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Abstract: In the flotation separation process of a Cu-Mo-W polymetallic ore, the wastewater from
the scheelite cleaning flowsheet contains large numbers of residual flocculants and metal ions, and
the separation of chalcopyrite and molybdenite requires a large number of environmentally harmful
depressants. Therefore, it is necessary to find new methods to reduce the environmental and cost
pressures of wastewater treatment and the use of depressants. In this work, the flotation wastewater
from the scheelite cleaning flowsheet for the separation of chalcopyrite and molybdenite by selective
surface passivation was investigated for the first time. Flotations of single minerals and artificially
mixed minerals with or without immersion pretreatment in the presence and absence of aeration
were performed. The results showed that pulp pH had no effect on the flotation of either mineral,
and a molybdenite recovery of 93.22% with a chalcopyrite recovery of 10.77% was achieved under the
conditions of 10 days of immersion pretreatment with aeration, 350 mg/L of kerosene, and 100 mg/L
of MIBC. By combining the electrochemical cyclic voltammetry analysis and characterization by
XRD and SEM, the selective surface passivation mechanism of chalcopyrite was discussed, which
could be due to the coverage of the insoluble oxidation products, especially jarosite. This work has
simultaneously achieved the depressant-free flotation separation of molybdenite and chalcopyrite
and the reuse of scheelite flotation wastewater, which is of great significance for environmental
protection and cost saving.

Keywords: chalcopyrite; molybdenite; flotation wastewater; surface passivation; flotation separation

1. Introduction

With the continuous development of industrial production, the exploitation and
consumption of resources has increased exponentially, which has a profound impact on
the environment [1]. In the process of mining and mineral processing, a large amount of
wastewater is produced. For instance, flotation process consumes 5-7 tons of water per
1 ton of raw ore [2]. Flotation wastewater is usually reused in industry after necessary
treatment [2–5]. However, some harmful pollutants, chemicals, ions, organics, etc., in
the wastewater accumulate with increased recycling, which interfere with the flotation
process [6]. The deterioration of wastewater not only affects the stability and selectivity of
flotation froth but also changes the chemical properties of the mineral surface, which leads
to the difficulty in the selective separation of minerals [4,7,8].

In nature, a considerable part of tungsten ore is accompanied by copper-molybdenum
ore, forming a Cu-Mo-W polymetallic ore, and in most cases, they exist in the form of
scheelite (CaWO4), chalcopyrite (CuFeS2), and molybdenite (MoS2), respectively [9–11].
Usually, Cu-Mo bulk flotation concentrate is obtained first, then it is separated into chal-
copyrite concentrate and molybdenite concentrate [12], and finally scheelite is recovered
from the tailings of Cu-Mo bulk flotation [13,14].

On the one hand, since both chalcopyrite and molybdenite have good floatability, it is
generally necessary to add a large amount of chalcopyrite depressant to achieve selective
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flotation separation, however, chalcopyrite depressants applied in industry, including
sodium cyanide (NaCN), sodium sulfide (Na2S), and sodium thioglycolate (C2H3NaOS),
are usually toxic, resulting in environmental hazards and safety problems [15–18]. Cur-
rently, several innovative methods have been reported to achieve chalcopyrite depressing
and molybdenite flotation by the selective hydrophilic oxidation of the chalcopyrite surface
without the addition of depressants, such as thermal pretreatment (250 ◦C) [19], oxygen
plasma pretreatment [20], and electrocatalytic oxidation pretreatment [21]. However, most
of them require significant energy costs, so there is a need to develop more cost-effective
and environmentally friendly methods.

On the other hand, due to the addition of a large amount of highly dispersible sodium
silicate (water glass) in scheelite cleaning flotation, it is necessary to add more precipitants
and flocculants to clarify the wastewater [22], which inevitably results in the wastewater
containing large numbers of residual flocculants. These residual flocculants, combined with
the dissolved metal ions, interfere with or inhibit scheelite flotation, making the wastewater
much more difficult to treat and reuse [14]. Although several treatment technologies,
such as chemical precipitation, ion exchange, adsorption for metal ions, photocatalytic
oxidation and Fenton oxidation for residual organic reagents [5], and membrane separation
technologies [23], can be used to convert cleaning flotation wastewater into reusable
and qualified water, these methods still have some drawbacks regarding their treatment
efficiency and cost.

