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Abstract: Mineral exploration projects can make considerable use of a variety of geophysical tech-
niques and datasets, including magnetic and gravity data. The interpretation of large quantities
of data can be very time consuming, so semi-automatic interpretation techniques are often used
to provide initial estimates of the parameters (primarily the location and depth) of the sources of
anomalies. Euler deconvolution is a commonly used interpretation method for potential fields which
has a number of advantages over many other techniques, such as working in the presence of remanent
magnetisation, and not being restricted to a particular model such as a contact. A second-order
version of Euler’s equation is introduced here, which is much less affected by trends in the data than
the standard method and additionally produces depth parabolas, which simplify the interpretation of
results. The method was applied to aeromagnetic data from a mineral exploration project in Southern
Africa and provided plausible results.
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1. Introduction

Mineral exploration projects can make considerable use of a variety of geophysical
techniques, including magnetic and gravity data. The interpretation of large quantities of
geophysical data can be very time consuming, so semi-automatic interpretation techniques
are often used to provide initial estimates of the parameters (primarily the location and
depth) of the sources of anomalies There are many semi-automatic interpretation tech-
niques available, such as analytic-signal-amplitude-based methods [1–4], Werner deconvo-
lution [5], source-distance approaches [6,7], and Euler deconvolution. Euler deconvolution
is based on Euler’s homogenous function theorem, which is widely used throughout math-
ematics and physics. It states that for homogenous functions (i.e., those in which all terms
are raised to the same power) of degree N, then [8–11]

f (t·x,t·z) = tNf (x,z) (1)

Differentiating Equation (1) with respect to t, and then setting t = 1, provides

x
∂ f
∂x

+ z
∂ f
∂z

= −N· f (2)

Note that Equation (2) basically states that function f can be written in terms of
combinations of its first order derivatives. When applied to potential field data f, then x
and z are interpreted as the distances (∆x and ∆z) from the current point to the source in the
x and z planes. The degree of homogeneity N (which is also termed the structural index,
or SI) is the rate of decay of the amplitude of the field with distance from the source, e.g.,
N = 1 for the magnetic response of a dyke. Equation (2) is usually solved for ∆x and ∆z
using a moving window of data points, with N being specified. The solutions are effectively
averaged over the window size, so while larger window sizes can reduce the effect of
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random noise, they can result in the smearing of the solution’s horizontal location and can
also make the results more sensitive to interference from adjacent anomalies. Sometimes
a background field term B is subtracted from the field f, but Euler’s equation is only for
single sources, which implies that (if necessary) this has already been done.

Euler deconvolution can also be applied to the Hilbert transform H(f ) of the data [12,13]

∆x
∂ f
∂z

− ∆z
∂ f
∂x

= −N·H( f ) (3)

2. Materials and Methods

Derivatives of potential fields are also homogenous functions, so Euler deconvolution
is frequently applied to them [14,15]

∆x
∂2 f
∂x2 + ∆z

∂2 f
∂x∂z

= −(N + 1)
∂ f
∂x

(4)

∆x
∂2 f

∂x∂z
+ ∆z

∂2 f
∂z2 = −(N + 1)

∂ f
∂z

(5)

Applying Euler deconvolution to higher order derivatives of the field can reduce the
sensitivity of the method to regional field and interference issues. Euler deconvolution can
also be applied to combinations of the derivatives, such as the analytic signal amplitude [16]
or the Tilt angle [17].

Substituting Equations (4) and (5) into Equation (2) provides the second-order
Euler equation

∆x2 ∂2 f
∂x2 + 2∆x·∆z

∂2 f
∂z∂x

+ ∆z2 ∂2 f
∂z2 = N(N + 1) f (6)

Higher order equations can be generated in a similar manner. Using Laplace’s equation, then

(
∆x2 − ∆z2

)∂2 f
∂x2 + 2∆x∆z

∂2 f
∂z∂x

= N(N + 1) f (7)

Equation (7) is solved for (∆x2 − ∆z2) and (2∆x·∆z) using a moving window of data
points in the usual manner, then ∆x and ∆z are obtained by solving a quadratic equation,
i.e., let a = (∆x2 − ∆z2) and b = (2∆x·∆z), then

∆x =
1√
2b

((
a2 + b2

)1/2
− a

)1/2((
a2 + b2

)1/2
+ a

)
(8)

∆z =
1√
2

((
a2 + b2

)1/2
− a

)1/2
(9)

Similarly substituting Equations (4) and (5) into Equation (3) provides the Hilbert
transform of Equation (7);

(
∆x2 − ∆z2

) ∂2 f
∂z∂x

− 2∆x∆z
∂2 f
∂x2 = N(N + 1)H( f ) (10)

Note that the second-order equations do not have any first order derivative terms, which
makes them less sensitive to the presence of linear regional fields than Equations (2) and (3).
Additionally, as the depth of the source ∆z =

