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Abstract: This paper presents the zonal geochemistry and elasticity characteristics of gallium- and
lithium-rich No. 6 coalbed in the Haerwusu mine and discusses interpretation methodologies of
coal-hosted gallium and lithium resources using lab-measured samples and field-measured wire-
line logs. The results demonstrate that both coal-composition-based and elastic-parameter-based
classifications yield similar results, categorizing the coalbed into subzones related to coal quality.
Material compositions, elastic properties, critical metals, and host minerals exhibit zonal distribution
characteristics within the ultrathick No. 6 coalbed. Three-class classifications significantly enhance
correlations among host minerals, elastic parameters, and critical metals, albeit with differing trends
among classes. In classes II and III (ultralow- and low-ash-yield coals), boehmite and kaolinite primar-
ily host gallium and lithium, respectively. In class I (medium-ash-yield coal), gallium is associated
with kaolinite, while lithium lacks specific mineral associations. Constrained by wireline logs, a
rock physics modeling strategy is proposed to link mesoscale coal compositions to macroscale elastic
responses. Moreover, explicit correlations between host minerals and critical metals are established,
connecting macroscale elastic responses to microscale gallium and lithium enrichments and explor-
ing interpretation methods of coal-hosted critical metals. Preferred lithium interpretation methods
include compositional ternary plots and elastic parameter cross plots, while preferred gallium inter-
pretation methods involve boehmite-gallium and elastic parameter-gallium fitting. These findings
may contribute to understanding the enrichment mechanisms and interpretation technologies of
coal-hosted critical metals in ultrathick low-rank coalbeds.

Keywords: ultrathick coalbed; critical metal; zonal characteristic; rock physics modeling; petrophysical
parameter; interpretation

1. Introduction

Gallium serves as a critical element in modern electronics and semiconductors, while
lithium plays a vital role in addressing global climate changes [1,2]. Both metals are critical
for contemporary industries. With the rapid development of semiconductor technology
and the increasing demand for lithium batteries, there is a growing need for gallium and
lithium resources to bridge the supply–demand gap [3]. Recent studies have identified
gallium- and lithium-rich deposits within Permian–Carboniferous coalbeds in North China,
encompassing regions such as Inner Mongolia’s Jungar coalfield and Shanxi province’s
Qinshui and Ningwu coalfields [4–8]. Given the generally substantial and stable nature of
coal seams in North China, coal-bearing formations in the region have the potential to host
significant deposits of gallium and lithium.

Gallium and lithium enrichments within coal-bearing strata are influenced by a multi-
tude of geological and geochemical factors, including the types of plants involved in coal
formation, sediment sources, hydrothermal and groundwater processes, magmatic and
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volcanic activities, seawater intrusions, and various depositional environments [5,9,10]. In
Permian–Carboniferous coal seams of North China, gallium is primarily associated with di-
verse minerals, with boehmite and kaolinite being predominant, while lithium is commonly
found in aluminosilicate minerals such as kaolinite, illite, chlorite, and boehmite [7,11,12].
However, the distribution of gallium and lithium within coalbeds is heterogeneous. Due
to constraints of workloads and economic feasibility, conventional geochemical analyses
often struggle to fully characterize the three-dimensional distribution of gallium- and
lithium-rich ores in coalbeds. Previous studies have identified the ultrathick No. 6 coalbed
in the Jungar coalfield as possessing significant gallium and lithium resources, elucidating
their primary host minerals and sedimentary sources. However, the zonal characteris-
tics, encompassing mineral compositions, host minerals, and elastic properties, remain
largely underexplored.

Although wireline logging is an indirect exploration method, it boasts higher survey
efficiency and sampling density compared to geochemical analyses [13]. In theory, it can
provide a higher-resolution characterization of geological anomalies than geochemical
methods, provided there is a correlation between geological formations and measured
petrophysical and elastic parameters [13–15]. Wireline logs have been extensively utilized
in coal, oil, gas, and traditional metal mining industries for exploring and delineating
geological formations of interest [13–18]. In the context of coal-bearing metal deposits,
a study by [19] utilized Gamma-ray logs to measure the thickness of uranium-rich de-
posits in coalbeds in Xinjiang. However, practical applications employing wireline logs to
characterize gallium- and lithium-rich deposits in coalbeds are scarce.

Like wireline logging, rock physics modeling is valuable for delineating correlations
among elastic parameters and geological targets. Researchers have applied rock physics
modeling extensively in the oil and gas industry to understand the petrophysical and elastic
characteristics of various formations such as sandstone, shale, carbonate, and unconven-
tional reservoirs [20–23]. The elastic parameters commonly discussed include bulk and shear
moduli, P- and S-wave impedances and velocities, quality factor Q, Poisson′s ratio, and
anisotropy parameters. In the coal industry, pioneers have utilized rock physics modeling
to delineate coal-rank-related velocities and anisotropies, bulk moduli associated with ab-
sorbed methane, and variations in velocities and moduli related to gallium content [24–27].
Additionally, rock physics modeling has been employed to construct interpretation tem-
plates for oil and gas reservoirs as well as coal-hosted gallium deposits [24,28–30]. However,
there have been few applications of rock physics modeling to uncover the zonal character-
istics of elasticities and interpretation methodologies for coal-hosted gallium and lithium
deposits in ultrathick coalbeds.

This paper utilizes the No. 6 coalbed in the Haerwusu mine as a case study to uncover
the zonal characteristics of mineral compositions, elasticities, host minerals, and critical
metals. Furthermore, it discusses the interpretation methods for gallium and lithium
resources in the ultrathick No. 6 coalbed.

