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Abstract: This paper explores how electroencephalography (EEG) signals in the Krohn-Rhodes
form can be decomposed further using the Jordan-Chevalley decomposition technique. First, the
recorded EEG signals of a seizure were transformed into a set of matrices. Each of these matrices was
decomposed into its elementary components using the Krohn-Rhodes decomposition method. The
components were then further decomposed into semisimple and nilpotent matrices using the Jordan-
Chevalley decomposition. These matrices—which are the extended building blocks of elementary
EEG signals—provide evidence that the EEG signals recorded during a seizure contain patterns
similar to that of prime numbers.

Keywords: Jordan-Chevalley decomposition; Krohn-Rhodes decomposition; electroencephalogra-
phy signals
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1. Introduction and Motivation

Epilepsy is a common neurological disease that, according to the World Health Or-
ganization, affects approximately 1% of the world’s population [1]. The types of seizures
experienced with epilepsy are divided into two groups: partial or focal onset seizures (in
which the source of the seizure within the brain is localized) and generalized seizures (in
which the source is distributed) [2]. Seizures are the product of a transitory and sudden
electrical disturbance in the brain combined with exorbitant neuronal discharge, which is
reflected in electroencephalography (EEG) signals. Recorded signals depict the electrical
activity of the human brain; abnormal patterns—such as spikes, sharp waves, and wave
complexes—can be observed (see Figure 1). However, EEG recording can be incomplete
and inaccurate, as the system cannot distinguish between input objects and output objects.

EEG signals are often represented by vectors or matrices. This allows for the straight-
forward analysis and processing of data using widely understood methodologies like
time-series analysis, spectral analysis, and matrix decomposition [3]. Among these, the
Fourier Transform has emerged as a powerful tool that can characterize the frequency
components of EEG signals and even establishing diagnostic importance. However, the
Fourier transform also has some disadvantages. For one, it disregards the underlying
nonlinear EEG dynamics that provide limited information about the electrical activity of
the brain. Therefore, additional steps must be taken to extract the “hidden” information
from EEG signals.
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Figure 1. Electroencephalography (EEG) fragment of a patient with epilepsy [4].

Fuzzy topographic topological mapping (FTTM) is a novel approach to solving the
neuromagnetic inverse problems that determine epileptic foci [5]. Since its development,
FTTM has been utilized extensively to study the features of seizure patients’ recorded EEG
signals (see References [6–11]). Most notably, Yun [12] claimed that one of the components
of FTTM, known as magnetic contour (MC), obeys the associative law—which, in turn, is
also satisfied by events in time [13]. The author concluded that MC is a plane that contains
information. This prompted Binjadhnan [14] to execute the Krohn-Rhodes decomposition
on a set of square matrices of EEG signals during a seizure, MCn(R). For convenience,
the EEG signals during seizure are written as EEG signals for the rest of the paper unless
stated otherwise. Remarkably, the results showed that the EEG signals that arose during
an epileptic seizure do not occur randomly. Instead, they were ordered patterns with
simple algebraic structures, namely periodic semigroups, affine scaling groups and the
diagonal groups. One significant consequence of Krohn-Rhodes decomposition on EEG
signals is Theorem 1.

Theorem 1 ([14]). Any invertible square matrix of EEG signal readings at time t can be written
as a product of elementary EEG signals in one and only one way.

Theorem 1 states that elementary EEG signals (unipotent and diagonal) are the build-
ing blocks of EEG signals. Binjadhnan [14] asserted that Theorem 1 was, in a sense,
equivalent to the fundamental theorem of arithmetic, which stated that prime numbers
were the multiplicative building blocks of positive integers. Furthermore, the EEG signals
resemble some of the fundamental properties of prime numbers which can be summarized
in Table 1.
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Table 1. Compatibility of EEG signals during a seizure to positive integers.

EEG Signals Positive Integers

Divisibility

Definition 1 ([14]). If A(t) and B(t) are EEG
signals, we say that A(t) divides B(t), written
as A(t) | B(t), if there exist EEG signals M(t)
such that B(t) = A(t)M(t), where B(t) is an
invertible EEG signals.

Definition 2 ([15]). If a and b are integers, we
say that a divides b if there is an integer c such
that b = ac.

Unique
factorization

theorem
(refer to Theorem 1)

Theorem 2 ([15]). Every positive integer greater
than 1 can be written uniquely as a product of
primes, with the prime factors in the product writ-
ten in nondecreasing order.

Building blocks
Diagonal EEG signals group and the
unipotent EEG signals group (direct sum of
affine scaling groups plus identity group)

Prime numbers

Some properties

Theorem 3 ([14]). For EEG signals A(t), B(t)
and C(t) the following hold:
1. If A(t) | B(t) and B(t) | C(t), then A(t) |

C(t).
2. If A(t) | B(t) and C(t) | B(t),

then (M(t)A(t) + N(t)C(t) | B(t)) for ar-
bitrary EEG signals M(t) and N(t).

3. Let B(t) be a commutative EEG signals. If
A(t) | B(t) and A(t) | C(t), then A2(t) |
B(t)C(t).

4. If B(t) | C(t) and A(t) | C(t), then A(t) |
B(t).

Theorem 4 ([15]). For prime number p and inte-
gers a, b the following hold:
1. If p | ab, then p | a or p | b.
2. If p | a2, then p | a.
3. If p | an, then p | a.

For centuries, mathematicians are baffled by the distribution of prime numbers within
the positive integers. Hints can be found repeatedly in their distribution, indicating shad-
ows of pattern, yet an accurate description of the actual pattern remains elusive. However,
the recent development in the study of primes distribution revealed some intriguing results.
Lemke Oliver and Soundararajan [16] discovered that prime numbers were not distributed
randomly, but there are some patterns embedded in them. Marshall and Smith [17] take
an unconventional approach by treating the prime numbers as a physical system and
represented it as a differential equation that can predict the known results regarding the
distribution of primes. Most recently, Torquato et al. [18–20] showed quasicrystals dis-
played scatter patterns that resembled the distribution of primes. Additionally, Bonanno
and Mega [21], Iovane [22–25], and Garcia-Sandoval [26] demonstrated that the distribution
of the primes follows a certain deterministic behavior. One significant result worthy to be
mentioned is that the life cycles of different animal species are precisely prime numbers [27].
In general, prime numbers’ features are found in some properties of physical system.

