These Type 3 wells
could transition to the less risky category of Type 7 contingent upon their evaluations.

4.2. Wells with Target Depth (TD) Formation Code as 203MQKT

Table 4 lists the wells that had a TD formation code as Maquoketa seal (203MQKT).
An investigation was conducted to check whether these wells penetrated through the
Maquoketa shale and reached the Trenton formation, or if they partially penetrated the
Maquoketa seal. These wells are currently listed as penetrating through the Maquoketa
seal as the authors were unsure about how much Maquoketa seal below the TD is enough
for confinement. An additional caprock integrity study needs to be performed to answer
this uncertainty, and it was out of the scope of this study. Once an appropriate assumption
was made for this, the well type of these wells changed to Type 9. Figure 10 shows the
isopach map of Maquoketa along with these wells under consideration, which helped in
estimating the approximate Maquoketa thicknesses below the TD of each well, as shown in
Table 4.

Table 4. Wells with Maquoketa as TD formation code.

Sr. No Current
Well Type API10P TD (ft)

Estimated
Maquoketa
Thickness

(ft)

Trenton
Tops

Estimated
(ft)

Maquoketa
Below TD

(ft)

1 Type 1 1216329365 2613 155 2655 42

2 Type 1 1216323789 2350 150 2435 85

3 Type 6 1216325631 2614 145 2702 88

4 Type 6 1218924586 3300 155 3327 27

5 Type 6 1218924485 3002 122 3080 78

6 Type 6 1218901772 2712 145 2780 68

7 Type 6 1218902866 3601 105 3655 54

8 Type 8 1215724984 2600 116 2716 116
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4.3. Phased Corrective Action Plan

For the phased corrective action plan, it is recommended to overlay the CO2 plume for
intervals of 3–4 years over the mapped risky wells. This approach prioritizes wells based on
their proximity to the expanding CO2 plume over time. The AoR overlay in Figures 8 and 9
spans a total of 23 years (20 years injection and 3 years post-injection), and 54 wells that
have a high priority for corrective action fall within the same period. By overlaying AoR
for different time intervals onto the mapped risky wells, it becomes easier to identify which
wells require prioritized corrective action before each period. For instance, if the combined
CO2 plume and pressure front radius is projected to reach a 2.5-mile radius (red circle)
after 4 years of injection, as shown in Figure 11, then wells within the red circle should be
prioritized. For this example, there is one Type 3 well that has producer status, two Type
6 wells each with D&A and P&A status, and one Type 8 well with P&A status. Thus, the
priority for corrective action in this example would be as follows:

1. Type 6 with D&A status: This well just has surface casings and shallow plugs as
barriers but no cement plugs across the confining seals.

2. Type 6 with P&A status: This well has a cast iron bridge plug set at a shallower depth
within the production casing that is cut and retrieved above the TOC.

3. Type 3 with producer status: As this well is accessible due to its producer status,
priority should be given to abandoned wells since locating them and re-entering
would be challenging.
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4.4. Uncertainty Reduction and Future Work

This study was purely based on publicly available data, and inconsistencies in data
reporting to the state were observed for several reasons, such as changes in regulations,
advancements in technology, and poor maintenance of the data. The lease operator changed
for a many wells over the decades, and data were lost in the transition. The uncertainty
discussed in this section could be reduced by reaching out to the current operators of
these identified risky wells to gain additional insights. Furthermore, the National Risk
Assessment Partnership–Open–Integrated Assessment Models (NRAP-Open-IAM) tool
could be used to estimate the leak rates through these risky wells and reduce the uncer-
tainty [48–52]. These tools help in quantitative risk assessment. The application of active
reservoir management techniques for geosteering the CO2 plume and avoiding some of the
risky wells should be evaluated [24,53]. If there were still numerous wells that required
corrective action, then the deeper secondary storage reservoir (Potosi in this case study)
should have been evaluated.

5. Conclusions

Robust risk assessment methodologies are essential for effectively containing anthro-
pogenic CO2 within the subsurface, particularly when dealing with legacy wells within
the Area of Review (AoR). Due to a lack of data for many old legacy wells, this study
strategically categorized 4386 such wells within the AoR of a potential CO2 storage site.
This study identified wells posing immediate risks, guiding prioritized corrective actions
and monitoring plans.

• Utilizing publicly available data, including reports and well logs submitted to state
regulatory agencies, potential risky wells were identified based on criteria such as
the proximity to the injection well location, depth, and mechanical integrity of well
barriers.

• Among the 4386 wells assessed, 54 were identified as having high priority for corrective
action, while 10 had medium priority, and the remaining were of low priority.
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• Case study results from the Illinois basin demonstrated the effectiveness and applica-
bility of this approach, showcasing its potential to enhance the safety and success of
carbon capture and storage (CCS) projects globally.

6. Patent

Nachiket Arbad et al. has patent #SYSTEM AND METHOD FOR CATEGORIZING
AND ASSESSING WELLS (Application Number 63340034) pending to Texas Tech Univer-
sity System—Office of Research Commercialization.
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Appendix A

• Type 1 and Type 6 Well examples: There were no well reports available for this Type
1 well (API#1216329365), but an offset well (Type 6 well—API#1216300801) that was
drilled by the same operator and abandoned in the same year was located just 300 ft
away from this Type 1 well. Figure A1 shows the well schematic of the offset well.
Based on a detailed evaluation of both wells, the authors estimated approximately
42 ft of Maquoketa shale was not penetrated by the Type 1 well. As seen in Figure A1,
the offset well had all casing pulled out of the hole (POOH) and was plugged with
only one 30-foot cement plug. It was still difficult to speculate if a similar plugging
strategy was applied by the operator for the Type 1 well in discussion. It is interesting
to note that all Type 6 wells have USDW protection, but there are no barriers across
the primary confining seals.

• Type 3 well example: Figure A2 shows the well schematic of the Type 3 well (API#12189
24809). The plugback information was missing for this well, and all the nearby
wells drilled by the same operator were completed and produced from the Devonian
formation. This makes it difficult to understand the plugback strategy used by the
operator and the uncertainty regarding the status of well barriers protecting the storage
reservoir and primary confining seal remains for this Type 3 well.

• Type 5 well example: Figure A3 shows the well schematic of the Type 5 well (API#12163
00436). All casings were POOH for this well, and plugging information was missing.
All the Type 5 wells have dry and abandoned status and do not have plugging
information. The well type for these wells would change if the plugging information
was available.

• Type 7, 8, and 9 well examples: Figure A4 shows the well schematic of the Type 7
well (API#1216325774), and Figure A5 shows the well schematic of the Type 8 well
(API#1215724763). These wells have the least risk as they have appropriate well
barriers protecting the primary confining seal and the storage reservoir. Since Type 9
wells are of least risk, their well schematics are not presented in this section.

https://isgs.illinois.edu/data/geological-records/
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