2. Geological Setting and Core Sampling
2.1. Geological Setting

The Haerwusu mine stands as a significant producer within the Jungar coalfield,
situated on the northeast margin of the Ordos basin in North China (see Figure 1). With a
mining area spanning 61.4 km2 and a coal reserve estimated at 1.73 billion tons, it holds
substantial importance [4,24]. The primary coal-bearing formations in the mine consist
of the Carboniferous Taiyuan and lower Permian Shanxi formations. Notable minable
coalbeds within the Taiyuan Formation include the No. 6 and No. 9 coalbeds, while the
Shanxi Formation hosts the minable No. 5 coalbed. Among these, the No. 6 coalbed boasts
the greatest thickness (~21 m), followed by the No. 9 coalbed (~4.1 m), and the thinnest,
the No. 5 coalbed (~1.4 m). Remarkably, the No. 6 coalbed, characterized as long-flame
coal (Ro ≈ 0.57%), contributes to 80% of the recoverable coal reserve.
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Figure 1. Coal-bearing basins in the Northern China plate and the Haerwusu mine location.

Along with the Jungar coalfield, the mine features relatively simple geological struc-
tures. Typically, it exhibits a monocline orientation, striking near the NS direction and
dipping westward [4]. Consequently, its eastern portion comprises an uplifted terrace with
an average depth of 80 m, while the western side forms a depression with an average depth
of 100 m. Folds and faults within the mine are sparsely developed, primarily trending along
the NE direction and existing on a small scale. Apart from areas near fold terminations and
faults, sedimentary layers within the mine remain relatively flat, with dip angles generally
less than 5◦. However, near fold terminations and fault zones, dip angles can reach up
to 20◦.

2.2. Core Sampling and Testing

Recent research has revealed that the No. 6 coalbed in the Haerwusu mine boasts
significant concentrations of gallium and lithium, with the weathered surface of the Benxi
Formation in the north of the Ordos basin identified as the sedimentary provenance [4,6].
The rare earth elements present in the coalbed primarily originate from the bauxite of the
Benxi Formation and overlying partings. Given the ultrathick nature of the No. 6 coalbed
in the Haerwusu mine, it serves as an ideal site for investigating the zonal characteristics of
mineral compositions and elasticities in ultrathick coalbeds. To facilitate this investigation,
29 coal samples were collected from drilling cores within the mine [4]. Figure 2 depicts the
locations of these samples and their respective lithologies.

Geochemical measurements, including proximate analyses, inductively coupled plasma
mass spectrometry (ICP-MS), and X-ray powder diffraction (XRD), were employed to
analyze the No. 6 coalbed samples and understand the gallium and lithium contents, as
well as compositional variation characteristics. Initially, the samples were crushed and
ground into grains with sizes smaller than 200 mesh. Subsequently, proximate analyses were
conducted following ASTM D3173-03, D3174-04, and D3175-02 standards. Following this,
ICP-MS was utilized to measure the gallium and lithium contents of the samples. Finally,
XRD was employed to estimate the major mineral contents.
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2.3. Overall Geochemistry Characteristics

After completing the aforementioned procedures, the geochemistry results are com-
piled and plotted in Table 1 [4] and Figure 3. The gallium, lithium, organic, and mineral
contents within the No. 6 coalbed exhibit significant heterogeneity. Coal benches proximate
to the roof and floor of the coalbed typically display lower organic matter and higher kaoli-
nite contents (medium-ash-yield) compared to those situated in the middle (ultralow- and
low-ash-yield coals). Additionally, benches near the coalbed floor tend to exhibit relatively
high levels of calcite, pyrite, and lithium. Meanwhile, boehmite and gallium contents are
relatively elevated in benches located beneath the carbargillite parting (Figure 2). Given
that the contents of kaolinite, calcite, pyrite, quartz, and boehmite are substantially higher
than other minerals, this paper designates them as major minerals and utilizes them to
analyze correlations. Notably, among all major minerals, kaolinite content predominates.

Pearson correlation coefficients have been used to quantify the relationship among
organic matter, major minerals, gallium, and lithium. As depicted in Figure 4, most minerals
and organic matter exhibit weak correlations, except for organic-kaolinite and calcite-pyrite
pairs. The strong correlation between kaolinite and organic matter can be attributed to the
significant contribution of kaolinite to the overall ash yield. Similarly, the strong correlation
between pyrite and calcite can be explained by the association of most pyrite grains in
coal with calcite veins. Regarding gallium and lithium, they exhibit weak to moderate
correlations with minerals and organic matter, including boehmite and kaolinite. These
findings suggest the complexity of gallium and lithium host minerals within the coalbed
and raise doubts about conventional beliefs. Previously, it was thought that gallium
and lithium were hosted by boehmite and kaolinite through element substitution and
absorption [5,11,31–34].
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Table 1. Measured gallium, lithium, organic matter, and mineral contents of coal samples from the
No. 6 coalbed in the Haerwusu mine (vol%; on rock basis). Rt, Sd, and Class represent rutile, siderite,
and three-class classification, respectively.