Taking a similar approach of viewing the physical phenomena through the lens of
prime numbers, Twin Prime Conjecture—one of the prominent conjectures in the study of
prime numbers—provides a glimpse of extending the work of viewing elementary EEG
signals as prime numbers.

Conjecture 1 (Twin Prime Conjecture [15]). There are infinitely many pairs of primes p and
p + 2.

The first few twin primes under 100 are (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43),
(59, 61), and (71, 73). These primes—5, 7, 13, 19, 31, 43, 61, 73 and so on—can be written
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as a sum of two primes, that is: 2 + p. Analogously, Barja [8] suggested the possibility of
decomposing and writing the elementary EEG signals as a sum of its simpler components.

Any linear operator f over any field K can be written as a sum of two commuting
operators—semisimple and nilpotent—through Jordan-Chevalley decomposition. The
unique representation of f in terms of its commuting operators exists only when K is
perfect due to the Jordan-Chevalley decomposition theorem [28]. Since the elementary
EEG signals are linear operators over the field of real numbers R, and the field R is a
perfect (since it has characteristic 0); therefore it can be represented uniquely as a sum of
its semisimple and nilpotent parts. In the present work, it is shown that elementary EEG
signals can be decomposed via Jordan-Chevalley decomposition technique.

Beyond the introduction, this paper comprises five sections. In Section 2, the EEG
signals recorded during an epileptic seizure are transformed into a set of upper triangular
matrices and shown to be a semigroup under matrix multiplication. In Section 3, Krohn-
Rhodes decomposition is applied to the semigroup to uncover the elementary components
of the EEG signals. The results are discussed in Section 4, where the elementary EEG signals
are further decomposed using the Jordan-Chevalley decomposition technique. The whole
processes involved in decomposing the EEG signals into its summation of semisimple and
nilpotent parts are summarized in Figure 2. Finally, we offer our concluding remarks and
possible future studies.

Recording the EEG signals

Flattening the recorded EEG signals

Semigroup of EEG signals

Semigroup of
affine scaling maps

Semigroup of
diagonal EEG signals

Unipotent
matrix of

EEG
signals

Diagonal
matrix of

EEG
signals

Semisimple
+

Nilpotent

Semisimple
+

Nilpotent

Unique
factorization

Flat EEG

Krohn–Rhodes
decomposition
of EEG signals

Jordan–Chevalley
decompositon of
elementary EEG
signals

Figure 2. The procedure of decomposing the EEG signals into its summation of semisimple and nilpotent parts.

2. Semigroup of EEG Signals during a Seizure

The EEG data of an epileptic seizure can be recorded as a set of n× n square matrices.
Zakaria [29] first digitized EEG signals during an epileptic seizure at 256 samples per second
using Nicolet One EEG software. Average potential difference (APD) was calculated from
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the samples every second, then stored in a file that contained the positioning of each
electrode on a magnetic contour (MC) plane. The data were subsequently arranged as a set
of square matrices.

Differences in surface potential can be recorded using an array of electrodes on
the scalp. The voltages among pairs of electrodes are computed, clarified, amplified,
and recorded. The international Ten-Twenty System [30] is recommended for electrode
placement, as it is considered the standard method for characterizing electrode locations at
particular time intervals when recording scalp EEG [31]. The Ten-Twenty System depends
on the connection between an electrode’s positioning and the underlying area of the
cerebral cortex (“ten” and “twenty” refer to interelectrode distances of 10% and 20%) [32].
The Ten-Twenty System is illustrated in Figure 3.

Figure 3. The international 10–20 system seen from (A) left and (B) above the head [33].

Figure 2A illustrates that almost all electrodes are positioned at a distance of 40% or
less from the vertex, Cz. Meanwhile, Figure 2B shows the electrode positions from the top
of the head by modeling the head as a sphere. It is assumed that the hemisphere is at a
distance of 80% from the top of the head [29]. In other words, from the front of the head to
the back is Fpz to Oz, and from the left to the right is T3 to T4. Throughout the process, the
APD at each second is stored in a file containing the positions of the electrodes on the MC
plane, as tabulated in Table 2.

The data in Table 2 can be written as a 5× 5 matrix, as shown below.
Let x1 ≤ x2 ≤ · · · ≤ x21, i, j = {1, 2, 3, 4, 5} and a function βij is defined as follows:

βij =

{(
x(i−1)5+j, y(i−1)5+j

)
for (i− 1)5 + j ≤ 21,

0 for (i− 1)5 + j > 21.

The mapping βij can be written as a matrix, as follows:
β11 β12 β13 β14 β15
β21 β22 β23 β24 β25
β31 β32 β33 β34 β35
β41 β42 β43 β44 β45
β51 β52 β53 β54 β55

.

Specifically,
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Table 2. Average potential difference (APD) at the sensor on a MC [14].

Sensor X Y APD

Fpz x21 y21 z21
Fp1 x19 y19 z19
Fp2 x20 y20 z20
F3 x15 y15 z15
F4 x16 y16 z16
C3 x9 y9 z9
C4 x10 y10 z10
P3 x6 y6 z6
P4 x7 y7 z7
O1 x2 y2 z2
O2 x3 y3 z3
F7 x17 y17 z17
F8 x18 y18 z18
T3 x11 y11 z11
T4 x12 y12 z12
T5 x4 y4 z4
T6 x6 y6 z6
Fz x1 y1 z1
Cz x13 y13 z13
Pz x8 y8 z8
Oz x14 y14 z14


(x1, y1) (x2, y2) (x3, y3) (x4, y4) (x5, y5)
(x6, y6) (x7, y7) (x8, y8) (x9, y9) (x10, y10)
(x11, y11) (x12, y12) (x13, y13) (x14, y14) (x15, y15)
(x16, y16) (x17, y17) (x18, y18) (x19, y19) (x20, y20)
(x21, y21) 0 0 0 0

.

The corresponding square matrix is generated by substituting the analogy average
potential difference of every element in the above matrix. Particularly, every single second
of the APD is stored in a square matrix that contains the position of electrodes on the
MC plane. Therefore, MC plane becomes a set of n× n matrices (EEG signals) as written
in Equation (1):

MCn(R) =
{[

βij(z)t
]

n×n

∣∣∣i, j ∈ Z+, βij(z)t ∈ R
}

, (1)

where, βij(z)t is the potential difference reading of the EEG signals from a particular ij
sensor at time t.