Compared with molybdenite, the surface oxidation products of chalcopyrite (e.g., CuO,
Cu(OH)2, FeOOH, and Fe2(SO4)3) are more stable than those of molybdenum (e.g., MoO3,
MoO4

2−, and SO4
2−), especially under acidic or weakly acidic conditions [21,24,25]. There-

fore, the natural hydrophobicity of chalcopyrite can be altered, while the surface of molyb-
denite remains hydrophobic after pretreatment, thus achieving the selective separation of
them [21,24,25]. Coincidentally, in the case of Daye Fujiashan Mining Co., Ltd., Huang-
shi, China, after the addition of sulfuric acid and alum for coagulation precipitation and
flocculation pretreatment, the clarified wastewater produced by scheelite cleaning flota-
tion is weakly acidic (pH 4) and contains a lot of metal ions (see detailed description in
Section 2.1.2). These factors may provide the feasibility for the surface passivation of
chalcopyrite; for example, the presence of H+, Cu2+, and Fe3+ were confirmed to have a
positive effect on chalcopyrite oxidation [26].

In this work, the wastewater of the scheelite cleaning flotation process was investigated
for the first time for the separation of chalcopyrite and molybdenite using selective surface
passivation. Bench-scale flotation experiments were first conducted to separate chalcopyrite
and molybdenite samples (including single minerals and artificially mixed minerals) after
different periods of immersion pretreatment in the wastewater. Then, the electrochemical
cyclic voltammetry of chalcopyrite was studied using chalcopyrite electrodes before and
after pretreatment, and the surface properties of the electrodes after pretreatment were also
analyzed by SEM and XRD. The mechanism of chalcopyrite passivation in the cleaning
flotation wastewater of scheelite is revealed and discussed.

2. Materials and Methods
2.1. Materials
2.1.1. Minerals and Electrodes

The mineral samples with high purity used in this work were collected by hand picking
from the Daye Fujiashan Copper-Molybdenum-Tungsten Polymetallic Mine in Hubei
Province, China. The compositions of the mineral samples were determined by quantitative
X-ray diffraction (Figure 1), and both samples were of high purity (chalcopyrite: 96.65%,
molybdenite: 97.02%). Chemical elemental analysis confirmed the elemental compositions
of 32.51% Cu, 31.92% Fe, and 33.47% S for the chalcopyrite sample and 55.89% Mo and
35.10% S for the molybdenite sample. A portion of the mineral sample was dry ground to a
fine powder by using an agate mortar and then dry sieved to collect a particle size fraction
of 38–74+ µm for use as the immersion and flotation mineral samples.
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A fine crystallized chalcopyrite sample was cut into cylinders (d = 12 mm, h = 5 mm)
and selected for the working electrode. The top and bottom surfaces of the cylindrical
electrode were polished by using #120, #600, and #1000 silicon carbide papers in that order,
and a smoother surface was selected for the electrode working surface. In addition, to
reduce oxidation, the mineral samples were sealed in an argon atmosphere prior to use.

2.1.2. Wastewater and Reagents

The wastewater sample was also collected as a slurry from the Daye Fujiashan Copper-
Molybdenum-Tungsten Polymetallic Mine in Hubei Province, China. The slurry sample
was collected from the scheelite cleaning flotation circuit every 3 h over a 72 h period
and mixed. Specifically, the scheelite cleaning flotation circuit consisted of one roughing,
seven cleaning, and three scavenging stages, and the wastewater sample was taken from
the end of the scavenging stage. The slurry was then supplemented with 5000 mg/L
sulfuric acid and 600 mg/L alum, stirred for 1 h and then allowed to stand for 3 h for
precipitation. Finally, the supernatant was removed with a pipette and used as the ex-
perimental wastewater sample. The chemical composition of the wastewater is shown in
Table 1. The wastewater obtained was used in all subsequent experiments. In addition,
kerosene (97% purity) and methyl isobutyl carbinol (MIBC) (98% purity) were used as the
collector and frother, respectively.