Sample OM
vol%

Kln
vol%

Qtz
vol%

Py
vol%

Rt
vol%

Cal
vol%

Sd
vol%

Bhm
vol%

Ga
µg/g

Li
µg/g Class

H-1-C 88.2 11.6 0.2 0 0 0 0 0 19 40 I
H-2-C 74.6 25.1 0.2 0 0.1 0 0 0 26 91 I
H-3-C 78 21 0.6 0 0 0.4 0 0 21 100 I
H-4-C 88 10 0.6 0.2 0.4 0.2 0 0.6 27 95 I
H-5-C 82.6 15.7 0 0.2 0.2 0 0 1.3 8.9 254 I
H-6-C 94.8 2 0.6 0 0.2 0.2 0 2.2 40 13 II
H-7-C 82 3 1.6 0.6 0.4 0 0 12.4 36 129 III
H-8-C 84.6 4.3 0.4 0.4 0.2 1.6 0 8.5 18 37 III
H-9-C 97.2 1.3 0.5 0.2 0 0 0 0.8 12 1.2 II

H-10-C 90.3 2.4 0.7 0.4 0 1.5 0 4.7 13 62 III
H-11-C 79.6 12.6 1.6 0.4 0 0.6 0 5.2 15 231 I
H-12-C 80.5 12.2 0.7 0.2 0 1.4 0 5 14 222 I
H-13-C 91.2 1.6 1.8 0.4 0.2 1.2 0 3.6 16 29 III
H-14-C 84.7 6 0.8 0.4 0 0.6 0.2 7.3 27 70 III
H-15-C 90.5 3.4 0.4 0.6 0 1.9 0.2 3 12 30 III
H-16-C 94.3 1.1 0.4 0.9 0 2 0 1.3 16 23 II
H-17-C 91.6 2.6 0.6 0.2 0 2.2 0 2.8 16 82 III
H-18-C 96.4 1.9 0.2 0.2 0 1 0 0.3 7.4 3.9 II
H-19-C 96.6 1 0.2 0 0 1 0 1.2 16 20 II
H-20-C 97 1 0.4 0.2 0 0.8 0 0.6 11 0.06 II
H-21-C 90.7 6.5 0.8 0 0 1 0 1 9.7 273 II
H-22-C 87.2 7.1 0.2 0.2 0 0.7 0 4.6 15 48 III
H-23-C 96.1 2.3 0.2 0 0 0.2 0 1.2 20 41 II
H-24-C 87.8 8.1 0 0.2 0 0.6 0 3.3 15 301 III
H-25-C 85.4 6.3 0 0.9 0 6 0 1.4 12 324 I
H-26-C 84.9 14.1 0 0.2 0 0.8 0 0 19 129 I
H-27-C 84.1 15.5 0 0.2 0 0.2 0 0 23 470 I
H-28-C 81.7 13.1 0 1.4 0 3.8 0 0 22 169 I
H-29-C 73 19 0 3.2 0 4.8 0 0 23 87 IMinerals 2024, 14, 404 5 of 21 
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gallium and lithium were hosted by boehmite and kaolinite through element substitution 
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Figure 4. Heatmap of Pearson correlation coefficients among organic matter, major minerals, gal-
lium, and lithium for all samples from the No. 6 coalbed. 

To examine the feasibility of conventional beliefs regarding the coalbed, we em-
ployed principal component analysis (PCA) to identify multiple correlations by plotting 
factor scores and loadings on the same diagram, as illustrated in Figure 5. Figure 5a ex-
hibits the poles of lithium and kaolinite aligned, suggesting that kaolinite is the main trap 

Figure 3. Tracks 1–5 represent the measured contents of organic matter and main minerals, while
tracks 6 and 7 show the gallium and lithium contents. Tracks 8–11 correspond to the derived principal
components (PC) and classified classes. The abbreviations OM, Kln, Cal, Py, Bhm, Ga, Li, PC1, PC2,
PC3, and Class denote organic matter, kaolinite, calcite, pyrite, beohmite, gallium, lithium, principal
component one, principal component two, principal component three, and classification, respectively.
The solid and dashed lines result from two- and three-class classifications.
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Figure 4. Heatmap of Pearson correlation coefficients among organic matter, major minerals, gallium,
and lithium for all samples from the No. 6 coalbed.

To examine the feasibility of conventional beliefs regarding the coalbed, we employed
principal component analysis (PCA) to identify multiple correlations by plotting factor
scores and loadings on the same diagram, as illustrated in Figure 5. Figure 5a exhibits the
poles of lithium and kaolinite aligned, suggesting that kaolinite is the main trap mineral
for lithium. The pole of gallium is situated between the poles of kaolinite and boehmite,
implying that gallium is likely attributed to kaolinite and boehmite. Figure 5b displays
that the poles of kaolinite and organic matter are distributed in near opposite directions,
indicating that kaolinite is the primary ash yield of most samples. These phenomena are
likely the interpretations of weak to moderate correlations among gallium, lithium, major
minerals, and organic matter. Therefore, the conventional beliefs on gallium and lithium
trap minerals in the coalbed are still valid, but in a more complex form.
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only displaying different types of coals characterized by their OM content, as opposed to kaolinite,
with some samples enriched in pyrite and calcite (b).

3. Zonal Geochemistry Characteristics
3.1. Classification Methodology

The weak to moderate correlations observed between rare metals (gallium and lithium)
and minerals hinder the exploration of gallium and lithium resources in the coalbed.
Given that the No. 6 coalbed exhibits ultrathick characteristics and displays vertical
heterogeneities in compositions, there is a desire to classify the ultrathick coalbed into
distinct subzones. This classification aims to refine the correlations between rare metals
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and minerals. The input for this classification consists of sample compositions, specifically
the volume contents of organic matter and major minerals.

