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Abstract: This article presents a novel approach to calibrating the digital twin of a laboratory mill
used for copper ore milling. By integrating computer vision techniques for real-time data extraction
and employing DualSPHysics simulations for various milling scenarios, including balls only, balls
with ore, and balls with slurry, we achieve a high degree of accuracy in matching the digital twin’s
behavior with actual mill operations. The calibration process is detailed for mills with three different
diameters, highlighting the adjustments in simulation parameters necessary to account for the absence
of ore. Understanding the dynamics between the suspension within the mill and the operation of
the grinders is crucial for the future improvement of the grinding process. This knowledge paves
the way for optimizing the process, not only in terms of the quality of the end product but primarily
in terms of energy efficiency. A profound understanding of these interactions will enable engineers
and technologists to design mills and grinding processes in a way that maximizes efficiency while
minimizing energy consumption.

Keywords: digital twin; copper ore milling; computer vision; DualSPHysics; DEM simulations; SPH

1. Introduction

The mineral processing industry, a prominent element of modern industrial economies,
is crucial for extracting valuable minerals from ores [1]. This fundamental sector transforms
raw, naturally occurring materials into useful products, such as metals, which find essential
applications in numerous sectors, including construction, automotive, and electronics [2].
In most mineral processing systems, grinding is the one of the first stages, enabling better
extraction of valuable components [3], increasing process efficiency, and optimizing energy
consumption in subsequent stages of production. In this context, ball mills, integral to
mineral extraction and refinement, are central to the fine grinding of ores [4], and the
efficacy and efficiency of mineral processing are deeply tied to their performance [5,6].

Despite the simple construction of ball mills and their operation, the grinding process
entails a lot of technological challenges. The majority of research efforts and optimization
actions are focused on increasing the efficiency of comminution by achieving the proper
size reduction in grains [7] with the lowest energy expenditure possible [8]. A particular
one is the prediction of mill load behavior, which consists of a mixture of ore particles,
water, and grinding media, especially during wet milling. Wet grinding is exceptionally
popular in ore processing [9] due to its ability to control the viscosity of the slurry [10],
reduce energy consumption and oxidation of certain minerals [11], improve separation [12],
and provide control over particle size [13]. The behavior of the mixture, governed by a
complex interaction between the liquid, gas, and solid phases inside the mill, is hard to
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predict [14]. Furthermore, the slurry level in AG/SAG and ball mills significantly influences
their power consumption [15].

Contributing to this understanding, ref. [16] conducted a study on the discharge of
finer rock, pebbles, ball scraps, and slurry from mills. They demonstrated these elements’
effects on overflow ball mills’ performance. They combined the Discrete Element Method
(DEM) and Smoothed Particle Hydrodynamics (SPH) to model the coarser rock compo-
nents, grinding media, and slurry components. Their modeling yielded valuable data for
understanding and optimizing designs for improved performance and wear life. Similarly,
ref. [17] suggested a computational approach that combines the Discrete Element Method
(DEM) for modeling the solid particles and a continuum description (CFD) for fluid dy-
namics in a three-phase model. This approach highlights the usefulness of modeling both
charge and slurry dynamics. Moreover, their model considered the effect of drag force on
slurry movement evoked by particle motion.

In the field, further advancements include studies on the influence of mill speed,
slurry concentration, and slurry filling on the impact forces within the mill and the role
of slurry pool formation on mill power draw. Refs. [18,19] used an instrumented ball to
measure the charge physical quantities in a ball mill, uncovering complex behavior under
different mill speeds and slurry filling levels. In a more recent study, Ref. [20] examined
the impact of slurry mass concentration on the grinding characteristics of magnetite using
ceramic grinding media, leading to significant energy savings and a reduced chance of
over-grinding, especially at high concentrations. Further complementing these insights,
Ref. [21] underlined the need to accurately simulate the ore milling process that accounts
for the unique shapes of ore particles and grinding media. They proposed a polyhedron-
sphere contact model based on the “deepest point method” tested through experiments
and simulation studies. They found that their model could lead to increased power
consumption, enhanced energy utilization efficiency, and substantial collision energy
between the ore and the liner, increasing liner wear.

Moreover, Ref. [22] conducted extensive experimental work to clarify granular flow
behavior inside a rotating drum. However, most of these studies involved spherical or
nearly spherical particles. The impact of non-spherical particles, such as pharmaceutical
tablets suitable as tracer particles, on the velocity profile, residence time, and segrega-
tion patterns showed significant deviations from those predicted for spherical particles.
In particular, non-spherical particles with an aspect ratio greater than two showed con-
siderable differences, including unexpected core segregation patterns and a lower axial
dispersion coefficient.

In other research, Ref. [23] demonstrated the difficulty in modeling multifrequency
signals like mechanical vibration and acoustic signals from a wet ball mill during the
mineral grinding process. They used the empirical mode decomposition (EMD) technique
to decompose these signals into multiscale intrinsic mode functions (IMFs) and developed
a new adaptive multiscale spectral features selection approach. Their approach allowed
the effective modeling of mill load parameters based on shell vibration and acoustic
signals. It provided a practical solution for complex multifrequency signal modeling in
mineral grinding.

The presented research works focus on predicting the behavior of various materials
undergoing grinding using diverse modeling methods. However, over time, these methods
become outdated and require reevaluation to incorporate new components, considering
the continuous development of the field. A particular challenge is the lack of a universal
approach for modeling the behavior of each slurry, necessitating separate calibration
studies based on their composition, with special consideration given to the properties of
the ground ore. In this article, building on these insights [2,17,21,23], we aim to develop a
numerical model simulating mill load behavior with copper ore slurry. The study utilized
laboratory test results obtained from ball mill grinding and subsequently calibrated a
numerical mill load model based on these findings. Our ultimate objective is to set a
starting point for the further enhancement of our understanding of mill load behavior
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in both dry and wet milling. We aim to enable more efficient milling strategies, leading
to improved performance and reduced energy consumption in the mineral processing
industry. The ultimate objective of developing a digital twin is to facilitate numerical
testing that predicts the real object’s behavior under varied operational parameters, thereby
avoiding costly and disruptive changes in an industrial setting. This approach promises
significant advancements in operational efficiency and innovation without the need for
physical modifications.

2. Theoretical Background

This part provides an overview of the theory surrounding the simulation of the
behavior of charge during dry and wet milling with slurry. The necessary elements needed
to simulate this behavior include balls, ore, water and steel parts of the mill. In some
multiphase approaches, the interaction with gas phase (air) could be also taken into account.
A slurry consisting of solid fraction, gas, and water has unique properties that result from
the interactions between these three components.

The solid fraction of the slurry inside the mill consists primarily of particles of ground
ore, whose size decreases with the progress of grinding. Their size has a significant
impact on the slurry’s characteristics, as it affects its viscosity and determines the flow
behavior [24]. These properties are crucial from the perspective of physics simulation.
Additionally, the presence of solid particles can affect the turbidity and transparency of
the slurry, but these characteristics are less relevant for the analyzed issue. In addition to
the fragmented ore particles, the slurry contains grinding media in the form of steel balls,
which complement its composition. Both the balls and ore particles can be modeled as
discrete elements with known density, hardness, and size distribution. These parameters
have the greatest impact on grinding efficiency and power consumption.

The particle size determines the settling velocity, distribution, conditions of friction
between particles, and interactions with other components of the slurry [25]. The density
of the ground ore can influence the particles’ ability to stay suspended, the resistance to
motion, and the distribution of particles in space [26]. The shape of particles determines
their velocity distribution and intermolecular interactions, and can affect the dynamics of
sedimentation processes under quiescent conditions [27]. The hardness of solid particles
refers to their resistance to deformation [28]. This parameter can impact particle–particle
interactions and interactions with the mill surface, as well as grinding and comminution
processes. The particle size distribution can influence the uniformity of grinding, sedi-
mentation and mixing processes, as well as interactions with other components of the
slurry [29].

On the other hand, mill elements can be simulated as one solid body, consisting of all
the same properties as discrete elements except for size distribution. The mill lining and
grinding media are usually made of steel. The wear and corrosion of these parts can have a
significant impact on mill performance.