Table 1. Chemical composition of the wastewater (mg/L).

Items Cu Pb Zn S Al Fe K Na Mg Si Ca As COD 1 pH

Data 0.15 0.23 0.16 40.71 592 10.32 210 1028 69.12 226 81.0 0.11 85 4.00
1 COD (Chemical Oxygen Demand) is the oxygen equivalent of substances (usually organic matter) that can be
oxidized by strong oxidizing agents in wastewater.

2.2. Methods
2.2.1. Immersion Pretreatment

Immersion pretreatments were performed in 100 mL Erlenmeyer flasks containing
2.0 g of mineral sample or the electrode, 35 mL of wastewater, and shaken at 125 rpm
in a shaker (HZL-C, Harbin Donglian Medical Equipment, Harbin, China) at 25 ◦C for
0 d, 5 d, 10 d, 15 d, and 20 d. Inflatable immersion was also carried out under the same
conditions as above, using a microporous air pump (CJY1500, Shanghai Kangyi Instrument,
Shanghai, China) to introduce air into the pulp at a flow rate of 50 cm3/min. The electrode
was embedded in an epoxy protector to prevent breakage and erosion of the non-working
surface during the immersion process. Water evaporation was compensated for with the
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deionized water. The immersion pretreatment and the working electrode assembly are
shown in Figure 2.
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2.2.2. Bench-Scale Flotation Experiments

The single mineral and artificially mixed mineral flotation tests were carried out in an
XFG flotation machine with a 40 mL plexiglass cell (Wuhan Exploration Machinery Plant,
Wuhan, China) at an impeller speed of 1900 rpm at room temperature (25 ◦C). In each
single mineral flotation test, after immersion pretreatment, the pulp was discharged into
the cell under continuous agitation (1900 rpm) to form a uniform pulp. Deionized water
was used in the flotation experiments. The pH of the pulp was adjusted appropriately
by adding NaOH solution (0.1 mol/L) or H2SO4 solution (0.1 mol/L), and the mixture
was agitated for 4 min. A certain amount of kerosene and MIBC were successively added
to the pulp with a conditioning time of 2 min. During the test, after 4 min, the flotation
froth began to turn to blank froth and mineral flotation ended; therefore, the flotation time
was determined to be 4 min. The concentrates and tailings were then collected, dried, and
weighed. Except for when the mass ratio of chalcopyrite to molybdenite was 1:1, the other
operations in the artificially mixed mineral flotation tests were the same as those used in the
single mineral flotation tests. For the single mineral flotation texts, recovery was calculated
based on the weights of dry products recovered. For the artificially mixed mineral flotation
tests, recovery was calculated based on the copper and molybdenum grades of the products
and the mixed mineral sample (determined by an ARL PERFORM’X XRF spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA)).

2.2.3. Electrochemical Experiments

Electrochemical measurements were conducted using a three-electrode system, with
chalcopyrite, following immersion pretreatment for different durations, as the working
electrode. A saturated calomel electrode (SCE) and a pair of graphite electrodes were
used as the reference electrode and counter electrodes, respectively. The electrolyte used
was the wastewater from the immersion pretreatment after filtration and clarification. The
electrode was removed from the epoxy resin protector without polishing to avoid damaging
its surface properties after immersion. In contrast, the surface of the electrode without
pretreatment was polished with #1000 silicon carbide paper to ensure that the working
surface was fresh prior to the electrochemical experiment. The effective working area of the
electrode after encapsulation in the special electrode holder was 0.8 cm2. Electrochemical
measurements were performed using a polarographic analyzer (Model 283, EG&G of
Princeton Applied Research, Boston, MA, USA) connected to a computer at a scan rate of
20 mV/s at room temperature (25 ◦C). In this work, all potentials are reported with respect
to the SCE.
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2.2.4. SEM and XRD Analysis

X-ray diffraction (XRD, Rigaku, 2500, Tokyo, Japan) and scanning electron microscopy
(SEM, Jeoljsm-7500F, Tokyo, Japan) were used to examine the surface composition and
morphology of the chalcopyrite after immersion, respectively. The pretreated chalcopyrite
and electrodes were filtered and dried using a freeze dryer for SEM and XRD analyses.