Since coal compositions exhibit correlations in Figure 4, we begin by employing princi-
pal component analysis (PCA) to calculate the linearly uncorrelated principal components
(PCs) of coal compositions. Subsequently, we utilize variance contributions to select the
most favorable combinations of PCs [35]. Table 2 presents the coefficient matrix of the PCA
analysis for all samples, where each column provides the coefficients of coal compositions
for calculating the corresponding PC. Additionally, Table 3 presents the eigenvalues and
variance contributions of the PCs. Considering that the first three PCs contribute to 96% of
the variance, this study utilizes these first three PCs as input (refer to Figure 3) and employs
k-means clustering to classify all samples [36]. By considering the compositional variation
characteristics, this study gradually increases the number of classes from two to three and
subsequently discusses the zonal geochemistry characteristics of each class.

Table 2. The coefficient matrix of PCA analysis for all samples.

Content PC1 PC2 PC3 PC4 PC5

Organic 0.67 0.09 −0.33 0.10 0.65
Kaolinite −0.66 −0.35 −0.18 −0.05 0.64
Calcite −0.20 0.78 −0.08 −0.57 0.14
Pyrite −0.26 0.52 0.04 0.81 0.09

Boehmite 0.11 0.01 0.92 −0.06 0.37

Table 3. The eigenvalues and variance contributions of PCs.

Content Eigenvalues Variance
Contributions

Cumulative
Contributions

PC1 0.62 0.50 0.50
PC 2 0.32 0.25 0.75
PC 3 0.27 0.21 0.96
PC 4 0.04 0.04 1.00
PC5 0.00 0.00 1.00

3.2. Zonal Geochemistry Characteristics after Two-Class Classification

Following the procedures outlined in Section 3.1, we classify all samples into two
classes and present the results in the last track of Figure 3 (solid blue). In general, class I
is primarily situated at the top and bottom of the coalbed, while class II is located in the
middle. In comparison to the proximate analysis results, class I corresponds to medium-
ash-yield coal, whereas class II corresponds to ultralow- and low-ash-yield coals.

Like Section 2.3, we compute the Pearson correlation coefficients of classes I and II
and present the results in Figure 6. As depicted, the two-class classification noticeably
improves the correlations of gallium-boehmite and lithium-kaolinite pairs, although the
improvements vary between classes. In class I, gallium positively correlates with kaolinite
(R = 0.42) rather than boehmite (R = −0.55), whereas in class II, gallium positively correlates
with boehmite (R = 0.55) rather than kaolinite (R = −0.01). Hence, the host minerals of
gallium differ between classes I and II. Similarly, lithium in class II positively correlates with
kaolinite but weakly correlates with all minerals in class I. Additionally, organic matter in
both classes exhibits limited affinity for hosting lithium. Consequently, the hosts of gallium
and lithium in the coalbed exhibit complexity, as previously suggested by references [11,31],
and display zonal characteristics.
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correlation coefficients of classes II and III and compare them in Figure 7. Generally, clas-
ses II and III exhibit similar correlation patterns but differ in the specific correlation coef-
ficients. The correlation coefficients of the gallium-boehmite pair in classes II and III and 
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Figure 6. Heatmaps of Pearson correlation coefficients among gallium, lithium, organic matter, and
main minerals for classes I (a) and II (b) after two-class classification.

3.3. Zonal Geochemistry Characteristics after Three-Class Classification

As illustrated in Section 3.2, we classify all samples into three classes and present the
results in the last track of Figure 3 (dash yellow). Class I remains consistent in both two- and
three-class classifications, primarily situated at the top and bottom of the coalbed. Classes II
and III are located in the middle of the coalbed and exhibit periodic gyration characteristics.
In comparison to the proximate analysis results, class II corresponds to ultralow-ash-yield
coal, while class III corresponds to low-ash-yield coal. Moreover, calcite-pyrite pairs display
a high correlation in class II but a weak correlation in class III. These zonal phenomena may
be linked to the micro variations in the sedimentary environment during coal formations.

As class I remains consistent in both classifications, we solely compute the Pearson
correlation coefficients of classes II and III and compare them in Figure 7. Generally, classes
II and III exhibit similar correlation patterns but differ in the specific correlation coefficients.
The correlation coefficients of the gallium-boehmite pair in classes II and III and the lithium-
kaolinite pair in class II are high (R = 0.93, 0.88, and 0.97, respectively). In contrast, the
correlation coefficient of the lithium-kaolinite pair in class III is moderate (R = 0.56), while
the correlation coefficient of the lithium-kaolinite pair in class I is low (R = −0.3). Compared
to the two-class classification, the three-class classification significantly enhances correlation
coefficients among the mentioned pairs. Moreover, organic matter demonstrates a strong
negative correlation with gallium in class III and lithium in class II. This phenomenon is
likely due to the presence of organic matter, which tends to coincide with lower levels of
kaolinite, thereby inducing negative correlations within the groups.
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As the reliability of the Pearson correlation coefficient in evaluating cross-correlations
in geochemistry is not always guaranteed [37,38], we have cross-plotted the gallium-
boehmite and lithium-kaolinite pairs and fitted their variation trends in Figure 8. The
results indicate that the calculated correlation coefficients are consistent with the cross
plots. One can estimate the gallium and lithium contents using the fitted trends, except
for lithium in class III (Figure 8d). Figure 8d illustrates the presence of two classes of
kaolinites with a high correlation coefficient when separated: (i) the Li-enriched kaolinite
(up to Li = 301 ppm) with aligned points in the upper part of the plot, and (ii) the Li-
depleted kaolinite (maximum Li = 70 ppm) in the lower part. Both populations exhibit high
correlation coefficients (0.98 and 0.75, respectively) with the kaolinite (vol%). Because it is
hard to separate these two classes with the major minerals, we do not fit trends for them
to interpret metal contents. Furthermore, the trend gradients and boehmite contents in
Figure 8a,b vary significantly, suggesting that unit boehmite in class II has absorbed much
more gallium than in class III. Exploring the reasons behind this intriguing phenomenon
warrants research in the future.