As a sample of the transformed recorded EEG signals, two readings of EEG signals
are presented in Tables 3 and 4.

The data in Tables 3 and 4 are reordered in the ascending order of the X values
and tabulated in Tables 5 and 6, respectively, through MATLAB programming that was
developed by Binjadhnan [14]. They are then formed into 5× 5 square matrices.
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Table 3. APD at the sensor on an MC at t = 2 of patient A [14].

Sensor X Y APD

Fpz 7.68 0 0
Fp1 7.3041 3.3733 33.94984375
Fp2 7.3041 −2.3733 15.32792969
F3 3.3691 3.3691 22.99746094
F4 3.3691 −3.3691 0.707890625
C3 0 3.181 27.5621875
C4 0 −3.1812 23.01671875
P3 −3.3691 3.3691 84.15105469
P4 −3.3691 −3.3691 25.2309375
O1 −7.3041 2.3733 112.3017578
O2 −7.3041 −2.3733 70.05695313
F7 4.5142 6.2133 31.42472656
F8 4.1542 −6.2133 15.34089844
T3 0 7.68 58.33558594
T4 0 −7.68 53.67203125
T5 −4.5142 6.2133 114.2680859
T6 −4.5142 0 102.3164453
Fz 3.1812 0 10.21890625
Cz 0 0 12.73027344
Pz −3.1812 0 3.456171875
Oz −7.68 y14 0

Table 4. APD at the sensor on an MC at t = 3 of patient A [14].

Sensor X Y APD

Fpz 7.68 0 0
Fp1 7.3041 3.3733 65.68265625
Fp2 7.3041 −2.3733 41.90457031
F3 3.3691 3.3691 8.524765625
F4 3.3691 −3.3691 0.0625
C3 0 3.181 2.902265625
C4 0 −3.1812 79.02796875
P3 −3.3691 3.3691 110.2065234
P4 −3.3691 −3.3691 63.74707031
O1 −7.3041 2.3733 234.7169922
O2 −7.3041 −2.3733 198.7374219
F7 4.5142 6.2133 97.15632813
F8 4.1542 −6.2133 76.86242188
T3 0 7.68 138.7585156
T4 0 −7.68 137.3880078
T5 −4.5142 6.2133 209.6701172
T6 −4.5142 0 230.6576563
Fz 3.1812 0 18.03042969
Cz 0 0 60.58832031
Pz −3.1812 0 37.07589844
Oz −7.68 y14 0
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Table 5. Reordering APD at the sensor at t = 2 of patient A [14].

Sensor X Y APD

Fpz −7.68 0 0
Fp1 −7.3041 2.3733 112.3017578
Fp2 −7.3041 −2.3733 70.05695313
F3 −4.5142 6.2133 114.2680859
F4 −4.5142 −6.2133 102.3164453
C3 −3.3691 3.3691 84.15105469
C4 −3.3691 −3.3691 25.2309375
P3 −3.1812 0 3.456171875
P4 0 3.1812 27.5621875
O1 0 −3.1812 23.01671875
O2 0 7.68 58.33558594
F7 0 −7.68 53.67203125
F8 0 0 12.73027344
T3 3.1812 0 10.21890625
T4 3.3691 3.3691 22.99746094
T5 3.3691 −3.3691 0.707890625
T6 4.5142 6.2133 31.42472656
Fz 4.5142 −6.2133 15.34089844
Cz 7.3041 2.3733 33.94984375
Pz 7.3041 −2.3733 15.32792969
Oz 7.68 0 0

Table 6. Reordering APD at the sensor at t = 3 of patient A [14].

Sensor X Y APD

Fpz −7.68 0 0
Fp1 −7.3041 2.3733 234.7169922
Fp2 −7.3041 −2.3733 198.7374219
F3 −4.5142 6.2133 209.6701172
F4 −4.5142 −6.2133 230.6576563
C3 −3.3691 3.3691 110.2065234
C4 −3.3691 −3.3691 63.74707031
P3 −3.1812 0 37.07589844
P4 0 3.1812 2.902265625
O1 0 −3.1812 79.02796875
O2 0 7.68 138.7585156
F7 0 −7.68 137.3880078
F8 0 0 60.58832031
T3 3.1812 0 18.03042969
T4 3.3691 3.3691 8.524765625
T5 3.3691 −3.3691 0.0625
T6 4.5142 6.2133 97.15632813
Fz 4.5142 −6.2133 76.86242188
Cz 7.3041 2.3733 65.68265625
Pz 7.3041 −2.3733 41.90457031
Oz 7.68 0 0

A(2) =


0 112.3018 70.05695 114.2681 102.3164

84.1511 25.2309 3.45617 27.5622 23.0167
58.3356 53.672 12.7303 10.2189 22.9975

0.707891 31.4247 15.3409 33.9498 15.3279
0 0 0 0 0

.
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A(3) =


0 234.7169922 198.7374219 209.6701172 230.6576563

110.2065234 63.74707031 37.07589844 2.902265625 79.02796875
138.7585156 137.3880078 60.58832031 18.03042969 8.524765625

0.0625 97.15632813 76.86242188 65.68265625 41.90457031
0 0 0 0 0

.

Binjadhnan and Ahmad [9] demonstrated that the nonempty set of square matrices
of EEG signals, MCn(R), is closed under matrix multiplication and thus satisfies the
associative law. Consequently, the set MCn(R) forms a semigroup with respect to matrix
multiplication. This result indicates that the historical event is preserved in time [34]. In
other words, MCn(R) incorporates time as a property. Binjadhnan and Ahmad [9] also
proved that MCn(R) can be written as a set of n× n upper triangular matrices, MC

′′
n(R),

and that this set also satisfies the axioms of a semigroup under matrix multiplication, per
Theorem 5.

Theorem 5 ([9]). The set of n × n upper triangular matrices MC
′′
n(R), is a semigroup under

matrix multiplication.

Proof. i. Suppose that A(t), B(t) ∈ MC
′′
n(R) such that

A(t) =

 β11,1 · · · β11,n
...

. . .
...

0 · · · β1n,n

, B(t) =

 β21,1 · · · β21,n
...