3. Results and Discussion
3.1. Flotation of Single Minerals
3.1.1. Effect of Immersion Time

A series of bench-scale flotation tests were conducted to determine the change in the
flotation states of single chalcopyrite and molybdenite. Both minerals were immersed in the
wastewater for different periods in the presence and absence of aeration. Then, 300 mg/L
kerosene as the collector and 100 mg/L MIBC as the frother were used. The pH of the pulp
was adjusted to 7 at the start of flotation but was not adjusted during the flotation process.
As shown in Figure 3, the recoveries of chalcopyrite and molybdenite without immersion
pretreatment (0 d) are 89.12% and 95.61%, respectively, indicating that the floatability of
the two minerals is excellent and cannot be successfully separated without the addition of
depressants [27], even when kerosene is used as a collector, which has excellent selectivity
for molybdenite [28]. With increasing immersion time, regardless of whether the sample
was subjected to aeration or not, the recovery of chalcopyrite decreased significantly and the
recovery of molybdenite changed only slightly, indicating that immersion in wastewater has
a large influence on the floatability of chalcopyrite. The recovery of chalcopyrite without
aeration decreased from 89.12% to 60.18% after immersion for 5 days, and even decreased
to only 6.28% after immersion for 15 days, indicating that the surface of chalcopyrite might
be passivated after immersion. Thus, the longer the immersion time, the more the surface
was passivated. It is obvious that the recovery of chalcopyrite after immersion for 10 days
with aeration was 5.85%, which is lower than that of 20.17% without aeration. This result
shows that the surface passivation of chalcopyrite during immersion can be enhanced
by aeration, which could be used to drastically reduce the time required for passivation.
Notably, when the immersion time reached 10 days (with aeration) or 15 days (without
aeration), the recovery of chalcopyrite had no apparent change with the extension of the
immersion time, indicating that the surface passivation of chalcopyrite may be complete
at this time. In contrast with chalcopyrite, molybdenite still has excellent floatability after
immersion. After 20 days, the recovery of molybdenite with and without aeration was also
similar to that of molybdenite without immersion and was still relatively high at 91.28%
and 90.23%, respectively. Therefore, it can be assumed that the floatability of molybdenite
is slightly affected after immersion.
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The results shown in Figure 3 suggest that the difference in floatability between chal-
copyrite and molybdenite can become very significant after immersion in wastewater and
can be accelerated by blowing air into the pulp, which provides the possibility and expecta-
tion for the selective flotation separation of chalcopyrite and molybdenite by immersion
for 10 days with aeration at a flow rate of 50 cm3/min in wastewater.

3.1.2. Effect of Pulp pH

Minerals typically exhibit different floatabilities at different pulp pH values due to
the surface dissolution and modification [16,29]. Therefore, the pulp pH can be used to
extend or realize differences in floatability between minerals to achieve selective flotation
separation. Figure 4 shows the recoveries of chalcopyrite and molybdenite with and with-
out immersion (10 d and 0 d) pretreatment in the presence of aeration versus pulp pH (the
unadjusted initial pH of the pulp was 5). As shown, the recoveries of chalcopyrite and
molybdenite without immersion were not affected by the pulp pH and remain around or
above 90%. Similarly, in previous reports [16,27,30], both chalcopyrite and molybdenite
exhibited stable flotation recoveries (>80%) in the pH range of 3 to 12 using different collec-
tors (sodium dibutyl dithiophosphate, sodium butyl xanthate, and kerosene). However, the
recovery of chalcopyrite after immersion was low and did not vary significantly from pH 3
to 11 (between 6.53% and 8.18%). For molybdenite after immersion, the recovery decreased
gradually but only slightly with increasing pH, and the recovery could still reach 91.29% at
pH 11. Therefore, it can be clearly concluded that pH has no critical effect on the floatability
of chalcopyrite and molybdenite with and without immersion.
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3.1.3. Effect of Collector Dosage