Minerals 2024, 14, 404 9 of 21 
 

 

0.56), while the correlation coefficient of the lithium-kaolinite pair in class I is low (R = 
−0.3). Compared to the two-class classification, the three-class classification significantly 
enhances correlation coefficients among the mentioned pairs. Moreover, organic matter 
demonstrates a strong negative correlation with gallium in class III and lithium in class II. 
This phenomenon is likely due to the presence of organic matter, which tends to coincide 
with lower levels of kaolinite, thereby inducing negative correlations within the groups. 

  
(a) (b) 

Figure 7. The heatmaps of Pearson correlation coefficients among gallium, lithium, organic matter, 
and minerals for classes II (a) and III (b) after three-class classification. 

As the reliability of the Pearson correlation coefficient in evaluating cross-correlations 
in geochemistry is not always guaranteed [37,38], we have cross-plotted the gallium-
boehmite and lithium-kaolinite pairs and fitted their variation trends in Figure 8. The re-
sults indicate that the calculated correlation coefficients are consistent with the cross plots. 
One can estimate the gallium and lithium contents using the fitted trends, except for lith-
ium in class III (Figure 8d). Figure 8d illustrates the presence of two classes of kaolinites 
with a high correlation coefficient when separated: (i) the Li-enriched kaolinite (up to Li = 
301 ppm) with aligned points in the upper part of the plot, and (ii) the Li-depleted kaolin-
ite (maximum Li = 70 ppm) in the lower part. Both populations exhibit high correlation 
coefficients (0.98 and 0.75, respectively) with the kaolinite (vol%). Because it is hard to 
separate these two classes with the major minerals, we do not fit trends for them to inter-
pret metal contents. Furthermore, the trend gradients and boehmite contents in Figure 
8a,b vary significantly, suggesting that unit boehmite in class II has absorbed much more 
gallium than in class III. Exploring the reasons behind this intriguing phenomenon war-
rants research in the future. 

  
(a) (b) 

Minerals 2024, 14, 404 10 of 21 
 

 

  
(c) (d) 

Figure 8. The cross plots of boehmite vs. gallium (a,b) and kaolinite vs. lithium (c,d) for classes II 
(a,c) and III (b,d). 

4. Zonal Elasticity Characteristics 
4.1. Rock Physics Modeling Strategy 

Generally, acoustic elasticities represent macroscale responses of subsurface samples 
and cannot directly relate to microscale metal enrichments. This section proposes a 
mesoscale rock physics modeling strategy to bridge the scale differences. Following Sec-
tion 2.2, the strategy begins with coal compositions and follows the procedures outlined 
in Figure 9 [24,29,30]. As revealed by coal petrology, the occurrence states of minerals in 
No. 6 coalbed primarily consist of block- or plate-shaped grains floating in the organic 
matter [4,39]. Therefore, the strategy treats the organic matter as the background phase 
and the minority minerals and pores as the inclusion phases. Given the 29 samples, the 
strategy deals with each sample separately. 

For each sample, the strategy initially inputs its mineral fractions (Table 1) and phys-
ical parameters (Table 4) to compute the effective moduli of mineral mixtures using the V-
R-H average (see Appendix A). Subsequently, the strategy incorporates the mineral mix-
ture into the organic matter background to calculate the effective moduli of coal matrices 
using the DEM model (see Appendix B). Thirdly, the strategy progressively embeds stiff 
and soft pores (in the dry state) into coal matrices to determine the effective moduli of dry 
coal using the DEM model. The porosity considered here corresponds to the average of 
the No. 6 coalbed in the Haerwusu mine (9.4%). Fourthly, the strategy replaces dry pores 
with saturated water following the Gassmann fluid replacement strategy (see Appendix 
C). Finally, the strategy computes the elastic parameters of water-saturated coal according 
to isotropic linear elasticity theory (see Appendix D) and compares these parameters with 
measured wireline logs. If the modeled and wireline-logged parameters align, the results 
are outputted. If not, the strategy adjusts modeling parameters and repeats the rock phys-
ics modeling procedures starting from the step of mineral mixing. 

Figure 8. The cross plots of boehmite vs. gallium (a,b) and kaolinite vs. lithium (c,d) for classes II (a,c)
and III (b,d).

4. Zonal Elasticity Characteristics
4.1. Rock Physics Modeling Strategy

Generally, acoustic elasticities represent macroscale responses of subsurface sam-
ples and cannot directly relate to microscale metal enrichments. This section proposes
a mesoscale rock physics modeling strategy to bridge the scale differences. Following
Section 2.2, the strategy begins with coal compositions and follows the procedures outlined
in Figure 9 [24,29,30]. As revealed by coal petrology, the occurrence states of minerals in
No. 6 coalbed primarily consist of block- or plate-shaped grains floating in the organic
matter [4,39]. Therefore, the strategy treats the organic matter as the background phase and
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the minority minerals and pores as the inclusion phases. Given the 29 samples, the strategy
deals with each sample separately.
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Figure 9. Rock physics modeling strategy for the gallium- and lithium-rich coal in the No. 6 coalbed.