√
−a when ∆x = 0 (Equation (7)), plotting

√
−a

yields a ‘depth parabola’, which is a useful check on the validity of the Euler solutions.
Equations (4)–(10) use second-order derivatives of the field, which naturally can make

them sensitive to noise. If this is an issue, then either regularised derivatives [18] or upward
continuation of the field can be used.
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3. Results

Euler deconvolution is applied to the magnetic anomaly from an isolated dyke
(Figure 1), to which a small linear trend has been added. The solutions from standard
Euler deconvolution (Equation (2), Figure 1b are widely dispersed around the top of the
dyke, while those from the second-order Euler deconvolution (Equations (7) and (10))
are much more tightly grouped (particularly in this case when the Hilbert transform was
used). Euler deconvolution is well known for its production of large numbers of spurious
solutions scattered throughout the subsurface, and this is the case even with this simple
synthetic model. However, plotting the depth parabola provided by ∆z =

√
−a helps to

identify the valid solutions, as it should have a maximum depth extent over the source.
These depth parabolas are clearly located over the tops of the dykes (Figure 1c,d) and Euler
solutions that are far from them can be disregarded.
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Figure 1. (a) Magnetic anomaly from the dyke shown in (b–d) below. A linear trend (dotted line) is
added to the data. (b) Solutions from Euler deconvolution (Equation (2)) are shown as blue + symbols.
A SI of 1 and window size of 11 points is used. (c) Solutions from second-order Euler deconvolution
(Equation (7)) are shown as blue + symbols. A SI of 1 and window size of 11 points is used. The
depth parabola is overlain as a black line. (d) Solutions from second-order Euler deconvolution
(Equation (10)) are shown as blue + symbols. A SI of 1 and window size of 11 points is used. The
depth parabola is overlain as a black line.

A second, more complicated example application is shown in Figure 2. In this case,
there are now several dykes with different dips and depths, and whose anomalies interfere.
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All of the methods successfully locate the shallow dyke on the left of the profile. The deeper
dykes are more difficult targets, however, and while clusters of solutions are present near
them, the clusters are often rather dispersed, and other solutions exist between the dykes.
If only the solution clusters that are near to the depth parabolas are considered as being
valid, then all the dykes have solutions from the second-order Euler deconvolution lying
near to their upper surface (the depth parabola associated with the very shallow dyke is
hard to see due to the coincident Euler solutions). Similarly, depth parabolas that are not
associated with clusters of Euler solutions can be ignored.
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Figure 2. (a) Magnetic anomaly from the dyke model shown in (b-d) below. (b) Solutions from Euler
deconvolution (Equation (2)) are shown as blue + symbols. A SI of 1 and window size of 11 points
is used. (c) Solutions from second-order Euler deconvolution (Equation (7)) are shown as blue +
symbols. A SI of 1 and window size of 11 points is used. The depth parabola is overlain as a black line.
(d) Solutions from second-order Euler deconvolution (Equation (10)) are shown as blue + symbols. A
SI of 1 and window size of 11 points is used. The depth parabola is overlain as a black line.
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4. Application to a Mineral Exploration Project in Southern Africa

Figure 3a shows an aeromagnetic data set from Southern Africa that was used as part
of a mineral exploration project. Unfortunately, confidentiality issues preclude most of the
details being provided here. The flight line direction of the survey was north–south, the
line spacing was 1 km, the grid interval was 0.25 km, and the flight height was 100 m. This
dataset was interpreted by Cooper using a new Contact-Depth method [6], which only
works for the magnetic anomalies from contacts and that requires pole reduced data. The
depths to the contacts are obtained at the location of the zero values of the first vertical
derivative of the data. The results are shown in Figure 3b. Two profiles were abstracted
from this aeromagnetic dataset and their locations are marked in Figure 3a. The first profile
(marked ‘A’) is shown in Figure 3c, and the results of applying Euler deconvolution to it
are shown in Figure 3d–f. The Contact-Depth results provided depths of 1 km or less at
the edges of the main anomaly in the centre of the profile, and all the Euler results were
compatible with this. The depth parabolas of the second-order Euler method made the
interpretation of the Euler solutions easier, particularly those associated from the small
amplitude anomalies at the edges of the profile. In addition, varying the structural index
slightly allowed the stability of the Euler solutions to be assessed. The red bars associated
with each solution show the location that the Euler solutions would move to if a larger SI
was used, while the blue bars show the location that will result if the SI were reduced. If
these error bars are large (for example, see the shallow solutions in Figure 3f, then those
solutions are deemed unreliable.