The effect of the dosage of kerosene as a collector on the flotation behavior of chal-
copyrite and molybdenite was tested under the condition that the dosage of MIBC was
fixed at 100 mg/L. As the pulp pH was proven to have no critical effect on the floatability
of chalcopyrite and molybdenite, the pulp pH was still adjusted to 7 prior to flotation, and
no further adjustments were made during the flotation process. The results are shown
in Figure 5. In the absence of kerosene, the recoveries of chalcopyrite and molybdenite
without immersion pretreatment were 57.05% and 65.29%, respectively, demonstrating that
both minerals have excellent natural floatability and that the floatability of molybdenite is
slightly better than that of chalcopyrite [27,31,32]. In contrast, the recovery of chalcopyrite
after 10 days of immersion with aeration decreased sharply to only 6.12% in the absence of
kerosene. However, the recovery of molybdenite after immersion was still up to 62.58%. It
can be concluded that immersion pretreatment can significantly enhance the hydrophilicity
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of chalcopyrite, thereby reducing its floatability. The recovery of chalcopyrite without im-
mersion is related to kerosene dosage, which increases with increasing kerosene dosage and
reaches an equilibrium peak when the amount of kerosene exceeds 300 mg/L. However, the
recovery of chalcopyrite after immersion did not change with increasing kerosene dosage
and remained at the very low level of approximately 7%. This might be attributed to the
passivation layer formed on the surface of the chalcopyrite after immersion, which prevents
the adsorption of kerosene. Regardless of whether it was pretreated with immersion or not,
the correlations between molybdenite recovery and kerosene dosage were similar, and both
increased with increasing kerosene dosage until reaching the equilibrium peak, further
indicating that the floatability of molybdenite is not only excellent but also extremely stable.
As mentioned above [21,24,25], the surface of chalcopyrite is more easily oxidized, and the
oxidation products of chalcopyrite are more stable than those of molybdenum. Therefore,
the flotation inhibition effect of chalcopyrite can be related to the accumulation of oxidation
products on the surface of chalcopyrite after immersion. Meanwhile, there should be no
oxidation product accumulation on the surface of molybdenum, so its floatability is not
affected by pretreatment.
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3.2. Flotation of Artificially Mixed Minerals

Following the results of single mineral flotation, the selective flotation separation of
artificially mixed minerals was carried out to verify the effect of immersion pretreatment in
the wastewater of the scheelite cleaning flotation process. The mass ratio of chalcopyrite
to molybdenite used in each test was 1:1 in the mixed minerals. The dosages of kerosene
and MIBC were 350 mg/L and 100 mg/L, respectively, and the pulp pH was adjusted
to 7 prior to flotation during the tests. The results are shown in Figure 6. Without im-
mersion pretreatment, chalcopyrite and molybdenite were almost completely enriched in
the froth concentrate, with recoveries of 93.04% and 95.50%, respectively, indicating that
the selective separation of chalcopyrite and molybdenite by flotation cannot be achieved
without pretreatment. After 15 days of immersion (without aeration), the recoveries of
chalcopyrite and molybdenite in the froth concentrate were 9.03% and 94.13%, respectively.
In addition, a lower recovery of chalcopyrite (6.91%) could be achieved while the recovery
of molybdenite remained constant (93.03%) after 15 days of immersion (with aeration),
which is also consistent with the results obtained for single minerals. The slight difference
between the two tests is that the recovery of chalcopyrite in the artificial mixed mineral
test was 2% to 5% greater than that in the single mineral test, regardless of immersion or
aeration, which may be due to the mechanical entrainment in the mixed mineral flotation
process [33–35]. In summary, these results indicate that the effective flotation separation
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of chalcopyrite and molybdenite can be achieved by immersion pretreatment using the
wastewater from scheelite cleaning flotation. Compared with traditional methods, the
immersion pretreatment method avoids the use of massive amounts of environmentally
harmful depressants while alleviating the problem of wastewater reuse. However, this
method still has some drawbacks, such as a relatively long immersion process and the need
for special requirements (such as corrosion resistance). Further research is needed to reduce
the immersion time and optimize the equipment investment.
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3.3. Electrochemical Mechanism