For each sample, the strategy initially inputs its mineral fractions (Table 1) and physical
parameters (Table 4) to compute the effective moduli of mineral mixtures using the V-R-H
average (see Appendix A). Subsequently, the strategy incorporates the mineral mixture
into the organic matter background to calculate the effective moduli of coal matrices using
the DEM model (see Appendix B). Thirdly, the strategy progressively embeds stiff and
soft pores (in the dry state) into coal matrices to determine the effective moduli of dry
coal using the DEM model. The porosity considered here corresponds to the average of
the No. 6 coalbed in the Haerwusu mine (9.4%). Fourthly, the strategy replaces dry pores
with saturated water following the Gassmann fluid replacement strategy (see Appendix C).
Finally, the strategy computes the elastic parameters of water-saturated coal according to
isotropic linear elasticity theory (see Appendix D) and compares these parameters with
measured wireline logs. If the modeled and wireline-logged parameters align, the results
are outputted. If not, the strategy adjusts modeling parameters and repeats the rock physics
modeling procedures starting from the step of mineral mixing.

Table 4. Moduli and densities of coal components have been used for rock physics modeling [40,41].

Density (g/cc) Bulk Modulus (GPa) Shear
Modulus (GPa)

Kaolinite 2.44 44 22
Quartz 2.65 37 44
Pyrite 4.93 147.4 132.5
Calcite 2.71 76.8 32

Boehmite 3.04 87.5 64.03
Organic 1.30 2.9 2.7

4.2. Overall Elasticity Characteristics

After performing the rock physics modeling, we plot calculated elastic parameters,
including bulk and shear moduli (K and µ), P- and S-wave velocities (VP and VS), modulus
and velocity ratios (K/µ and VP/VS), and densities (Den) in Figure 10. Generally, elastic
parameters in tracks 1–7 exhibit similar variation trends. The values are higher near the
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coalbed’s roof and floor than in other locations. Elastic parameters in the water-saturated
state are generally larger than in the dry state, except for S-wave velocity. Compared
to the geochemistry results in Figure 3, the elastic parameters are positively correlated
with kaolinite and negatively correlated with organic matter. Additionally, in comparison
to gallium and lithium contents, high gallium contents are associated with low elastic
parameters, while high lithium contents are associated with high elastic parameters.
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4.3. Rock Physics Modeling Validation

To assess the feasibility of the proposed rock physics modeling strategy, we compare
the modeled density and P-wave velocity with measured wireline logs from borehole C14
in the Haerwusu mine (see Figure 11). In comparison to the roof sandstone and floor mud-
stone, the No. 6 coalbed exhibits characteristics such as low density, low P-wave velocity
(VP), low Gamma ray (GR), high resistivity (RD), high spontaneous potential (SP), and high
caliper (CAL) [42]. The rapid and violent fluctuations observed in density, VP, GR, and RD
logs within the No. 6 coalbed suggest complex lithological and compositional variations.

Because the borehole is filled with drilling fluid (freshwater) during wireline logging,
we approximate that the wireline logs were measured under a water-saturated state. In
this comparison, this paper focuses solely on density and VP parameters, as both wireline
logs and rock physics modeling results have them. Due to differences in sampled benches
and wireline logs in terms of locations and sample rates, their density and VP values
cannot be directly compared from sample to sample. Instead, both data sets should exhibit
similar statistical characteristics, as their field locations are close together and share similar
lithological and bedding characteristics. Therefore, this paper compares the probability
distributions of modeled and wireline-logged density and VP in Figure 12.

Because the wireline logs include data from roof sandstone, floor mudstone, and
coalbed partings, the density and VP variation ranges of wireline logs are larger than those
of the rock physics modeling results. Fortunately, coal benches exhibit the lowest density
and VP within the No. 6 coalbed. Therefore, it suffices to compare the characteristics
of the lower ends in Figure 12. Since the modeled and wireline-logged histograms are
almost overlapped in the lower ends, these high consistencies can mutually verify the
feasibility of the proposed modeling strategy in Section 4.1 and the reliability of sample
measurements in Section 2.2. One can utilize the modeled elastic parameters to further
discuss the geophysical interpretation technologies of gallium and lithium contents.
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the No. 6 coalbed in the Haerwusu mine.

4.4. Zonal Elasticity Characteristics after Three-Class Classification

We utilize the rock physics modeled results to calculate Pearson correlation coefficients
for all samples (see Figure 13a) and discuss the correlations among gallium, lithium, and
elastic parameters. Generally, elastic parameters exhibit high correlations with each other,
consistent with the wireline-logged results. In contrast, the correlations among gallium,
lithium, and elastic parameters are generally low to moderate. The highest correlation
coefficient between lithium and elastic parameters is 0.45 (for modulus and velocity ratios),
and the highest coefficient between gallium and elastic parameters is 0.29 (for density and
shear modulus). These phenomena represent a fundamental limit to directly interpreting
critical metals using elastic parameters.