Water is the main component of the slurry in wet grinding, where it serves as a carrier
for solid particles and dissolved gases. Its presence determines the dynamics of particles
in the mill. Water can affect the viscosity of the slurry, although its influence is typically
smaller compared to that of solid particles [30]. The determining factor for slurry viscosity
in this case is its quantity rather than specific physicochemical properties. Additionally,
the solubility of gases and the dynamics of certain chemical processes depend on the
temperature of the water [31], which is positively correlated with the grinding time due to
the release of a significant amount of heat, which is a loss in the grinding process. The main
parameters of water that need to be considered in a numerical model are density and
viscosity, which depend on its temperature. The density of the slurry affects the balance
of forces within it, the behavior of solid particles and gas, and the interactions between
them [32]. Viscosity, on the other hand, refers to the flow resistance of the slurry [33]. This
parameter is important in modeling the flow of a slurry, as it affects the resistance of solid
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particles, the friction between slurry components, and the velocity distribution within
the system.

2.1. Simulation Environment

DualSPHysics [34] is an advanced open-source code designed to exploit the compu-
tational capabilities of modern graphics processing units (GPUs) for simulating real engi-
neering problems using the Smoothed Particle Hydrodynamics (SPH) method. The SPH
method, a meshless technique that has significantly progressed over the last two decades,
facilitates the simulation of a wide range of physical phenomena. These include the violent
hydrodynamics of coastal and offshore structures, galaxy and planetary formation, multi-
phase flows and mixing in process industries, large deformations of solids and structures,
damage and failure modeling, fluid–structure interaction, and applications in computer
graphics and games [35–38]. DualSPHysics stands out for its dual capability to operate
on both central processing units (CPUs) via the OpenMP shared memory approach and on
GPUs, utilizing the CUDA programming framework to achieve computational acceleration.

The development of DualSPHysics is a collaborative effort involving institutions such
as the Universidade de Vigo, University of Manchester, University of Lisbon, Università
di Parma, Flanders Hydraulics Research, Universitat Politécnica de Catalunya, and New
Jersey Institute of Technology. This collaboration has yielded a tool that significantly
reduces computational time for SPH simulations, making these simulations accessible
on standard desktop PCs. The software, available under the GNU Lesser General Public
License (LGPL), includes pre- and post-processing tools and examples and is hosted on
GitHub for public collaborative development.

DualSPHysics is specifically optimized for GPU acceleration, featuring CUDA kernels
for single GPU use, hierarchical templates, and cell-linked neighbor lists for enhanced
flexibility and processing speed [39,40]. The software package also includes dedicated
tools for generating inputs and facilitating new test case workflows, along with various
post-processing tools for data analysis and visualization.

Since its inception in 2011, DualSPHysics has undergone continuous development,
with version 5.0 introducing significant new features such as coupling with the Discrete
Element Method [34]. In this research, the newest stable version 5.2.0 was used.

2.2. SPH Formulation
2.2.1. Interpolants and Kernel Functions

In the domain Ω, the continuous integral formulation of Smoothed Particle Hydrody-
namics (SPH) for a differentiable function f (r), r ∈ Rd, is expressed through the convolution
of a kernel function W with f as shown in:

⟨ f (r)⟩ :=
∫

Ω
f (r′)W(r − r′, h)dr′. (1)

Here, the ⟨·⟩ brackets signify an approximation, r′ ∈ Ω serves as an intermediary
positional variable, and W(r, h) represents a positive kernel function characterized by the
following equation:

W(r, h) =
1
hd ω(q), (2)

where h > 0 denotes the smoothing length and q = |r|/h is the normalized distance.
The function ω : R → R is defined as a smooth, non-negative function with properties
described by: ∫

Ω
ω(q)dr =

1
hd , (3)

This function possesses a compact support as illustrated in: (Figure 1),

ω(q) = 0 for |r| ≥ kh, k ∈ R+. (4)
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Figure 1. Configuration and compact support of the kernel function (redrawn from [34]).

Numerous smoothing kernels are discussed in the academic context as outlined by [41].
The smoothing kernel is represented by Equation (2) and conforms to the criteria set forth
in Equations (3) and (4), with the function W : Rd → R. The kernel is characterized
by its positive definition over the support domain ∀r′ ∈ Ω; W(r − r′, h) > 0, exhibiting a
monotonically decreasing and sufficiently smooth behavior over the interval kh, and

lim
h→0

W(r, h) = δ(r), (5)

where δ denotes the Dirac delta function as referenced in the works of [42,43]. In the
implementation within DualSPHysics, various kernel functions have been utilized. Notably,
the third-order B-splines kernel (cubic spline) is prevalent [43]:

ω(q) = aD


1 − 3

2 q2 + 3
4 q3 0 ≤ q ≤ 1

1
4 (2 − q)3 1 < q ≤ 2
0 otherwise

, (6)

where ad
D is 10/7π and 1/π in 2-D and 3-D, respectively.

The fifth-order Wendland function is now popular, characterized by reduced pairing
instability [44]. This C2 kernel exhibits a positive kernel Fourier transform [41,45], and reads

ω(q) = ad

(
1 − q

2

)4
(2q + 1) 0 ≤ q ≤ 2, (7)

with ad
D specified as 10/7π in two-dimensional spaces and 1/π in three-dimensional spaces.

The SPH discrete approximation of the convolution between W and f can be described
as follows:

⟨ f (ra)⟩ = ∑
b∈P

f (rb)W(ra − rb, h)∆rd
b , a = 1, . . . , N, (8)

where the subscripts a, b represent the interacting neighboring discrete particles within the
set P, which consists of all particles in the domain. This includes particles in the fluid F,
boundary B, and any floating objects K as depicted in Figure 2. The set P is the union of F
and B, where K is a subset of B. The term ∆Vb denotes the volume V associated with the
b-th particle in P. Going forward, the notation ⟨·⟩ will be omitted for simplicity.
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Figure 2. Illustration of various particle sets a ∈ P, with P encompassing all particles within the
domain (redrawn from [34]).

For a detailed understanding of SPH, readers are directed to the works of [46,47],
along with a comprehensive review found in [48]. Additionally, analogous integral and
discrete formulations can be developed for the gradient operator of a specific function f
as follows:

∂ f (r)
∂r

=
∫

Ω
f (r′)

∂W
∂r

(r − r′, h) dr′, (9)

using the convolution theorem,

∂ f (r)
∂r

∗ W = f ∗ ∂W
∂r

. (10)

The discrete gradient is expressed in the following manner:

∂

∂ra
f (ra) := ∑

b∈P
f (rb)

∂

∂ra
W(ra − rb, h)Vb, a = 1, . . . , N. (11)

2.2.2. Governing Equations

The fundamental equations governing the behavior of a compressible fluid are encap-
sulated by the Navier–Stokes equations. These can be expressed in terms of the continuity
and momentum equations using a Lagrangian framework as follows:

dρ

dt
= −ρ∇ · v, (12)

and
dv
dt

= −1
ρ
∇P + Γ + f, (13)

where, in this context, d represents the total or material derivative, v indicates the velocity
vector, ρ stands for density, P signifies pressure, Γ refers to the dissipation terms, and f
denotes accelerations caused by external forces like gravity.

2.2.3. SPH Discretization of the Governing Equations

The mass conservation property of SPH,

dm
dt

= 0, (14)
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where the mass is conserved exactly within a Lagrangian particle, results in a density
change due to the volumetric change of the term at the right-hand side of Equation (12).
In the SPH formalism, the discrete form of the continuity equation at point a with position
ra reads [46],

dρ

dt

∣∣∣∣
a∈P

= ∑
b∈P

mb
ρb

vab · ∇aWab + Da, (15)

where Wab = W(ra − rb, h) and (·)ab = (·)a − (·)b. The second term on the right-hand
side is indicative of a numerical diffusion term for density [49]. The discrete form of
Equation (13) in a SPH formalism reads

dv
dt

∣∣∣∣
a∈F

= − ∑
b∈P

mb

(
Pa + Pb

ρaρb

)
∇Wab + ⟨Γ⟩a + f, (16)

where a symmetric SPH operator is employed, ensuring the conservation of momentum [50]
for the pressure term, and the discrete representation of the dissipation terms is elaborated
in the dissipation terms section.