In order to investigate the mechanism of chalcopyrite passivation during the im-
mersion process, cyclic voltammetry was used to detect the variation in electrochemical
behavior on the chalcopyrite surface in the wastewater from scheelite cleaning flotation.
All tests were scanned from −600 mV to 800 mV and then back to −600 mV. The cyclic
voltammetry curves of the electrodes after different durations of immersion without and
with aeration are shown in Figure 7.
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As shown in Figure 7a, the electrochemical behavior of the electrode at different
immersion times without aeration was significantly different. The oxidation peaks A1 and
A2 and the reduction peaks C1 and C2 on the cyclic voltammetry curves were significant
without immersion (0 d). In the anodic scan, the voltammograms show a pre-peak A1,
which could be attributed to the formation of a non-stoichiometric polysulfide phase
(Cu1−xFe1−yS2−z), since the chalcopyrite surface favors the release of iron, as shown in
Equation (1) [36–39]. The non-stoichiometric polysulfide phase is an intermediate product
that mixes with S0 and forms a passive electron conducting layer on the chalcopyrite surface.
At peak A2, the layers of Cu1−xFe1−yS2−z and chalcopyrite could both be destroyed and
oxidized, as shown in Equations (2) and (3) [36–40].

CuFeS2 → Cu1−xFe1−yS2−z + xCu2+ + yFe2++ zS0 + 2(x + y)e− (y >> x), (1)

Cu1−xFe1−yS2−z →(1−x)Cu2+ + (1−y)Fe2+ + (2−z)S + 2(2−x−y)e−, (2)

CuFeS2 → Cu2+ + Fe3+ + 2S + 5e−, (3)

In the cathodic reverse scan, there are two reduction peaks, C1 and C2. Peak C1 should
correspond to the reduction in the products produced at peaks A1 and A2. The reduction
reactions mainly involve the participation of copper ions, as shown in Equations (4)–(9).
Peak C2 reflects the reduction of the remaining chalcopyrite to an intermediate copper
sulfide such as Cu9Fe8S16 or Cu5FeS4, as shown in Equations (10) and (11) [36–39].

Cu2+ + S0 + 2e− → CuS, (4)

Cu2+ + CuS + 2e− → Cu2S, (5)

Cu2+ + 2e− → Cu0, (6)

3Cu2+ + CuFeS2 + 4e− → 2Cu2S + Fe2+, (7)

3Cu2+ + 2CuFeS2 + 4e− → Cu5FeS4 + Fe2+, (8)

2CuS + 2H+ + 2e− → Cu2S + H2S, (9)

9CuFeS2 + 4H+ + 2e−→Cu9Fe8S16 + Fe2+ + 2H2S, (10)

5CuFeS2 + 12H+ + 4e−→Cu5FeS4 + 4Fe2+ + 6H2S, (11)

After 5 days of immersion, the oxidation and reduction peaks all became weak. Peak A1
almost disappeared, indicating that peak A1 was inhibited first. After 15 days, peaks A1 and
C1 completely disappeared, and peak A2 became extremely weak. Similar to the bioleaching
system of chalcopyrite, the electrode surface after pretreatment could be covered with a
passive film that is non-conductive or difficult to conduct electricity, and any reactions that
occurred on the surface would be suppressed at this time [41]. In detail, passivation species
such as iron-hydroxy precipitates, jarosite, and non-stoichiometric polysulfide phases could
be formed during the immersion process, as shown in Equations (1) and (12)–(15) (Note: K+

in Equations (14) and (15) can be replaced by Na+, NH4
+, and H3O+.) [38,42,43].