To mitigate the impact of potential multiple correlations, we employ PCA to analyze
the relationships among elastic parameters, gallium, and lithium by plotting the factor
scores and factor loadings on the same diagram, as illustrated in Figure 14. The poles of
velocity and modulus ratios are close to the pole of lithium, suggesting that these two
ratios likely correlate with lithium content. The pole of gallium is far away from the
other poles, indicating that few elastic parameters are associated with gallium content.
These phenomena validate the results of Pearson correlation coefficients and highlight a
fundamental limitation in directly interpreting critical metals using elastic parameters in
the coalbed.
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Figure 14. PCA with elastic parameters, gallium, and lithium with various coal types.

To enhance the correlation coefficients among elastic parameters, gallium, and lithium,
we compute the PCs of all elastic parameters and utilize the first two PCs along with
k-means clustering to classify all samples into three classes. The results are depicted in the
last track of Figure 10. In comparison to the classified classes based on coal compositions
(track 10), the classified classes derived from elastic parameters exhibit similar distributions.
The consistency between these two classifications is high, at 79.3%. Classes I, II, and III
correspond to high, low, and intermediate elastic values, respectively, and are roughly
associated with medium-ash-yield, ultralow-ash-yield, and low-ash-yield benches.
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The Pearson correlation coefficients among elastic parameters in Figure 13b–d gen-
erally exhibit similarities but differ from those in Figure 13a. Specifically, the coefficients
between gallium and elastic parameters in Figure 13c,d are higher than those in Figure 13a,
whereas the coefficients in Figure 13b are lower. Similarly, the coefficients between lithium
and elastic parameters in Figure 13c are higher than in Figure 13a, whereas those in
Figure 13b,d are lower. Notably, the highest correlation coefficient between lithium and
elastic parameters is found in class II (VP, R = 0.54), and the highest coefficient between gal-
lium and elastic parameters is observed in class III (modulus and velocity ratios, R = 0.49).
Figure 10 indicates that class II exhibits the highest gallium content, while class I has the
highest lithium content. In class II, the shear velocity (VS) shows the strongest correlation
with gallium (R = 0.84). As depicted in Figure 15a, gallium content can be confidently
interpreted using the fitted trend. Conversely, in class I, density exhibits the strongest
correlation with lithium (R = −0.45). However, notable scatter deviations in the plot are
evident, as illustrated in Figure 15b, raising questions about the reliability of interpreting
lithium content using density fitting.
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5. Discussion
5.1. Interpretation Method with Compositional Ternary Plot

The ternary plot serves as a valuable tool for distinguishing coal compositions and
petrology. In this section, organic matter, kaolinite, and the sum of other minerals (mostly
boehmite) are used as edges to construct the ternary plots, as depicted in Figure 16. The
classified classes exhibit distinct zonal distribution characteristics, allowing for clear sep-
aration from each other. Similarly, lithium contents also demonstrate zonal distribution
characteristics, with high-lithium samples primarily situated in the marked lithium-sweet
zone (predominantly belonging to class I). Conversely, gallium contents lack zonal distri-
bution characteristics, with high-gallium samples sparsely distributed across the ternary
plot. This phenomenon is particularly pronounced in the subzone of class I compared to
other subzones.

As previously discussed, coal compositions and correlations among critical metals and
minerals in the coalbed exhibit zonal characteristics that are closely linked to sedimentary
environments. These observations suggest that variations in sedimentary environment-
related coal compositions influence the enrichments of gallium and lithium in the coalbed.
High gallium contents are predominantly found in classes II and III, which can be effec-
tively interpreted using boehmite-gallium fitting. Conversely, high lithium contents are
predominantly observed in class I, and their interpretation is facilitated by utilizing the
compositional ternary plot.
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5.2. Interpretation Method with Elasticity Cross Plot

In addition to trend fitting, this section explores the relationship between bulk modulus
and modulus ratio as a means to discuss the elastic interpretation methods of gallium and
lithium contents. Generally, the scatter points in Figure 17 exhibit zonal distribution
characteristics under different saturation states. Specifically, under the dry state, the scatter
points are concentrated in the lower half of the figure, while under the water-saturated
state, they are predominantly located in the upper half. Moreover, the scatter points
transition along the marked arrows when shifting from the dry to the water-saturated
states, facilitating the clear differentiation between dry and water-saturated samples.

Under a given saturation state, classes I, II, and III also exhibit distinctly zonal distribu-
tion characteristics. Specifically, classes I, II, and III are situated in the up-right, bottom-left,
and middle-left areas, respectively. The distribution of lithium in the plot also displays
zonal characteristics akin to those observed in the compositional ternary plot, with most
high-lithium samples concentrated in the marked lithium-sweet area. Because the distances
among scatter points in the water-saturated state are more considerable than in the dry state,
defining the lithium-sweet zone in the water-saturated state is more applicable. In contrast,
the zonal distribution characteristics in the gallium figure are weak-high gallium samples
which are sparsely distributed along the low modulus ratio edge, making it challenging to
interpret gallium contents using the cross plot.

Like the bulk modulus vs. modulus ratio cross plot, the cross plots of shear modulus
vs. modulus ratio, VP vs. velocity ratio, and VS vs. velocity ratio yield similar results.
Using these cross plots, one can qualitatively interpret lithium-rich benches in the No. 6
coalbed. Similarly, the interpretation of gallium-rich benches in the No. 6 coalbed can be
achieved by fitting the elastic parameter-gallium trend in class II, which contains the highest
gallium sample.
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6. Conclusions

This paper utilized the No. 6 coalbed in the Haerwusu mine as a case study to
explore the zonal geochemistry and elasticity characteristics of the ultrathick gallium- and
lithium-rich coalbed in North China. From the investigation, the following conclusions can
be drawn:

(1) The material compositions, elastic properties, and distribution of critical metals
exhibit heterogeneously within the ultrathick No. 6 coalbed, displaying distinct zonal
distribution characteristics. Classifications based on coal composition notably enhance
correlations among pairs such as gallium-boehmite and lithium-kaolinite. Similarly, clas-
sifications based on elastic parameters, including S-wave velocity, density, and modulus
ratio, improve correlations with critical metals, namely gallium and lithium. These two
classification methods yield comparable results.