Density Diffusion Terms

Two density diffusion terms (DDT) formulations are incorporated in DualSPHysics,
serving as a high-frequency numerical noise filter that enhances the stability of the scheme
by smoothing the density and, as a result, the pressure. This improvement is crucial due to
the inherent spuriousness in pressure calculations within the weakly compressible SPH
framework, which arises from the collocated arrangement (in velocity and density) and
explicit approach (in time integration). These terms are described by the general form of,

Da = δhc ∑
b∈P

ψab · ∇WabVb, (17)

where δ determines the strength of the diffusion term. The term ψab is derived from
the Neumann–Richtmeyer artificial dissipation. This form of artificial dissipation was
introduced by Molteni and Colagrossi [51] as,

ψab = 2(ρb − ρa)
rab

∥rab∥2 , (18)

Recently, Fourtakas et al. [52] modified Equation (18) to include the dynamic compo-
nent of the density as follows,

ψab = 2
(

P(T)
ba − P(H)

ab

) rab
∥rab∥2 , (19)

where superscripts (T) and (H) represent the total and hydrostatic components of the
density for a weakly compressible and barotropic fluid, respectively, by locally constructing
the hydrostatic pressure as,

P(H)
ab = ρ0gzab. (20)

Although both terms exhibit inconsistencies near a truncated kernel support [49] (such
as at a free-surface or a wall boundary), resulting in a net outwards vector contribution,
the latter term enhances the behavior of pressure near wall boundaries by acting on the
dynamic pressure.

Dissipation Terms: Artificial Viscosity

An artificial diffusive term, based on the Neumann–Richtmyer artificial viscosity,
can be incorporated into the momentum equation [53] with the objective of diminishing
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oscillations and stabilizing the SPH scheme. This artificial viscosity term is included within
the SPH gradient operator on the right-hand side of Equation (16) and is given by,

Πab =


(
−α cab

ρab

)
hvab ·rab
r2

ab+η2 , vab · rab < 0,

0, vab · rab ≥ 0
, (21)

where (·)ab = (·)a+(·)b
2 . In this context, c represents the numerical speed of sound, and α

is the coefficient of artificial viscosity. The parameter η = 0.001h2, with {η ∈ R; rab > η},
ensures the operator is non-singular. It is demonstrable that Πab ∝ ν0∇2v, where ν0 denotes
the kinematic viscosity [46,54]. The momentum equation, augmented by artificial viscosity,
is formulated as,

dva

dt

∣∣∣∣
a∈F

= − ∑
b∈P

mb

(
Pa + Pb

ρaρb
+ Πab

)
∇Wab + f, (22)

Due to its simplicity, the artificial viscosity formulation is commonly used in SPH as a
viscous dissipation term.

Dissipation Terms: Laminar Viscosity

Viscous dissipation of momentum in the laminar flow regime within DualSPHysics is
approximated according to Lo and Shao [55],

ν0∇2va = ∑
b∈P

mb

(
4ν0rab · ∇Wab

(ρa + ρb)(r2
ab + η2)

)
vab, (23)

where ν0 represents the fluid’s kinematic viscosity. It is noteworthy that the laminar viscous
term diverges near the free-surface as elaborated in [56].

Dissipation Terms: Subparticle Scale Model

The large eddy simulation subparticle scale model (SPS) [57] as outlined by Dalrymple
and Rogers [58], utilizing Favre averaging within a weakly compressible framework, is
incorporated in DualSPHysics. The SPS stress tensor τ is described in Einstein notation
across superscripts i, j as per

τij = vivj − vivj, (24)

modeled by an eddy viscosity closure as,

τij

ρ
= 2νSPS

(
Sij − 1

3
Siiδij

)
− 2

3
Cl∆

2δij|Sij|2. (25)

Here, νSPS = [C2
s ∆]2|Sij|, where Cs = 0.12 is the Smagorinsky constant, C∆ = 0.0066,

∆ represents the initial particle spacing, and |Sij| = 1
2 (S

ijSij)1/2, with Sij being an element
of the SPS strain tensor. This is utilized alongside the variationally consistent strain tensor.

For the pressure gradient (Equation (16)), the discrete form of the term reads [58],

1
ρ
∇ · τ

ij
a = ∑

b∈P
mb

(
τ

ij
a + τ

ij
b

ρaρb

)
∇iWab. (26)

Finally, the momentum dissipation term in DualSPHysics is expressed as

Γa = ∑
b∈P

mb

(
4ν0rab · ∇Wab

(ρa + ρb)(r2
ab + η2)

)
vab + ∑

b∈P
mb

(
τ

ij
a + τ

ij
b

ρaρb

)
∇iWab. (27)
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2.2.4. Equation of State and Compressibility

In the SPH formulation employed in DualSPHysics, density and pressure are intercon-
nected through an equation of state (EOS), which facilitates the weak compressibility of the
fluid, predicated on the numerical speed of sound [59],

P =
c2

s ρ0

γ

[(
ρ

ρ0

)γ

− 1
]

, (28)

where γ denotes the polytropic index (typically 7 for water), ρ0 represents the reference

density, and the numerical speed of sound is determined by cs =
√

dP
dρ [60].

A numerical speed of sound cs is selected based on a typical length scale and timescale
of the domain, which permits significantly larger time steps during explicit time integration
than what would be feasible with a physical speed of sound [60]. Given cs = 10∥v∥max
where ∥v∥max =

√
gh0 and h0 denotes the initial fluid height in the domain, a variation

in density of up to about 1% is typically observed. However, this should be closely
monitored, as there are exceptional scenarios in which the 1% threshold may be surpassed
and compressibility may no longer be considered ‘weak’. In such instances, the speed of
sound should be increased, leading to a consequent reduction in time step and an escalation
in computational time.

2.2.5. Time Integrators and Time Step

In DualSPHysics, two explicit time integration schemes are implemented. For brevity,
the governing equations are written as

dva

dt
= Fa;

dρa

dt
= Ra;

dra

dt
= va. (29)

The time integrators are briefly introduced below.

Verlet Time Integration Scheme

Verlet schemes [61] are widely adopted in molecular dynamics for their efficiency
and the provision of a second-order accurate integration in space. Our approach utilizes a
velocity Verlet variant that eliminates the need for multiple computational steps within a
single iteration interval. Accordingly, the WCSPH variables are determined as follows:

vn+1
a = vn−1

a + 2∆tFn
a′ ,

rn+1
a = rn

a + ∆tvn
a +

1
2

∆t2Fn
a′ ,

ρn+1
a = ρn−1

a + 2∆tRn
a ,

Owing to the integration across a staggered time interval, the equations for density
and velocity become decoupled, potentially causing the integrated values to diverge.
Consequently, an intermediate correction step is necessitated every Ns steps (with Ns ≈ 40
being advisable) as per the following formulation:

vn+1
a = vn

a + ∆tFn
a′ ,

rn+1
a = rn

a + ∆tvn
a +

1
2

∆t2Fn
a′ ,

ρn+1
a = ρn

a + ∆tRn
a ,

where the superscript n ∈ N denotes the time step and t = n∆t.

Symplectic Time Integration Scheme

The symplectic position Verlet time integration scheme [62] provides second-order
temporal accuracy. It is particularly well suited for Lagrangian methods, owing to its
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time-reversibility and symmetry when diffusive terms are absent, thus preserving the
geometric properties. In the absence of dissipative forces, the position Verlet scheme is
given by

rn+1/2
a = rn

a +
∆t
2

vn
a , (30)

vn+1
a = vn

a + ∆tFn+1/2
a , (31)

rn+1
a = rn

a +
∆t
2

vn+1
a . (32)

However, with the inclusion of viscous forces and the evolution of density in Dual-
SPHysics, the velocity at the (n + 1

2 ) step becomes necessary. Consequently, a half-step
velocity Verlet method is employed to calculate the needed velocity for both the accelera-
tion and density evolution at F(rn+ 1

2
) and R(rn+ 1

2
), respectively. The approach adopted in

DualSPHysics is formulated as

rn+1/2
a = rn

a +
∆t
2

vn
a , (33)

vn+1/2
a = vn

a +
∆t
2

Fn
a , (34)

vn+1
a = vn

a + ∆tFn+1/2
a , (35)

rn+1
a = rn

a + ∆t
va

n+1 + va
n

2
, (36)

where rn+ 1
2 replaces rn+1 in Equation (30) to remove dependency on un+ 1

2 . Subsequently,
the evolution of density adheres to the half time steps prescribed by the symplectic position
Verlet scheme as delineated below [63]:

ρ
n+ 1

2
a = ρn

a +
∆t
2

Rn
a (37)

ρn+1
a = ρn

a
2 − ϵ

n+ 1
2

a

2 + ϵ
n+ 1

2
a

, (38)

where ϵ
n+ 1

2
a = −

Rn+ 1
2

a

ρ
n+ 1

2
a

∆t. (39)

Variable Time Step

The time integration is constrained by the Courant–Friedrichs–Lewy (CFL) condition,
which is essential in explicit time integration schemes to confine the numerical domain
within the physical domain of dependence [64],

∆t f = min
a

 h∣∣∣ dva
dt

∣∣∣
, ∆tc = min

a

 h

cs + maxb

(
|hvab ·ra |
r2

ab+η2

)
, (40)

∆t = CCFL min(∆t f , ∆tc), (41)

where
∣∣∣ dva

dt

∣∣∣ denotes the magnitude of particle acceleration. The variable time step is
determined as the minimum between ∆t f and ∆tcv, and it is constrained by the Courant
number CCFL, typically ranging from 0.1 to 0.2.
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2.2.6. Boundary Conditions

Several boundary conditions are implemented in DualSPHysics. Solid boundary
conditions are discretized by a set of boundary particles a ∈ B that differ from the fluid
particles F. Due to the Lagrangian nature of SPH, solid boundaries can also be moved
straightforwardly according to user-defined motion.

Dynamic boundary conditions (DBC) are simply represented by fixed particles with
density computed with the continuity equation and pressure obtained from the equation of
state. Boundaries are easy to set up and computations are relatively stable and efficient,
providing a robust option for complex geometries. Validations with dam-break flows and
wave flumes have been published, and real engineering applications have been simulated
successfully [65,66]. However, an unphysical gap between the fluid and these solid bound-
aries appears when fluid approaches to the boundary, decreasing the accuracy of pressures
measured on the boundary. Therefore, a second approach is included now in DualSPHysics,
where the density of solid particles is obtained from ghost positions within the fluid domain
by linear extrapolation, described in [67]. With this second approach, the gap is avoided,
and pressures of the boundary particles in still water converge to hydrostatic.

Dynamic boundary conditions The dynamic boundary condition (DBC) represents
a solid wall using a collection of boundary particles B, where the continuity equation is
applied as described in [68]

dρ

dt

∣∣∣∣
a∈B

= ρb ∑
b∈F

mb
ρb

vab · ∇W, (42)

while the position of these particles is updated following the equation

dv
dt

∣∣∣∣
∀a∈B

= F(imposed) (43)

where F(imposed) denotes the force exerted on moving boundary particles by the fluid. Such
motion can be dictated by a predefined user function or by accelerations accumulated over
time. The resultant increase in density from Equation (42) leads to an augmented pressure
in the momentum equation for particle a ∈ F, creating a repulsive force between the fluid
and boundary particles. This simplified boundary approach is especially suited for GPU
implementation, allowing for code optimization through the use of vector lists. Further
insights into this method can be found in Crespo et al. [68].

2.2.7. Particle Shifting Algorithm

The anisotropic distribution of particles introduces additional discretisation error through
the zeroth- and higher-order kernel moments (i.e., the discrete version of Equation (3)). This is
especially true in negligible or large dynamics [59] and violent flows where particles may
not maintain an isotropic distribution. In DualSPHysics, the Fickian-based particle shifting
algorithm of Lind et al. [69] is used to maintain a near isotropic particle distribution,

δra
∣∣
a∈F = −Ds∇Ca, (44)

where δra is the shifting distance, ∇Ca is the kernel gradient and Ds

Ds = Ash∥va∥∆t, (45)

where As acts as a control parameter and ∥va∥ represents the magnitude of velocity for
particle a [70]. A constraint based on the magnitude of particle velocity is applied to
mitigate the risk of excessive displacement and the subsequent loss of data as particles
transition across domain cells. The recommended range for As is between one and six,
with a preferred value of two as suggested by Skillen et al. [70]. Details for calculating ∇Ca
can be found in [34].
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2.3. DEM and DCDEM

Interactions between solids and fluids, as well as solid–solid interactions, are crucial
issues in various engineering disciplines, including coastal, offshore, maritime, and river
engineering. To address these interactions, DualSPHysics incorporates the Distributed
Contact Discrete Element Method (DCDEM) into its Smoothed Particle Hydrodynamics
(SPH) models for simulating fluid–solid interactions. This method, which calculates forces
between a fluid and solid particle pair using SPH and models solid–solid interactions
through DEM, is based on an explicit integration method and operates within the meshless
framework of DualSPHysics. This innovative approach, initially introduced by Cum-
mins and Cleary, enables the accurate representation of complex solid shapes through a
particle-based method, with the particles subjected to a rigid body constraint. With the
use of specific non-linear contact models, the system is capable of simulating a wide range
of material behaviors using three primary parameters: Poisson ratio, Young’s modulus,
and dynamic friction coefficient [71–73]. Despite its advantages, the model shares com-
mon limitations with general DEM approaches, such as potential stability issues due to
its explicit nature, high computational demands or inaccuracies in simulating extended
frictional contacts, and the risk of artificial effects in low-resolution simulations caused
by the spherical particle shapes. Nevertheless, due to its simplicity and efficiency, it finds
applications in evaluating hydrodynamic impacts on structures, assessing natural hazard
risks, and designing both floating bodies and exposed structures.

2.3.1. Method Formulation

In the framework of Smoothed Particle Hydrodynamics (SPH), the domain of the fluid
is depicted through a constellation of nodal points. These points encapsulate essential phys-
ical parameters such as position, velocity, density, and pressure, approximated based on
their spatial coordinates. Moving in sync with the fluid, adopting a Lagrangian viewpoint,
the properties of these nodes are subject to change over time, influenced by their interaction
with nearby nodes. The designation “Smoothed Particle Hydrodynamics” stems from
the notion that these nodes essentially mirror the mass of a fluid segment, thereby being
termed “particles”, and the smoothing over of their motion, ignoring individual rotational
dynamics. This methodology is underpinned by the principles of integral interpolation
theory [46]. An effective transition from a continuous integral representation to a discrete
set of Lagrangian points is achieved through meticulous discretization:

Ai ≈ ∑
j

AjW(rij, h)Vj, (46)

known as the summation approximation, is applied across all particles j, for which the
distance |rij| = |ri − rj| does not exceed the smoothing length h. Here, Vj represents the
volume associated with particle j, Ai denotes the variable being estimated at particle i,
and W stands for the kernel, or weight, function. This approach indicates that achieving
first-order consistency—wherein the kernel’s estimation precisely replicates a linear poly-
nomial function—is not guaranteed. The limitation that arises due to the intrinsic errors
linked to the discretized representation

∑
j

VjW(rij, h) ≈ 1, (47)

can become significant, especially near open boundaries or areas of discontinuity where the
kernel W fails to maintain compact support. To address this, corrections such as Shepard’s
method and Moving Least Squares (MLS) are often applied. Following the approach by
Colagrossi and Landrini [74], spatial derivatives are determined through the gradient of
the kernel. In this study, a Quintic kernel, as proposed by Wendland [44], is utilized:

W(rij, h) = αD

(
1 − q

2

)4
(2q + 1), 0 ≤ q ≤ 2, (48)
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where q = |rij/h| and αD = 21/16πh3 for a 3D case.

2.3.2. Discretization of Rigid Body Equations and Contact Forces with DCDEM

In accordance with the original concept proposed by Koshizuka et al. [75], a rigid
entity, denoted as I, is modeled utilizing a group of particles. These particles are arranged
such that their relative positions do not alter, effectively allowing the volume of I to be
represented by this particle ensemble. For ease of reference, this assembly is also labeled
as I. These particles are subject to a unique set of equations distinct from those applied to
conventional SPH particles. The dynamics of the rigid body are characterized by Newton’s
laws, and the process of discretization is achieved by summing up the individual count

MI
dVI
dt

= ∑
k∈I

mk
dvk
dt

, (49)

II
dΩI
dt

= ∑
k∈I

mk(rk − R)× dvk
dt

, (50)

where the rigid body I is characterized by its mass MI , velocity VI , inertia tensor II ,
angular velocity ΩI , and center of mass R. These vectorial properties are recalculated at
each time step. The force per unit mass acting on a particle k within the particle ensemble
that constitutes I is represented by mk

dvk
dt , where mk signifies the mass of the particle k.