. . .
...

0 · · · β2n,n

.

Then

A(t)B(t) =

 β11,1 · · · β11,n
...

. . .
...

0 · · · β1n,n


 β21,1 · · · β21,n

...
. . .

...
0 · · · β2n,n


=

(
n

∑
j=1

β1i,jβ2ij

)
n,n

.

Note that the entry in position (i, k) is obtained by searching along the ith row of the
first matrix and down the kth column of the second matrix.

 β11,1 · · · β11,n
...

. . .
...

0 · · · β1n,n


 β21,1 · · · β21,n

...
. . .

...
0 · · · β2n,n

 =



n

∑
j=1

β11,jβ2j,1 · · ·
n

∑
j=1

β11,jβ2j,1

...
. . .

...

0 · · ·
n

∑
j=1

β11,jβ2j,1


.

Now, β1i,j, β2j,k ∈ R for a particular time t ∈ R+ and without loss of generality,

β1i,j, β2j,k ∈ R for some time t ∈ R+. Thus,
n

∑
j=1

β1i,jβ2j,k ∈ R. Given that A(t), B(t) ∈

MC
′′
n(R) are arbitrary, it follows that A(t)B(t) ∈ MC

′′
n(R). Therefore, MC

′′
n(R) is

closed with respect to matrix multiplication.
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ii. Suppose A(t) =
[
β1i,j

]
(n,n), B(t) =

[
β2j,k

]
(n,n)

, C(t) = [β3k,l ](n,n). Then

A(t)B(t) =

(
n

∑
j=1

β1i,jβ2j,k

)
(n,n)

,

and

B(t)C(t) =

(
n

∑
j=1

β2j,kβ3k,l

)
(n,n)

.

Next,

(A(t)B(t))C(t) =

(
n

∑
k=1

(
n

∑
j=1

β1i,jβ2j,k

)
β3k,l

)
(n,n)

=

(
n

∑
k=1

n

∑
j=1

β1i,jβ2j,kβ3k,l

)
(n,n)

,

and

A(t)(B(t)C(t)) =

(
n

∑
j=1

β1i,j

(
n

∑
k=1

)
β2j,kβ3k,l

)
(n,n)

=

(
n

∑
j=1

n

∑
k=1

β1i,jβ2j,kβ3k,l

)
(n,n)

.

Therefore, (A(t)B(t)) = A(t)(B(t)C(t)). Consequently, the set MC
′′
n(R) is associative

under matrix multiplication. Hence, (i) and (ii) imply that the set MC
′′
n(R) forms a

semigroup under matrix multiplication.

3. Krohn-Rhodes Decomposition of MC
′′
n (R)

In their ground-breaking work in the 1960s, Krohn and Rhodes proposed a method
to express every finite semigroup as the divisor of a wreath product of finite groups
and finite aperiodic semigroups [35,36]. Traditionally, the Krohn-Rhodes theory was
applied only to finite semigroups; however, it has been generalized to well-behaved
classes of infinite semigroups as well [37–39]. On this basis, Kambites and Steinberg [40]
constructed a definitive wreath product decomposition for the semigroup of all n × n
triangular matrices, Tn(k), over a finite field k. However, the authors also obtained several
results with applicability to a more general context in the process of developing the
wreath product decomposition. Their proposed method is fully applicable in the case that
the semigroup Tn(k) is infinite. Binjadhnan, in [14], decomposed the infinite semigroup
of EEG signals from an epileptic seizure over a field of real numbers by executing the
decomposition technique developed by Kambites and Steinberg [40].

Before we explore the decomposition of MC
′′
n(R) using the Krohn-Rhodes method,

some basic concepts of wreath product and affine transformation should be discussed. We
have restricted this study to include only the special case of abstract monoids (as opposed
to transformation semigroups, which are semigroups of transformations from a set to itself
with identity function), as doing so is sufficient for our purposes.

Definition 3 ([41]). If S and T are semigroups, then the Cartesian product S × T becomes a
semigroup when (s, t)(s′, t′) = (s′, tt′) This semigroup is considered a direct product of S and T.
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Definition 4 ([39]). Let S and T be monoids. The wreath product of S and T, denoted by S o T, is
the monoid with the underlying set ST × T. Its multiplication is given by

( f , a)(g, b) = (ga ◦ f , ab),

where the multiplication of functions is pointwise. If f ∈ ST , t1, t2 ∈ T, then f t1 : T → S is
given by

f t1 = f (t2t1).

The semigroup of EEG signals MCn(R) was decomposed via Krohn-Rhodes decom-
position with a field of real numbers R as the divisor of an alternating wreath product of
groups and aperiodic monoids.

Theorem 6 ([40]). Let A, B and C be monoids. Then

1. (A o B)× C embeds in A o (B× C).
2. A ≺ X̃ o A, where A is the monoid of the transformation of a set X.
3. A× B ≺ A o B.

Theorem 7 is the main inductive step for the decomposition of MC
′′
n(R). If R(t) is a

matrix, its transpose is written as RT(t).

Theorem 7 ([14]). Let n ≥ 2 and let R be a field of real numbers. Then

MC
′′
n(R) ≺

[
ASMCn−1(R) oMC

′′
n−1(R)

]
×MC

′′
1 (R).w

Proof. Firstly, every element in MC
′′
n(R) is viewed as a block matrix

R(t) =
(

YR(t) xR(t)
0 bR(t)

)
,

where YR(t) is an (n − 1) × (n − 1) matrix that lies within MC
′′
n−1(R), xR(t) is an n × 1

column vector and bR(t) is a 1× 1 matrix. Next, a mapping is defined as

φ : MC
′′
n(R)→

[
ASMCn−1(R) oMC

′′
n−1(R)

]
×MC

′′
1 (R),

such that

φ(R(t)) =
((

fR(t), YR(t)

)
, bR(t)

)
,

where for all YR(t) ∈ MC
′′
n−1(R), and the element fR(t), YR(t) ∈ ASMCn−1R is given by

fR(t), YR(t)(~y) = xT
R(t)Y

T
R(t) + bR(t)~y =

(
YR(t), xR(t) +~yTbR(t)

)T
. (2)

φ is well-defined, since for any R(t) ∈ MC
′′
n(R), we have

[
fR(t) I(t)

(
~0
)]T

= I(t)xR(t) +~0bR(t)

= xR(t),

where I(t) ∈ MC
′′
n−1(R) is the identity matrix and~0 ∈ Rn−1 is the zero vector. Furthermore,

let R(t1), R(t2) ∈ MC
′′
n(R) and suppose that
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φ(R(t1)) =
((

fR(t1)
, YR(t1)

)
, bR(t1)

)
=
((

fR(t2)
, YR(t2)

)
, bR(t2)

)
= φ(R(t2)).