(2) The host minerals for gallium and lithium in the coalbed are intricate and exhibit
zonal characteristics. Within classes II and III (representing ultralow- and low-ash-yield
coals), boehmite and kaolinite serve as the primary hosts for gallium and lithium, respec-
tively. Conversely, in class I (medium-ash-yield coal), gallium is associated with kaolinite,
while lithium shows low correlation coefficients with major minerals. Notably, while
boehmite contents in class II are lower than in class III, individual boehmite units in class II
absorb significantly more gallium than those in class III.

(3) This paper introduces a wireline-log-constrained rock physics modeling strategy
aimed at bridging the mesoscale material compositions of coal with its macroscale elastic
behaviors. By establishing clear correlations between host minerals and critical metals, it is
possible to link the macroscale elastic responses to the microscale enrichments of gallium
and lithium. This approach facilitates the exploration of interpretation methods for critical
metals hosted within coal, leveraging laboratory-tested elastic responses and wireline logs.
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(4) The gallium and lithium contents in the No. 6 coalbed are interpretable. Preferred
methods for interpreting lithium include compositional ternary plots and elastic param-
eter cross plot. Similarly, preferred methods for gallium interpreting include fitting the
boehmite-gallium relationship and utilizing elastic parameters.

(5) The zonal characteristics and interpretation methodologies uncovered in this
study have the potential to elucidate enrichment mechanisms and advance interpretation
technologies for critical metals hosted within ultrathick coalbeds.
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Appendix A. V-R-H Average

Minerals found in coal exhibit complex compositions, geometries, and grain interac-
tions, posing challenges for accurately estimating their effective moduli. Various estimation
methods exist, with the Voigt–Reuss–Hill (V–R–H) average being a commonly employed
approach in rock physics modeling. The V–R–H average is advantageous as it does not
rely on specific assumptions regarding mineral geometry. In this method, the Voigt bound
assumes minerals are connected in parallel [24,29], while the Reuss bound assumes they
are connected in series, as expressed mathematically in Equation (A1).

MV = ∑N
i=1 fi Mi

M−1
R = ∑N

i=1 fi/Mi
MVRH = (MV + MR)/2

(A1)

The equation is defined for N ≥ 2, where fi and Mi represent the volume ratio and
modulus of the ith mineral, respectively. MR, MV, and MVRH denote the effective moduli
of the Reuss bound, Voigt bound, and V–R–H average. Typically, the V–R–H average
provides a reasonable estimate of the effective modulus for mixtures when the minerals
have similar moduli.

Appendix B. DEM Model

The differential equivalent medium (DEM) model calculates the moduli of two-phase
mixtures by incrementally introducing inclusions (phase two) into the background ma-
terial (phase one). Equation (A2) represents the general mathematical expression of the
model [41]. {

(1−y)d[K∗(y)]/dy = (K2 − K∗)P∗2(y)
(1−y)d[µ∗(y)]/dy = (µ2 − µ∗)Q∗2(y)

(A2)

The DEM model calculates the effective bulk and shear moduli, denoted as K* and µ*,
respectively, by starting with the initial bulk and shear moduli of the background phase,
represented by K*(0) = K1 and µ*(0) = µ1, and then incrementally adding the bulk and shear
moduli of the inclusion phase, denoted as K2 and µ2. Here, y represents the concentration
of phase two, while P*2 and Q*2 are the geometric factors of inclusions. It is important to
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note that the DEM model is a high-frequency approximation that only applies under dry
conditions when dealing with pores.

Appendix C. Gassmann Fluid Replacement

Gassmann fluid replacement is commonly employed in rock physics modeling and
reservoir characterization to account for pore fluid replacement. Conventionally, its general
mathematical expression is given by Equation (A3) [41].{

Ksat1
K0−Ksat1

− K f l1
ϕ(K0−K f l1)

= Ksat2
K0−Ksat2

− K f l2
ϕ(K0−K f l2)

µsat1 = µsat2
(A3)

where K0 is the bulk modulus of the rock matrix, Ksat1 and Ksat2 are the bulk moduli of
the rocks saturated with fluid one and fluid two, respectively; µsat1 and µsat2 are the shear
moduli of the rocks saturated with fluid one and fluid two, respectively; Kfl1 and Kfl2 are
the bulk moduli of fluid one and fluid two, respectively; ϕ is the porosity.

Appendix D. Elastic Parameter Transformation

Under homogeneous, isotropic, and small-strain assumptions, the loaded stresses and
observed strains correlate linearly and follow Hooke’s law. Under these conditions, two out
of five moduli are independent. With density, bulk modulus, and shear modulus inputs,
Equation (A4) computes P- and S-wave velocities [41].{

VP =
√
(K + 4µ/3)/ρ

VS =
√

µ/ρ
(A4)

where K and µ are bulk and shear moduli, ρ is density, and VP and VS are P- and S-
wave velocities.
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