This force integrates various effects including body forces such as gravity, fluid resistance,
and the normal or frictional forces experienced during interactions with other solids.
As such, the term mk

dvk
dt can encompass a range of force types: interactions with fluid

particles are governed by the fluid momentum equation, while interactions with solid
particles are determined by additional derived forces. This cumulative approach to force
calculation facilitates a seamless integration of solid and fluid dynamics.

Utilizing Equation (16) directly for the evaluation of local interactions between fluid
and solid phases facilitates the incorporation of a viscous framework, thus providing
a mechanism for viscous drag closure [76]. This model operates under the concept
of Dynamic Boundary Conditions [68], and it adheres to the specifications outlined in
Equations (49) and (50), without the need for any arbitrary, ad hoc adjustments. The dynam-
ics are fully derived from the fundamental, particle-specific solutions of Equations (49) and (50).
However, this formulation’s challenge lies in the propensity to overestimate density [77,78],
a phenomenon linked to an entropy increase at the interface. This leads to an expansion in
the spacing between fluid and solid particles due to the exerted pressure gradient force,
thereby disrupting the accuracy of viscous force calculations at that interface [74]. The ad-
dition of the δ-SPH diffusive term within Equation (15) is suggested as a remedy, enabling
an ostensibly precise density estimation at the interface [76].

In the scenario where two particles, either part of a boundary or a rigid body, interact,
they exhibit dynamics governed by the Discrete Element Method (DEM). The resultant con-
tact force FT

i on particle i, due to a collision with particle j, is analyzed into Fn and Ft, which
correspond to the normal and tangential force components, respectively. These components
are further subdivided into a repulsion force Fr, generated by the material’s deformation,
and a damping force Fd, aimed at energy dissipation throughout the deformation process.
The mechanics of DEM interactions between two particles are visually demonstrated in
Figure 3.



Minerals 2024, 14, 407 14 of 35

Figure 3. Scheme of DEM mechanism. Left—normal interaction; right—tangential interaction.
(Redrawn from [71]).

The normal forces are given by a modified, non-linear, Hertzian model [72,79]

Fn,ij = Fr
n + Fd

n = kn,ijδ
3/2
ij eij − γn,ijδ

1/4
ij δ̇ijeij, (51)

where the stiffness constant for the interacting pair ij is kn,ij, and the particle overlap δij =
max(0, (di + dj)/2 − |rij|) approximates material deformation. The unit vector between
the centers of mass of the particles is denoted as eij, with the rate of normal deformation
given by δ̇ij = vij · eij, and the damping constant is γn,ij. This non-linear formulation helps
mitigate some of the limitations inherent in using constant restitution coefficients and fixed
contact durations for particle pairs, effectively capturing more physically representative
behaviors for a broad spectrum of contacts [80]. The stiffness and damping constants are
given by

kn,ij = −4
3

E∗√R∗; γn,ij = Cn

√
6M∗E∗

√
R∗, (52)

with Cn of the order of 10−5 [81]. The other parameters are given by

1
E∗ =

1 − ν2
I

EI
+

1 − ν2
J

EJ
; R∗ =

rirj

ri + rj
; (53)

M∗ =
mImJ

mI + mJ
, (54)

where E is the Young modulus, ν is the Poisson ratio, and m is the mass of the body.
For tangential interactions among particles, friction is depicted through a linear dash-

pot model, limited by the Coulomb friction law’s maximum force, which is defined by the
kinetic friction coefficient µ f . This linear methodology represents a compromise between
the fidelity of the model and its computational feasibility. While more elaborate models
yield better performance for specific situations, such as rolling friction, their effectiveness
is generally limited in broad application scenarios. A sigmoidal function modifies the
Coulomb law to ensure continuity at the origin concerning tangential velocity, smoothing
the transition and enhancing the model’s realism [82]:

Ft,ij = min(µ f ,I JFn,ij tanh(8δ̇t
ij)e

t
ij · (Fr

t + Fd
t ), (55)

where
Fr

t + Fd
t = kt,ijδ

t
ije

t
ij − γt,ij δ̇

t
ije

t
ij. (56)
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The model employs a penalty method to replicate the mechanisms of static and
dynamic friction. Rather than allowing the body to adhere statically at the point of contact,
it is governed by a spring-damper mechanism. With the premise that the time scales for
normal and tangential contacts are identical, ref. [83] established that the tangential stiffness
could be calculated as kt =

2
7 kn. To adequately reflect the time scale of rigid contacts and

maintain the system within its stability region, an additional component is required to be
incorporated into the dynamic equation as indicated by [81]:

∆tDEM = min
i

(
π

50

√
kn,ij

mI J

)
. (57)

This class of DEM model is refereed to as a ‘soft sphere’ approach since it depends on
the particle overlap to deform the spring-damper system. This formulation provides a force
estimate particle-wise which, coupled with the rigid body idea, allows the generalization of
the geometry by not requiring information on normal directions or other forms of topology,
solving for arbitrarily complex geometries by resolving the local interactions.

3. Materials and Methods

This study endeavors to apply the Discrete Element Method (DEM) for the simulation
of the grinding media and Smoothed Particle Hydrodynamics (SPH) for the simulation
of the slurry. Experiments are performed with the use of copper ore. The experiments
consist of 3 stages: calibration of the behavior of the balls; calibration of the dry milling;
and calibration of the wet milling. Experiments are recorded with the high-speed camera
and then processed with computer vision methods. The simulations are performed with
the open-source DualSPHysics simulation frameworks, which consist of a set of C++ and
CUDA code, enabling fast simulation using GPU.

3.1. Experimental Setup

The experimental test stand consists of the laboratory scale ball mill with exchangeable
drums (Figure 4). In the experiments, 3 different mill drum diameters are used, with ex-
ternal diameters of 300, 400, and 500 mm. The internal diameter of each drum is 8 mm
smaller. The laboratory mill is equipped with a transparent wall, allowing for the real-time
recording of the milling process. This setup is crucial for the subsequent computer vision
analysis. The recordings are made with a speed of 300 fps with a Phantom v2512 camera.

Figure 4. Ball mill with different drum sizes.

3.2. Copper Ore and Its Slurry Properties

The copper ore tested exhibits a density of 2194.93 ± 98.51 kg/m3, with the dominant
grain size (d80) being approximately 1 mm. This section delves into the critical aspect of
viscosity related to the ore and its slurry, presenting it in a manner that aims to be accessible
to a diverse audience while retaining the precision expected in scientific discourse.
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3.3. Viscosity

Absolute Viscosity: This is measured in poiseuille (Pl), which is equivalent to kg m−1s−1

or Newton-second per square meter (N s m−2). It represents the internal friction within a
fluid [84].

Kinematic Viscosity: Unlike absolute viscosity, kinematic viscosity does not have
a named SI unit and is expressed in square meters per second (m2s−1). It is obtained by
dividing the absolute viscosity by the fluid’s density, ν = µ

ρ , where νk is the kinematic viscosity,
µ is the absolute viscosity, and ρ is the density of the fluid [84]. It is noteworthy that while the
viscosity of gases increases with temperature, the opposite is true for liquids [84].

3.4. Application to Copper Ore Slurry

The slurry used for model calibration presented a density of 1400 kg/m3. The density
was approximated by mixing ore and water based on their known densities, aiming for a
reproducible method suitable for industrial scaling, with adjustments made to acknowledge
that achieving an exact density is challenging but the target density is closely approximated
through direct mixing in specific proportions. Experiments measured the slurry’s viscosity
across different densities and milling times, utilizing a viscometer AMETEK Brookfield
(Figure 5).

Figure 5. Viscosity measurement of copper ore slurry.

A Random Forest Regressor model was developed to predict the absolute viscosity, νa,
in Pascal-seconds (Pa · s), considering milling time and density as variables. The model,
demonstrating an R-squared value of 0.8402, indicates a good fit to the data and reliable
prediction capabilities.