2Fe2+ + 2H+ + 0.5O2 → 2Fe3+ + H2O, (12)

2Fe3+ + 4H2O → 2FeOOH + 6H+, (13)

2Fe3+ + K+ + 2SO4
2− + FeOOH + 4H2O → KFe3(SO4)2(OH)6 + 3H+, (14)

3Fe3+ + 2SO4
2− + 6H2O + K+ → KFe3(SO4)2(OH)6 + 6H+, (15)

Furthermore, the cyclic voltammetry curves for the electrodes at different immersion
times with aeration are shown in Figure 7b, which are basically consistent with no aeration,
but the changes are more obvious and rapid. After 5 days, all the peaks almost disap-
peared, indicating that the electrode surface was significantly passivated. As shown in



Minerals 2024, 14, 388 10 of 13

Equations (1) and (12)–(15), oxygen can accelerate the oxidation of Fe2+ and the formation
of FeOOH and jarosite during the immersion process so that the aeration can obviously
promote the passivation of the chalcopyrite surface and shorten the passivation time.

3.4. Changes in Chalcopyrite Surface Morphology and Composition

The SEM image (magnified 2000 times) of chalcopyrite after 15 days of immersion is
shown in Figure 8. As shown, a large number of particles with approximate spherical shape,
mostly aggregates, were generated on the surface of chalcopyrite, which is similar to the
morphology of jarosite reported in the other literature [44]. Similar to other depressant-free
flotation separation methods [19–21] for copper-molybdenum ore, the immersion pretreat-
ment significantly modified the surface of chalcopyrite. In detail, insoluble oxidation
products including CuO, Cu(OH)2, and FeOOH (especially FeOOH) were detected on the
chalcopyrite surface after thermal pretreatment [19], oxygen plasma pretreatment [20], or
electrocatalytic oxidation pretreatment [21].
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For further clarification of the composition of the surface products, X-ray diffraction
of chalcopyrite after 15 days of immersion was performed. As shown in Figure 9, obvious
peaks belonging to jarosite were detected. Although no FeOOH peaks were observed, it
may appear as an intermediate of jarosite on the chalcopyrite surface during the immersion
pretreatment process [38,42,43]. According to the reports of [19–21], soluble Fe2(SO4)3 and
MoO3/MoO4

2− were also the obvious oxidation products of chalcopyrite and molybde-
num during the pretreatment process, respectively. Therefore, the presence of Fe3+ could
promote the transformation from FeOOH to jarosite, as shown in Equation (14).

According to the results of XRD and SEM, after immersion pretreatment, the surface
of chalcopyrite was heavily covered with oxidation products mainly composed of jarosite,
which was consistent with the passivation phenomenon in electrochemical experiments.
Importantly, the FeOOH and jarosite formed are highly hydrophilic [45–47], and the water
contact angles of chalcopyrite before and after oxidation pretreatment were reported to
decrease from ~80◦ to ~40◦ and ~20◦ [20,21]. However, the surface oxidation products of
molybdenum were dissolved during the pretreatment process [19–21,24,25], leaving a fresh
surface with a great floatability (water contact angles ~85◦). Therefore, the different surface
transformations of chalcopyrite and molybdenum during the immersion pretreatment
process should be responsible for their successful separation.
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4. Conclusions

The use of flotation wastewater from scheelite cleaning flotation for the separation
of chalcopyrite and molybdenite by selective surface passivation was investigated for the
first time in this work. The flotation of chalcopyrite can be effectively suppressed after
immersion pretreatment using the wastewater from scheelite cleaning flotation, while
the flotation of molybdenite was only slightly affected. Pulp pH was proven to have no
effect on the flotation of either mineral, while the addition of aeration during the immer-
sion process can apparently shorten the passivation time by forming passivation species
(especially jarosite) on the surface of chalcopyrite. The effective copper-molybdenum sepa-
ration (molybdenite 93.22%, chalcopyrite 10.77%) can be achieved under the conditions
of immersion pretreatment for 10 days with aeration at an air flow rate of 50 cm3/min
in the wastewater, 350 mg/L of kerosene collector, 100 mg/L of MIBC frother, and an
initial pH of 7. The results obtained achieved the flotation separation of molybdenite and
chalcopyrite without the use of depressants, while using wastewater to selectively oxidize
chalcopyrite avoids the high costs of other chemical or electrochemical oxidation methods,
thus demonstrating wide application prospects.
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