A second profile (marked ‘B’ on Figure 3a is shown in Figure 4. The solutions from
standard Euler deconvolution (Equation (2), Figure 4a do not really show well defined
clusters, but the depths are reasonable compared with the Contact-Depth results. The
solutions from the second-order Euler methods are slightly better clustered, but the depth
parabolas help to identify probable solution clusters (e.g., at locations of 15, 25, and 30 km
on Figure 4c. The addition of error bars to the plots again helps to identify unreliable
solutions, such as the shallow solutions in Figure 4d.
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A (left) and B (right) are shown in Figures 3c and 4a, respectively. (b) Depths to vertically 
magnetized vertically dipping contacts obtained using the method of Cooper [6], from which the 
Figure is taken. (c) Aeromagnetic data profile ‘A’ from Figure 3a. (d) Solutions from Euler 
deconvolution (Equation (2)) are shown as blue + symbols. A SI of 0.25 and window size of 7 points 
was used. (e) Solutions from second-order Euler deconvolution (Equation (7)) are shown as black 
dots with blue and red error bars overlain. A SI of 0.25 and window size of 7 points is used. The 
depth parabola is overlain as a black line. (f) Solutions from second-order Euler deconvolution 
(equation 10) are shown as black dots with blue and red error bars overlain. A SI of 0.25 and window 
size of 7 points is used. The depth parabola is overlain as a black line. 

Figure 3. (a) Aeromagnetic data from Southern Africa. The flight line direction is north–south, the
line spacing is 1 km, the grid interval is 0.25 km, and the flight height is 100 m. The profiles marked
A (left) and B (right) are shown in Figures 3c and 4a, respectively. (b) Depths to vertically magnetized
vertically dipping contacts obtained using the method of Cooper [6], from which the Figure is taken.
(c) Aeromagnetic data profile ‘A’ from Figure 3a. (d) Solutions from Euler deconvolution (Equation (2))
are shown as blue + symbols. A SI of 0.25 and window size of 7 points was used. (e) Solutions from
second-order Euler deconvolution (Equation (7)) are shown as black dots with blue and red error
bars overlain. A SI of 0.25 and window size of 7 points is used. The depth parabola is overlain as a
black line. (f) Solutions from second-order Euler deconvolution (Equation (10)) are shown as black
dots with blue and red error bars overlain. A SI of 0.25 and window size of 7 points is used. The
depth parabola is overlain as a black line.



Minerals 2024, 14, 393 7 of 8

Minerals 2024, 14, x FOR PEER REVIEW 7 of 8 
 

 

A second profile (marked ‘B’ on Figure 3a is shown in Figure 4. The solutions from 
standard Euler deconvolution (Equation (2), Figure 4a do not really show well defined 
clusters, but the depths are reasonable compared with the Contact-Depth results. The 
solutions from the second-order Euler methods are slightly better clustered, but the depth 
parabolas help to identify probable solution clusters (e.g., at locations of 15, 25, and 30 km 
on Figure 4c. The addition of error bars to the plots again helps to identify unreliable 
solutions, such as the shallow solutions in Figure 4d. 

 
Figure 4. (a) Aeromagnetic data profile ‘B’ from Figure 3a. (b) Solutions from Euler deconvolution 
(equation 2) are shown as blue + symbols. A SI of 0.25 and window size of 7 points is used. (c) 
Solutions from second-order Euler deconvolution (Equation (7)) are shown as black dots with blue 
and red error bars overlain. A SI of 0.25 and window size of 7 points is used. The depth parabola is 
overlain as a black line. (d) Solutions from second-order Euler deconvolution (Equation (10)) are 
shown as black dots with blue and red error bars overlain. A SI of 0.25 and window size of 7 points 
is used. The depth parabola is overlain as a black line. 

5. Conclusions 
Mineral exploration projects have many different facets, and the use of modern data 

processing techniques can greatly facilitate the process. Second-order Euler 
deconvolution has been introduced and applied to both synthetic and real aeromagnetic 
datasets. In addition to being less sensitive to regional trends in the data than standard 
Euler deconvolution (because it does not use the first order derivatives of the data), it also 
generates depth parabolas, which further aid in the interpretation of the results. Adding 
error bars to the Euler solutions shows their sensitivity to the choice of structural index 
and assists in the assessment of their reliability. 

Funding: This research received no external funding. 

Figure 4. (a) Aeromagnetic data profile ‘B’ from Figure 3a. (b) Solutions from Euler deconvolution
Equation (2)) are shown as blue + symbols. A SI of 0.25 and window size of 7 points is used.
(c) Solutions from second-order Euler deconvolution (Equation (7)) are shown as black dots with blue
and red error bars overlain. A SI of 0.25 and window size of 7 points is used. The depth parabola
is overlain as a black line. (d) Solutions from second-order Euler deconvolution (Equation (10)) are
shown as black dots with blue and red error bars overlain. A SI of 0.25 and window size of 7 points is
used. The depth parabola is overlain as a black line.

5. Conclusions

Mineral exploration projects have many different facets, and the use of modern data
processing techniques can greatly facilitate the process. Second-order Euler deconvolution
has been introduced and applied to both synthetic and real aeromagnetic datasets. In addi-
tion to being less sensitive to regional trends in the data than standard Euler deconvolution
(because it does not use the first order derivatives of the data), it also generates depth
parabolas, which further aid in the interpretation of the results. Adding error bars to the
Euler solutions shows their sensitivity to the choice of structural index and assists in the
assessment of their reliability.
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