For a specific test scenario with a slurry density of 1400 kg/m3 and a milling time of
15 min, the model predicted an absolute viscosity of approximately 0.01134 Pa · s. This
provided a realistic prediction of resistance to flow within the slurry.

The kinematic viscosity ν for the copper ore slurry was then calculated by dividing
the absolute viscosity by the slurry’s density. Given a predicted absolute viscosity of
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0.01134 Pa · s and a slurry density of 1400 kg/m3, the kinematic viscosity of the copper ore
slurry was calculated as:

ν =
0.01134

1400
≈ 8.10 × 10−6 m2/s

This positive value of kinematic viscosity reflects the material’s resistance to flow and
is indicative of the slurry’s physical behavior under the given conditions.

3.5. Grinding Media

The grinding media utilized in our experimental setup consisted of steel balls with
a makeup diameter of 35 mm. These balls were selected for their uniformity in size
and a precisely measured density of 7800.92 ± 55.41 kg/m3. To ensure a comprehensive
understanding of different load behaviors and to enhance the model’s adaptability to
various grinding media size distributions, we employed a range of ball sizes from 15 mm
to 35 mm, with each size differing by 5 mm. The selection of ball sizes was specifically
tailored to the drum size utilized in the experiments: for a 500 mm drum, ball sizes ranged
from 25 to 35 mm; for a 400 mm drum, from 20 to 35 mm; and for a 300 mm drum, from 15
to 35 mm.

The distribution of steel ball sizes was determined based on the Bond equilibrium
state as described by the equation [85,86]:

y =
( x

B

)3.8

where we have the following:

• y represents the percentage of the total equilibrium charge that passes a given size x
(mm);

• B denotes the makeup/recharge size of the balls (mm).

3.6. Operational Parameters

The milling operations were conducted with a filling degree of 0.5, wherein 60% of
the filled mill’s volume was occupied by steel balls, translating to 30% of the mill’s total
volume given the dynamic nature of milling and the fact that in practice, only 50% of the
mill’s internal volume is effectively utilized for the balls and the material being milled.
The remainder of the volume was considered void space between the balls for calibration
purposes in the first step. In dry milling configurations, this void space was filled with ore,
while for wet milling, a mixture of water and ore was utilized to achieve the desired slurry
density. The selection of the quantity of balls of specific sizes was determined based on the
equations detailed in the paper [85]. Figure 6 shows an example of the mill filling in the
form of material and grinding media-balls.

Figure 6. Sample ball and ore load.
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The rotational velocity of the mill was set to 30% of the critical speed, a value cal-
culated specifically for each experiment to accurately represent the dynamics of the load
within the mill drum. It is crucial to note that while the speed was maintained at 30%
of the critical speed for all tests, the nominal speed in RPM varied according to the mill
diameter: 24.8, 21.1, and 18.7 RPM for diameters of 300, 400, and 500 mm, respectively. This
approach ensured that the desired material behavior was achieved without the material
being excessively lifted or failing to descend the "slope" created by the grinding media.
Achieving consistent behavior across different mill sizes and speed settings, akin to the
material’s real-world response at 30% of the critical speed, served as an additional layer of
validation. The critical speed marks the threshold at which the centrifugal forces acting on
the balls equal the gravitational forces, ensuring that the grinding media are carried around
in a fixed movement pattern without dropping, a condition essential for efficient grinding.

The critical speed (Nc) in revolutions per minute (RPM) was derived from the balance
of gravitational and centrifugal forces, and is given by the formula [87]:

Nc =
1

2π

√
g

R − r
× 60

where we have the following:

• g is the acceleration due to gravity (9.81 m/s2);
• R is the radius of the mill (in meters);
• r is the radius of the balls (in meters).

This formula is derived from setting the centrifugal force equal to the gravitational
force acting on a ball within the mill. This equilibrium point is crucial for determining the
optimal operating speed of the mill to ensure the grinding media are the most effective.
The value was calculated for the average ball diameter in the load for each experiment.

For all experiments, the mill drums were equipped with eight 5 mm lifters evenly
spaced along the interior surface of the drum. This setup was designed to ensure uniform
distribution of the grinding media and the material being milled, optimizing the milling
efficiency and reproducibility of the results.

The grain composition of the ground ore was standardized, and all experiments were
conducted on ore with a grain size below 2 mm, with a d80 grain size of 0.876 mm.

3.7. Computer Vision Analysis

This section details the methodologies applied in analyzing the dynamic angle of
repose and the slurry surface position in milling operations through computer vision.
The analysis encompasses three scenarios: operations with balls only, dry milling, and wet
milling. Each scenario incorporates a blend of image processing techniques and machine
learning models to gain insights into the efficiency of the milling process.

Prior to analysis, all scenarios necessitate image pre-processing, which involves load-
ing video, sampling frames at regular intervals. These frames undergo several processing
steps using the OpenCV Python library, including mill outline detection via the Hough
Circle Transform (Figure 7), centering frames, resizing to match actual dimensions, and ap-
plying a mask to obscure everything outside the mill (Figure 8), focusing only on the drum’s
internal part.
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Figure 7. Detection of the mill outline (example mill 500 mm).

Figure 8. Masked, centered and resized image (example mill 500 mm).

For each recording, a set of 100 frames with equal time step between them is used.

3.7.1. Only Balls

This analysis utilizes the Segment Anything Model (SAM) developed by Meta, a pre-
trained AI model specializing in segmenting images and applying masks [88]. The method-
ology unfolds as follows:

1. Ball Detection and Mask Generation: Utilize the SamAutomaticMaskGenerator from
the SAM library to produce masks for the detected balls (Figure 9).
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Figure 9. Masks detected with SAM (example mill 500 mm).

2. Heatmap Generation and Processing: Generate a heatmap from accumulated bi-
nary masks to pinpoint regions with frequent ball presence. Then, to the heatmap,
thresholding is applied, and finally the image is smoothed with the smoothing kernel
(Figure 10).

Figure 10. Processing of binary images of mill recording with only balls inside (example mill 500 mm);
1—created set of binary images from detected masks, 2—heatmap created from binary images,
3—heatmap after thresholding, 4—final image after smoothing.
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3. Top Edge Detection and Angle Calculation: Then processed image is used to detect
highest position of the white pixel, and a set of y coordinates for each x coordinate
is extracted from the image. Dynamic angle of repose is obtained through linear
regression, employing the scikit-learn Python library. Linear regression is performed
on the points starting from the 60 mm to the right from the highest detected point, so
the most linear part of the repose surface would be analyzed (Figure 11).

Figure 11. Detected highest position in the Y direction and line fitted with linear regression to
the points.

4. Visualization and Output: Display the line obtained from the calculated dynamic
angle of repose for debugging and threshold adjustment purposes (Figure 12).

Figure 12. Visualization of detected line over one of the frames from recording (example mill 500 mm).
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3.7.2. Dry Milling

This approach differs in the initial detection and isolation of the mill load area and the
creation of binary images, reflecting the complexity of processing mixed loads (Figure 13).
The difference in this approach is presented in the way that here, thresholding is directly
used on the preprocessed image to generate binary images for further analysis.

Figure 13. Processing of binary images of mill recording of dry milling (example mill 500 mm);
1—created set of binary images from detected masks, 2—heatmap created from binary images,
3—heatmap after thresholding, 4—final image after smoothing.

3.7.3. Wet Milling

Wet milling operations present unique challenges, making computer vision models
unsuitable for extracting the mill load area. Consequently, an interactive GUI interface was
developed to address these obstacles. The load, barely visible through the slurry-covered
transparent wall, necessitates a procedure combining manual point selection with curve
fitting techniques. In this scenario, the top surface of the liquid is analyzed rather than
measuring the angle of repose.

Because of the obstacles described before, only the recording of the mill with the
biggest drum was suitable for the calibration of the wet milling. The medium and small
size drums did not provided enough valuable data to process them the same way.

During milling experiments, the observation was made that when ball load is under
the slurry, the whole transparent wall area is equally covered with the slurry and nothing
is visible, but when balls appear over the slurry surface, they start to wipe off parts of the
slurry from the transparent wall. This phenomenon was manually caught to measure the
approximate location of the slurry surface.