Notice that
(

fR(t1)
, YR(t1)

)
=
(

fR(t2)
, YR(t2)

)
means that fR(t1)

= fR(t2)
(this equation

implies that xR(t1)
= xR(t2)

), YR(t1)
= YR(t2)

and bR(t1)
= bR(t2)

. Therefore, R(t1) = R(t2).

In other words, φ is injective. Since MC
′′
n(R) is closed under matrix multiplication, it follows

that for any R(t1), R(t2) ∈ MC
′′
n(R) as two block matrices, we have R(t1), R(t2) ∈ MC

′′
n(R)

in terms of block matrix
(

YR(t) xR(t)
0 bR(t)

)
. In other words, since

(
YR(t1)

xR(t1)

0 bR(t1)

)(
YR(t2)

xR(t2)

0 bR(t2)

)
=

(
YR(t1)R(t2)

YR(t1)
xR(t2)

+ xR(t1)
bR(t2)

0 bR(t1)
bR(t2)

)
,

we have

YR(t1)R(t2)
= YR(t1)

YR(t2)
, bR(t1)R(t2)

= bR(t1)
bR(t2)

,

and
xR(t1)R(t2)

= YR(t1)
xR(t2)

+ xR(t1)
bR(t2)

.

Next, we have to show that

φ(R(t1), R(t2)) = φ(R(t1))φ(R(t2)),

for all choices of R(t1), R(t2) ∈ MC
′′
n(R). Suppose R(t1), R(t2) ∈ MC

′′
n(R). Then

φ(R(t1)R(t2)) =
((

fR(t1)R(t2)
, YR(t1)R(t2)

)
, bR(t1)R(t2)

)
. (3)

On the other hand,

φ(R(t1))φ(R(t2)) =
((

FR(t1)
, YR(t1)

)
, bR(t1)

)
)((

fR(t2)
, YR(t2)

)
, bR(t2)

)
=
((

fR(t1)
, YR(t2)

)(
fR(t2)

, YR(t2)

)
, bR(t1)

bR(t2)

)
—by Definition 3

=

((
f

YR(t1)

R(t2)
◦ fR(t1)

, YR(t1)
YR(t2)

)
, bR(t1)

bR(t2)

)
—by Definition 4

=

((
f

YR(t1)

R(t2)
◦ fR(t1)

, YR(t1)R(t2)

)
, bR(t1)

bR(t2)

)
.

(4)

To complete the proof, we must show that fR(t1)R(t2)
= f

YR(t1)

R(t2)
◦ fR(t1)

. We need to show

that fR(t1)R(t2)
X(~y) =

(
fR(t2)

XYR(t1)
◦ fR(t1)

X
)
(~y) for all ~y ∈ R+ and X ∈ MC

′′
n−1(R).
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fR(t1)R(t2)X(~y) =
(

XXR(t1)R(t2)
+~yTbR(t1)

bR(t2)

)
—by Equation (2)

=
(

X
(

YR(t1)R(t2)
+ xR(t1)

bR(t2)

)
+~yTbR(t1)

bR(t2)
)T

=
(

XYR(t1)
xR(t2)

+ XxR(t1)
bR(t2)

+~yTbR(t1)
bR(t2)

)T

=
(

XYR(t1)
xR(t2)

+
(

XxR(t1)
+~yTbR(t1)

)
bR(t2)

)T

=
(

XYR(t1)
xR(t2)

)T
+
(

XxR(t1)
+~yTbR(t1)

)T
bR(t2)

− (since (A + B)T = AT + BT)

=
(

XYR(t1)
xR(t2)

)T
+
(

fR(t1)
X(~y)

)
bR(t2)

—by Equation (2)

=
(

XYR(t1)
xR(t2)

+
((

fR(t1)
X(~y)TbR(t2)

)))T

= fR(t2)
XYR(t1)

(
fR(t1)

X(~y)
)

—by Equation (2)

=
(

fR(t2)
XYR(t1)

◦ fR(t1)
X
)
(~y).

(5)

From Equations (3)–(5), we have

φ(R(t1), R(t2)) = φ(R(t1))φ(R(t2)).

Therefore, MC
′′
n(R) ≺

[
ASMCn−1(R) oMC

′′
n−1(R)

]
×MC

′′
1 (R).

Theorem 8. Let n ≥ 2 and R be a field of real numbers. Then

MC
′′
n(R) ≺ ASMCn−1(R) o ASMCn−2(R) o · · · o

(
ASMC1(R)×MC

′′
1 (R)n

)
.

Proof. We use induction on n. When n = 2, the following is obtained by Theorems 6 and 7:

MC
′′
2 (R) ≺

[
ASMC1(R) oMC

′′
1 (R)

]
×MC

′′
1 (R) ≺ ASMC1(R) oMC

′′
1 (R)2.

Next, let n ≥ 3. It is assumed to be true for n = k− 1. Therefore, for n = k

MC
′′
k (R) ≺

[
ASMCk−1(R) oMC

′′
k−1(R)

]
×MC

′′
1 (R)

≺
[

ASMCk−1(R) o
[

ASMCk−2(R) o ASMCk−2(R) o · · · o ASMC1(R)×MC
′′
1 (R)−1

]]
×MC

′′
1 (R)

≺ ASMCk−1(R) o ASMCk−2(R) o · · · o
(

ASMC1(R)×MC
′′
1 (R)k

)
—(by Theorem 6).

The decomposition of the semigroup of EEG signals during an epileptic seizure—in
terms of affine scaling groups, diagonal groups, and aperiodic semigroups—is summarized
in the following steps.

Step 1: Use Nicolet One EEG software to get a Fast Fourier Transform (FFT) of raw data
from the signals (i.e., the potential difference).

Step 2: Use the Flat EEG method to store the APD at each second in a file that contains the
positions of the electrodes on the MC plane.

Step 3: Rewrite the APD at the sensor on MC in terms of a square matrix in MCn.
Step 4: Apply Schur decomposition to the output from Step 3, generating a set of upper

triangular matrices that represents the semigroup MC∗n(R) under matrix multiplica-
tion.

Step 5: View each element in MC∗n(R) as a block matrix

R(t) =
(

YR(t) xR(t)
0 bR(t)

)
,
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where YR(t) is an (n− 1)× (n− 1) matrix that lies in MC”
n−1, xR(t) an n× 1 column

vector and bR(t) is a 1× 1 matrix.

Step 6: Use Theorem 7 to get the image of R(t) as Equation (6)

φ(R(t)) =
(
( fR(t), YR(t)), bR(t)

)
, (6)

where for every YR(t) ∈ MC”
n−1(R), the element fR(t)YR(t) ∈ ASMCn−1(R) is

given by

fR(t)YR(t)(~y) =xT
R(t)Y

T
R(t) + bR(t)~y

=
(

YR(t)xR(t) +~yTbR(t)

)T
.

Step 7: Repeat Steps 5 and 6 on a new upper triangular matrix YR(t).

In Section 2, Steps 1 through 3 were conducted in order to transform the recorded EEG
signals into a set of square matrices. Now, the square matrices can be decomposed into
upper triangular matrices. For every square matrix A(t) at any time t, a 5× 5 orthogonal
matrix Q(t) and upper triangular matrix R(t) is found using Schur decomposition, as per
Equation (7).

QT(t)A(t)Q(t) = R(t) =


R11 R12 . . . R1k
0 R22 . . . R2k
...

...
. . .

...
0 0 . . . Rkk

. (7)

For example, matrices Q(2) and R(2) are obtained when Schur decomposition is
executed on matrix A(2).

Q(2) =


0.70047 0.6207 0.28411 −0.20821 0
0.49558 −0.74501 0.44828 0.071377 0
0.47767 −0.20406 −0.84136 −0.14938 0
0.18862 0.15727 −0.10331 0.96397 0

0 0 0 0 1

,

R(2) =


157.9953 −43.30315 13.81193 86.52425 96.95254

0 −79.1872 −40.6489 64.3903 44.1821
0 0 −16.6237 32.214 18.4712
0 0 0 9.7267 −8.3196
0 0 0 0 0

.

Matrix R(2) can be viewed as a block matrix(
YR(2) xR(2)

0 bR(2)

)
5×5

,

and xT
R(2)Y

T
R(2) for R(2) and the constant map f4R(2)Y4×4R(2)(~y1×4) for every ~y1×4 are ob-

tained. xT
YR(2)

YT
YR(2)

for Y4×4R(2), xT
YYR(2)

YT
YYR(2)

for YY3×3R(2)
and xT

YYYR(2)

YT
YYYR(2)

for YYY2×2R(2)

are also obtained.
Next, the affine scaling transformations fiR(2)(~y1×i) is developed for chosen vectors

~y1×i(1 ≤ i ≤ 3). In addition, the direct sum of the affine scaling maps is determined. Finally,
the identity matrix is added to the direct sum of the affine scaling maps to determine the
elementary unipotent matrix U(2). Then, the direct product of U(2) and the elementary
diagonal matrix D(2) is determined, and it is isomorphic to YR(t).
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The correspondent matrices and numerical computations described above for R(2)
are summarized as follows:

YR(2) =


157.9953 −43.30315 13.81193 86.52425

0 −79.1872 −40.6489 64.3903
0 0 −16.6237 32.214
0 0 0 9.7267

,

xR(2) =


96.95254
44.1821
18.4712
−8.3196

,

bR(2) =0,

xT
R(2)Y

T
R(2) =

(
1.2940× 104 −0.4785× 104 −0.575× 104 −0.0081× 104 ),

and

f4R(2)Y4×4R(2)(~y1×4) =b5×5R(2)~y1×4 + xT
1×4R(2)Y

T
4×4R(2)

=0 +
(

1.2940× 104 −0.4785× 104 −0.575× 104 −0.0081× 104 )
=
(

1.2940× 104 −0.4785× 104 −0.575× 104 −0.0081× 104 ).
Therefore, f4R(2)(~y1×4) is a constant map that belongs to R̃4. Now, take

YR(2) =


157.9953 −43.30315 13.81193 86.52425

0 −79.1872 −40.6489 64.3903
0 0 −16.6237 32.214
0 0 0 9.7267

.

Then, the following is determined recursively:

YYR(2)
=

157.9953 −43.30315 13.81193
0 −79.1872 −40.6489
0 0 −16.6237

,

xYR(2)
=

86.52425
64.3903
32.214

, and

bYR(2)
= 9.7267,

xT
R(2)Y

T
R(2) =

(
1.1327× 104 −0.6408× 104 −0.0536× 104),

and

f3R(2)YYR(2)
(~y1×3) = bYR(2)

~y1×3 + xT
YR(2)

YT
YR(2)

= 9.7267~y1×3 +
(
1.1327× 104 −0.6408× 104 −0.0536× 104).

Let,

~y1×3 =
(
−1.1645× 103 0.6591× 103 0.0554× 103).

Then,
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f3R(2)YYR(2)
(~y1×3) = f3R(2)YYR(2)(

−1.1645× 103 0.6591× 103 0.0554× 103)
=
(
0.5468 2.4452 3.3119

)
.

The result, arranged as a matrix, is

f3R(2)YYR(2)

(
−1.1645× 103 0.6591× 103 0.0554× 103)

=


0 0.5468 0 0
0 0 2.4452 0
0 0 0 3.3119
0 0 0 0

.

Therefore, f3R(2)YYR(2)

(
−1.1645× 103 0.6591× 103 0.0554× 103) is an affine scal-

ing map that belongs to ASMC∗3 (R).
Here, take

YYR(2)
=

157.9953 −43.30315 13.81193
0 −79.1872 −40.6489
0 0 −16.6237

.

Then, the following are obtained:

YYYR(2)
=

(
157.9953 −43.30315

0 −79.1872

)
,

xYYR(2)
=

(
13.81193
−40.6489

)
,

bYYR(2)
= −16.6237,

xT
YYR(2)

YT
YYR(2)

=
(
3.9424× 103 3.2189× 103),

and

f2R(1)YYYR(1)
(~y1×2) =bYYR(1)

+ xT
YYR(1)

YT
YYR(1)

=− 16.6237~y1×2 +
(
3.9424× 103 3.2189× 103).