1. Manual Point Selection: Conduct a manual analysis using a custom interface to select
points delineating the wet load’s boundary (Figure 14).
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Figure 14. GUI interface (example mill 500 mm).

2. Data Preparation and Correction: Prepare and correct the selected points for the
analysis coordinate system, emphasizing accuracy verification.

3. Curve Fitting and Analysis: Perform curve fitting to model the load’s boundary,
calculate the fit’s parameters, and evaluate the fit’s uncertainty.

4. Visualization and Interpretation: Display the fitted curve alongside the original data
points and confidence interval bounds.

This methodology distinctively blends manual interaction and statistical modeling
to analyze wet milling dynamics, utilizing tools such as OpenCV, matplotlib, pandas,
and scipy for thorough data management and analysis.

3.8. DualSPHysics Simulation

Simulation in DualSPHysics is set up by defining XML file. Files contain a few
important parts, such as the constants definition, parameter definition, geometry definition,
movement definition, and definition of the material parameters. Constants and parameters
needed to run the simulation are shown below (Table 1 shows the material parameters,
and Table 2 shows the simulation settings).

Parameters were selected by varied trial-and-error testing to achieve the stability of
the simulation for this specific use case and scale. Material properties for each “bound”
(boundary) and “float” (free moving body) were set as steel with a Poisson ratio of 0.29 and
Young modulus of 1 · 108 Pa. The Young modulus was reduced to achieve more efficient
simulation times. The decrease in the Young modulus was balanced by further calibration.
Due to DEM calculations in the simulation, a fixed time step was used because it was
observed to provide the best stability and fewest errors during calculations.
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Table 1. Material parameters and constants in simulation.

Constant Value Description

Lattice 1 (bound), 2 (fluid) Type of lattice to create initial particles
Gravity z = −9.81 Gravitational acceleration, m/s2

Reference Density (ρ0) 1400.0 Reference density of the fluid, kg/m3

Density Gradient Rho0 Initial density gradient method
HSWL 0.8 (dry), Auto (wet) Max still water level for sound speed calculation.
γ 7 (default) Polytropic constant for water
System Speed Auto Max system speed for calculations
Coef. of Sound 20 (default) Coefficient to multiply system speed
Sound Speed Auto Speed of sound in the simulation
Coef. h 0.15 (dry) 0.8 (wet) Coefficient for smoothing length calculation
CFL Number 0.2 Coefficient to multiply dt

Table 2. Parameters and settings of the simulation process.

Parameter Value Description

SavePosDouble 0 (default) Precision for saving particle position
Boundary DBC Boundary method used
Step Algorithm Verlet Step algorithm for integration
Verlet Steps 40 (default) Steps for Eulerian equations in Verlet
Kernel Wendland Interaction kernel type
Visco Treatment Artificial Viscosity formulation
Viscosity (ν) 8.1 · 10−6 Viscosity value m2/s
Visco Bound Factor 0.1 Multiplier for boundary viscosity
Density Diffusion Term Fourtakas Method for density diffusion
DDT Value 0.1 (default) Value for density diffusion term
Shifting Full Shifting mode for corrections
Shift Coef −2 (default) Coefficient for shifting computation
Shift TFS 2.75 (default) Threshold to detect free surface
Rigid Algorithm DEM Algorithm for rigid body dynamics
DtFixed 1 · 10−5 s Fixed time step value, s
DtAllParticles 1 Inclusion of particles for DT calc.
TimeOut 0.01 s Time out for data output, s
PartsOutMax 1% Max fluid particles out of domain
RhopOutMin 700 kg/m3 Minimum valid density
RhopOutMax 2000 kg/m3 Maximum valid density

3.8.1. Geometry Definition

Geometry in the simulation environment has to be defined also in the XML script.
Simplified geometry was used to represent the mill and lifters. The mill was defined as a
cylinder, and lifters as boxes with proper dimensions. The resolution of discrete particles
was defined as 0.005 m. It is the distance between discrete particles, representing all bodies
and liquids in the simulation. To resolve the problem of sphere and liquid packing in the
limited space in the initial state of the simulation, the mill was modeled as a long cylinder
(Figure 15).

Script in Python was developed to generate the particles and liquid in such a way that
they would not overlap anything else and not cause errors when populating the geometry
with discrete particles.

One of the mill walls was defined as a moving part that, during the first 2 s of the
simulation, pushed all of the load into the final volume of the mill, representing the real
volume of the laboratory mill used in experiments. Those first 2 s of the simulation were not
taken into account during any analysis. Each simulation had 12 s (2 s for wall movement
and 10 s of normal mill work).
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Figure 15. Geometry generation with balls and liquid generation.

The geometry is defined through a range of points creating a bounded area and specific
shapes like cylinders and boxes to represent the physical environment and objects within
the simulation. The point reference serves as the origin, while ‘pointmin’ and ‘pointmax’
define the extents of the simulation domain. Objects are created using commands like
‘drawcylinder’ and ‘drawbox’, with various attributes such as radius, size, and orientation
(through rotation angles) to model the simulation environment accurately.

Motion is applied to objects using the ‘<motion>‘ section, specifying the type of
movement (rotational and rectilinear), its duration, speed, and direction. For instance,
rotational movement is defined with an angular velocity around a specified axis, while
rectilinear motion specifies velocity in the XYZ coordinates. These motions can be applied
to different objects, such as a rotating drum or a vertically moving piston, to simulate
dynamic interactions within the fluid. Appropriate rotational speed was applied for each
case to reflect the real rotational speed from experiments. An example of the movement of
objects inside the mill is shown in Figure 16.

Figure 16. Movement of the mill wall like a piston.

3.8.2. Data Extraction

After each simulation, data about ball positions were extracted (Figure 17 (left)) for
the sampled time steps. Due to the use of the same lifter heights for all diameters, for the
smallest mill diameter, there was a single ball lifter higher than the others on dropped
down; this produced the balls seen in the air. For that reason, the heatmap (Figure 17
(right)) showing the most frequent position of the ball charge was created to decrease the
impact of those lifted balls on the overall measurement of the angle. This phenomenon
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occurred in the recordings and simulation, so the same further analysis flow was used for
comparable results.

Figure 17. Spheres position in the simulation (example mill 300 mm) extracted and saved as binary
image (on the left) heatmap generated from the images (on the right).

Additionally, for wet milling simulations, additional data about water elevation were
extracted. The data were extracted from the plane in the middle of the mill parallel to
the front and back walls. The data represented the highest coordinate vertical for each
horizontal coordinate on the plane. Due to the discretization of the liquid and representing
it with low resolution, there were a lot of outliers. To clean the data and make them more
uniform, and reduce the recording of the splashed liquid into the air or the lack of liquid
height, because of the low resolution and space occupied in the plane by the steel balls,
for each horizontal coordinate (x), the medial position and Q3 were calculated, and only
points between those values were taken into account in further curve fitting. Similar to the
recording quadratic equation curve approach, a 95% confidence interval was calculated.
Figure 18 shows the final load on the mill space after the data extraction process.

Figure 18. Load in the final space in the mill in simulation, vel (m/s).
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3.9. Calibration

For both cases without liquid, only balls with a non-iterative approach were chosen.
The behavior of DEM bodies (floats) was modified by changing two parameters: the
coefficient of restitution and the coefficient of kinetic friction. Due to the instability of
the simulation with higher values, the friction coefficient was explored in the range of
0.3–0.7 and the coefficient of restitution in the range of 0.3–0.55. For each iteration, three
simulations with three different mill diameters were performed, and the obtained angles of
repose were compared to the ones extracted from the image processing. The sum of square
errors (SES) was recorded for each iteration. The ball calibration data from the first six
iterations and coefficients and SSE combinations were used to interpolate values between
the points. Then, the calibration algorithm was such that the following combination of
coefficients tested would be a combination of the coefficients that gave the lowest SSE in
the interpolated space. The algorithm was stopped when the three following combinations
did not provide a better outcome than the previous combination.

The entire sets of data thus measured angles from simulations from ball calibration
were still valuable for calibrating the balls with ore because the ore was not simulated
separately; the contact parameters were planned to adjust for the different load behaviors
represented by the steel balls. All obtained angles were compared to the ones measured from
dry milling recordings to obtain the initial interpolated response surface. The algorithm
was later the same. We explored combinations that lowered SSE until three subsequent
tests did not give the best result.