Let,

~y1×2 =
(

237.2078 193.2333
)
.

Then,

f2R(2)YYYR(2)
(~y1×2) = f2R(2)YYYR(2)

(
237.2078 193.2333

)
=
(
−0.8309 6.6199

)
.

The result is the matrix
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
0 0 −0.8309 0
0 0 0 6.6199
0 0 0 0
0 0 0 0

.

Therefore, f2R(2)YYYR(2)

(
237.2078 193.2333

)
is an affine scaling map that belongs to

ASMC∗2 (R).
Finally, take

YYYR(2)
=

(
157.9953 −43.30315

0 −79.1872

)
.

Then, we have

YYYYR(2)
=157.9953,

xYYYR(2)
=− 43.30315,

bYYYR(2)
=− 79.1872,

xT
YYYR(2)

YT
YYYR(2)

=− 6.8417× 103,

and

f1R(2)YYYYR(2)
(~y1×1) =bYYYR(2)

~y1×1 + xT
YYYR(2)

YT
YYYR(2)

=− 79.1872~y1×1 + (−6.8417× 103).

Suppose that

~y1×1 =
(
−86.5113

)
.

Then,

f1R(2)YYYYR(2)
(~y1×1) = f1R(1)YYYYR(2)

(
−86.5113

)
=
(
8.8955

)
.

The result in terms of a matrix is:
0 0 0 8.8955
0 0 0 0
0 0 0 0
0 0 0 0

.

Therefore, f1R(2)YYYYR(2)

(
−86.5113

)
is an affine scaling map that belongs to ASMC∗1 (R).

The direct sum of f3R(2)YYR(2)

(
−1.1645× 103 0.6591× 103 0.0554× 103 )+

f2R(2)YYYR(2)

(
237.2078 193.2333

)
+ f1R(1)YYYYR(2)

(
−86.5113

)
is:

=


0 0.5468 0 0
0 0 2.4452 0
0 0 0 3.3119
0 0 0 0

+


0 0 −0.8309 0
0 0 0 6.6199
0 0 0 0
0 0 0 0

+


0 0 0 8.895
0 0 0 0
0 0 0 0
0 0 0 0





Axioms 2021, 10, 10 18 of 30

=


0 0.5468 −0.8309 8.895
0 0 2.4452 6.6199
0 0 0 3.3119
0 0 0 0

.

By adding the identity matrix I4×4 to the direct sum, we obtain the unipotent matrix:

U(2) =I4×4 +


0 0.5468 −0.8309 8.895
0 0 2.4452 6.6199
0 0 0 3.3119
0 0 0 0



=


1 0.5468 −0.8309 8.895
0 1 2.4452 6.6199
0 0 1 3.3119
0 0 0 1

.

and the diagonal matrix is:

D(2) =


157.9953 0 0 0

0 −79.1872 0 0
0 0 −16.6237 0
0 0 0 9.7267

.

Finally,

U(2)D(2) =


1 0.5468 −0.8309 8.895
0 1 2.4452 6.6199
0 0 1 3.3119
0 0 0 1




157.9953 0 0 0
0 −79.1872 0 0
0 0 −16.6237 0
0 0 0 9.7267



=


157.9953 −43.30315 13.81193 86.52425

0 −79.1872 −40.6489 64.3903
0 0 −16.6237 32.214
0 0 0 9.7267

.

The unipotent matrix U(2) and the diagonal matrix D(2) here are the elementary
components of EEG signals during an epileptic seizure at time t = 2. Next, these two
matrices, U(2) and D(2) are decomposed—respectively—into its simpler parts using
Jordan-Chevalley decomposition technique in the next section.

4. Jordan-Chevalley Decomposition of EEG Signals during a Seizure

In this section, the elementary components of the EEG signals (diagonal and unipotent)
recorded during an epileptic seizure are decomposed into their simplest parts using the
Jordan-Chevalley decomposition technique. Jordan-Chevalley decomposition is precisely
expressed in Definition 5. Theorem 9 is the direct consequence of Definition 5.

Definition 5 (Jordan-Chevalley Decomposition [42]). The decomposition T = S + N is called
the Jordan-Chevalley decomposition of T. The mapping S is referred to as the semisimple part of T,
while N is referred to as the nilpotent part.

Theorem 9 (Jordan-Chevalley Decomposition Theorem [42]). Let T : V → V be an endomor-
phism for any whose eigenvalues lie in a field and whose characteristic polynomial is given by

pT(T) = (T − λi IV)
µi · · · (T − λm IV)

µm = 0
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where λ1, . . . , λm are the distinct eigenvalues of T. Suppose C1, C2, . . . , Cm are the invariant
subspaces of T. Then

V = C1 ⊕ C2 ⊕ · · ·Cm.

Let S : V → V be the unique endomorphism such that S(v) = λiv if v ∈ Ci. Then:

1. S is semisimple, and the linear mapping N = T − S is nilpotent;
2. S and N commute, and both commute with T (in other words, SN = NS, NT = TN, and

ST = TS);
3. the decomposition T = S + N of T into the sum of a semisimple linear mapping and a

nilpotent linear mapping, both of which commute, is unique; and, finally,
4. dim Ci = µi for all i.

An immediate consequence of Theorem 9 is Corollary 1.

Corollary 1 ([28]). Let K be a perfect field, A ∈ Mn(K), and let L be a root field of χA(x) over K.
Therefore, there exists a Jordan matrix J ∈ Mn(L) and an invertible matrix C ∈ Mn(L), such that
A = CJC−1. Let D := diag(J), N := J − D. Then, CDC−1, CNC−1 ∈ Mn(K) and

A = CDC−1 + CNC−1 (8)

are the Jordan-Chevalley decomposition of A.

The Jordan canonical form is a refinement of Jordan-Chevalley decomposition, which
states that a basis of V exists such that the matrix T is a direct sum of all Jordan blocks.

Definition 6 (Jordan Canonical Form [43]). Suppose T ∈ L(V). A basis of V is called a Jordan
basis for T. With respect to this basis, T has a block diagonal matrix

J =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ap

,

where each Aj is an upper triangular matrix of the form

Aj =


λj 1 0

. . . . . .
. . . 1

0 λj

.