As mentioned previously, wet milling recordings were taken into account only from
the biggest diameter, so wet milling simulations were also performed only on the 500 mm
diameter. Calibration of the liquid also required adjusting kernel parameters or viscosity.
The behavior of the liquid is satisfying if both curves fit to the liquid surface for the
recording and the simulation fits inside each other’s 95% confidence intervals.

4. Results

The measured dynamic angles of repose for recordings of the ball inside the drum
are 43.25, 42.15, and 40.35 degrees for 300, 400, and 500 mm, respectively. The dynamic
angles recorded during dry milling processes were found to be 54.24 degrees for a 300 mm
measurement, 41.97 degrees for 400 mm, and 47.67 degrees for 500 mm, respectively. Those
values are less accurate due to the more challenging extraction of the area of the load in the
recording and the reflections on the wall, which this method was not resistant to. The curve
fitted to the data from the wet milling recording is presented below, in Figure 19.

Figure 19. Points of the slurry surface detected with the GUI, fitted curve, and 95% confidence interval.
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Calibration of the ball behavior started with six initial measurements of angles for
each diameter in the simulation (3 × 6 = 18 initial simulations). New local minimums
were discovered until the 10th iteration, after which no new better combination was
found. The final parameters for simulation balls were coefficient of restitution = 0.390 and
coefficient of kinetic friction = 0.496. In total, 13 iterations resulting in 39 simulations were
performed to achieve those results. The results of the ball behavior calibration, as illustrated
in Figure 20, are presented through heatmaps depicting the calibration process of ball
behavior in a milling environment. These maps elucidate the relationship between two
critical parameters: the coefficient of restitution and the coefficient of kinetic friction, across
a color gradient that represents the sum of squared errors (SSE). Specifically, the x-axis
details the coefficient of restitution, which quantifies the elasticity of collisions, and the
y-axis corresponds to the coefficient of kinetic friction, which measures the resistance
to motion. Contour lines represent constant SSE values, with the color gradient from
green to red indicating ascending SSE values, thus reflecting the fidelity of the simulation
parameters to the experimental observations. The optimal parameters are marked and
exhibit the lowest SSE, pointing to the most accurate simulation values determined through
the iterative calibration process.

Figure 20. Calibration of balls behavior.

For the calibration of the dry milling, all resulting angles were considered to calculate
the initial response surface with the new SSE value. In this case, the 12th iteration from
the previous calibration resulted in the best result and lowest SSE. Three possible local
minima were explored; none gave better results than the previous best combination from
the 12th iteration. Thus, the selected parameters were as follows: coefficient of restitution
0.385 and coefficient of kinetic friction 0.482. Those parameters are less accurate because
the recording’s measurement of the load’s angle of repose is less precise. The dry milling
calibration results are shown in Figure 21, similar to the previous case, as a heatmap.
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Figure 21. Calibration of dry milling.

The extracted water elevation points for all timesteps, cleaned as described before, are
presented in Figure 22.

Figure 22. Points of the slurry surface extracted from the simulation, with fitted curve and 95%
confidence interval.

When comparing these data to the data extracted from the recording (Figure 23), we
can see that the fitted curves fit inside each other’s confidence intervals, thus signifying
that by just adjusting the fluid’s density and viscosity to realistic values, we obtained a nice
match in the behavior of the simulated slurry.
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Figure 23. Comparison of the data from recording and simulation for wet milling calibration.

5. Discussion

This section delves into our study’s sophisticated methods and significant insights,
spotlighting the role of integrating cutting-edge computer vision with DEM-SPH techniques
in enhancing the calibration of digital twins for lab ball mills. We aim to highlight the
breakthroughs and future possibilities that this research opens up.

5.1. Embracing Advanced Computer Vision

Our work takes a giant leap forward by incorporating the latest computer vision
technology, such as Meta’s SAM model, to automate data gathering. This innovation allows
us to precisely track and analyze how the ball mill operates under different conditions by
looking at the dynamic angle of repose and monitoring the slurry surface. These detailed
observations are crucial for fine-tuning the digital twin of the mill. However, we also
encountered some hurdles, especially with the limited visibility in wet milling scenarios,
pointing to a need for refining these techniques or finding new ways to gather data on such
complex systems.

5.2. Advancing DEM-SPH Calibration

In refining the calibration process, we integrated DEM simulations for the grinding
media with SPH models for the slurry flow, showcasing the challenge of capturing milling
actions accurately. The careful adjustments of the restitution and friction coefficients in the
calibration process underscore the importance of these parameters in mimicking the mill’s
real-world behavior. Our efforts in fine-tuning these aspects demonstrate the potential of
this method in improving simulation precision, especially for copper ore milling, despite
the limitations in measuring dry milling conditions and the promising yet challenging
calibration of wet milling.

5.3. The Road Ahead for Digital Twin Calibration

Future work should enhance these calibration techniques to encapsulate the full
complexity of industrial milling operations under various conditions. This might include
new data collection methods and applying advanced technologies like AI to fine-tune model
parameters. Achieving a robust calibration is crucial for harnessing the full predictive
power of this approach.
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5.4. Leveraging Digital Twins for Milling Efficiency

Our research underscores the transformative potential of calibrated digital twins in
milling optimization, particularly for copper ore processing. By accurately simulating
milling dynamics, we can explore how different operational settings affect efficiency and
energy consumption without requiring extensive physical experiments. This opens up
possibilities for designing more energy-efficient milling processes, marking a significant
step forward for the mineral processing industry.

5.5. Exploring New Research Avenues

The findings also point to several promising areas for future research. Enhancing
computer vision for better data accuracy in wet milling, understanding the long-term
benefits of digital twin integration on process efficiency, equipment lifespan, and energy
consumption, and conducting further experimental and simulation studies to explore the
effects of milling parameters are all critical for realizing the full potential of this innovative
approach. This work lays a solid foundation for the ongoing refinement of, and significant
advancements in, process optimization.

6. Conclusions

This study presents a comprehensive methodology for calibrating the digital twin
of a laboratory ball mill, emphasizing the milling of copper ore through the integration
of advanced computer vision techniques and the coupling of DEM (Discrete Element
Method) with SPH (Smoothed Particle Hydrodynamics) simulations. The calibration
process involved meticulously examining the mill’s behavior under various operational
scenarios, including dry and wet milling, facilitated by state-of-the-art image processing
and the robust DualSPHysics framework. The following conclusions can be drawn from
the research conducted:

• Enhanced Calibration Precision: Integrating computer vision for data extraction and
applying DEM-SPH simulations for various milling scenarios significantly improved
the accuracy of the digital twin’s behavior compared to actual mill operations. This en-
hanced precision is pivotal for optimizing milling strategies, leading to more efficient
processing and energy utilization.

• Optimization of Milling Processes: The calibrated digital twin provides a powerful
tool for understanding and optimizing the grinding process. By accurately simulating
the dynamics of the grinding media and slurry, the study paves the way for developing
milling processes that are energy efficient and capable of producing high-quality milled
products. This optimization potential extends beyond copper ore milling to other
materials and milling environments.

• Future Research and Applications: While the current study focuses on copper ore
milling, the methodology developed has broader applications. Future research can
extend this approach to other milling operations, materials, and industrial processes.
Additionally, the integration of further advancements in computer vision and machine
learning could automate and refine the calibration process, making digital twins even
more accurate and valuable across various sectors.

• Contribution to Sustainable Practices: By enabling the optimization of milling op-
erations for energy efficiency and material usage, the study contributes to more
sustainable industrial practices. Simulating and predicting the outcomes of various
operational parameters without the need for extensive physical testing conserves
resources reduces the environmental footprint of mineral processing industries.

In conclusion, this study successfully demonstrates the viability and benefits of cali-
brating a digital twin for a laboratory ball mill using the novel integration of computer vision
and DEM-SPH simulations. The insights gained and the methodology developed contribute
significantly to mineral processing and digital twin technology, offering a promising avenue
for future advancements in industrial milling operations and beyond. The calibrated digital
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twin is a testament to the potential of combining traditional engineering with cutting-edge
technology to solve complex challenges in mineral processing and material science.
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