The matrix J is also called the Jordan canonical, or normal, form. If the matrix is diag-
onalizable, then its Jordan canonical form is diagonal; otherwise, if it is non-diagonalizable,
we get at least a block diagonal, and the blocks come in a predictable form.

Based on Corollary 1, every unipotent and diagonal matrix can be decomposed into
its semisimple and nilpotent parts using these steps:

1. Factorize the characteristic polynomial χA(x) =
r

∏
i=1

(x− λi)
ni .

2. Determine the Jordan matrix J and invertible matrix C such that A = CJC−1.
3. Take D := diag(J), N := J − D and As := CDC−1, An := CNC−1 where As is the

semisimple part and An is the nilpotent part.

By executing Jordan-Chevalley decomposition on any diagonal matrix of EEG signals
D(t), we can deduce Theorem 10.
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Theorem 10. Let D(t) be a diagonal matrix of EEG signals at time t. Suppose D(t) is decomposed
by using the Jordan-Chevalley decomposition, which produces the summation of its semisimple
(D(t)S) and nilpotent (D(t)N) matrices. Then D(t)S = D(t) and D(t)N = 0.

Proof. Let D(t) be a diagonal matrix of EEG signals at time t, such that

D(t) =


a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann

.

Then, the characteristic polynomial of D(t) can be determined by finding the determi-
nant of (D(t)− λI) = 0.

D(t)− λI =


a11 − λ1 0 0 · · · 0

0 a22 − λ2 0 · · · 0
0 0 a33 − λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann − λn


det(D(t)− λI) = (a11 − λ1)(a22 − λ2) · · · (ann − λn) = 0.

Therefore, λ1 = a11, λ2 = a22, ..., λn = ann are the eigenvalues of D(t). Subsequently,
the Jordan canonical form of D(t) can be written from these eigenvalues as follows:

J =


a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann

.

Thus, the invertible matrix C, such that D(t) = CJC−1 is as follows:

C =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

, (9)

which is in the form of identity matrix, I. Now, take the diagonal entries of J to form matrix
D, such that D = diag(J). In other words,

D =


a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann

, (10)

which is equals to the form of J. Then,

D(t)S = CDC−1—by Corollary (1)

= CJC−1—by Equation (10)

= I J I−1—by Equation (9)
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= J

=


a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann


= D(t).

Finally, by substituting D(t)S into Equation (8), the nilpotent part of D(t), denoted by
D(t)N is obtained; that is,

D(t) = D(t)S + D(t)N

D(t)N = D(t)− D(t)S

= D(t)− D(t)

= 0.

∴ D(t)S = D(t) and D(t)N = 0.

Similarly, any unipotent matrix of EEG signals U(t) can be decomposed into a semisim-
ple matrix and a nilpotent matrix using Jordan-Chevalley decomposition as well.

Theorem 11. Let U(t) be a unipotent matrix of EEG signals at time t. Decomposing U(t) using
Jordan-Chevalley decomposition will produce the summation of its semisimple (U(t)S) and nilpotent
(U(t)N) matrices. Then, U(t) = U(t)S + U(t)N and U(t)S = I, where I is the identity matrix.

Proof. Let U(t) be any unipotent matrix of EEG signals at time t, such that

U(t) =



1 a12 a13 · · · a1n−1 a1n
0 1 a23 · · · a2n−1 a2n
0 0 1 · · · a3n−1 a3n
...

...
...

...
. . .

...
0 0 0 · · · 1 an−1n
0 0 0 · · · 0 1


.

Then, the characteristic polynomial of U(t) can be determined by finding the determi-
nant of (U(t)− λI) = 0.

U(t)− λI =



1− λ1 a12 a13 · · · a1n−1 a1n
0 1− λ2 a23 · · · a2n−1 a2n
0 0 1− λ3 · · · a3n−1 a3n
...

...
...

. . .
...

...
0 0 0 · · · 1− λn−1 an−1n
0 0 0 · · · 0 1− λn


det(U(t)− λI) = (1− λ1)(1− λ2) · · · (1− λn) = 0.

Therefore, λ1 = 1, λ2 = 1, . . . , λn = 1 are the eigenvalues of U(t). Based on
Definition 6, these eigenvalues give us the Jordan normal form of U(t), which can be
written as follows
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J =


1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 1
0 0 0 · · · 0 1

.

Form matrix D such that D = diag(J), that is,

D =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

,

which is in the form of identity matrix, I. Notice that U(t)S = CJC−1, then J is replaced by
D such that

U(t)S = CDC−1

= CIC−1

= CC−1

= I.

This shows that the U(t)S is always in the form of the identity matrix, I. Then, the
nilpotent matrix of unipotent matrix of EEG signals U(t)N , is

U(t)N = U(t)−U(t)S

=



1 a12 a13 · · · a1n−1 a1n
0 1 a23 · · · a2n−1 a2n
0 0 1 · · · a3n−1 a3n
...

...
...

. . .
...

...
0 0 0 · · · 1 an−1n
0 0 0 · · · 0 1


−


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1



=



0 a12 a13 · · · a1n−1 a1n
0 0 a23 · · · a2n−1 a2n
0 0 0 · · · a3n−1 a3n
...

...
...

. . .
...

...
0 0 0 · · · 0 an−1n
0 0 0 · · · 0 0


.

As a sample of implementation of Jordan-Chevalley decomposition on the real data,
Theorem 10 is executed on the diagonal matrix of EEG signals of Patient A at time t = 1
to t = 15 (refer to Table 7), and the description on how to achieve the decomposition are
described by Example 1.

Example 1. The diagonal matrix of EEG signals during epileptic seizure at time t = 2, is

D(2) =


157.9953 0 0 0

0 −79.1872 0 0
0 0 −16.6237 0
0 0 0 9.7267

.
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Then, the characteristic polynomial of D(2) can be determined by finding the determinant of
(D(2)− λI) = 0.

D(2)− λI =


157.9953− λ1 0 0 0

0 −79.1872− λ2 0 0
0 0 −16.6237− λ3 0
0 0 0 9.7267− λ4


det(D(2)− λI) =(157.9953− λ1)(−79.1872− λ2)(−16.6237− λ3)(9.7267− λ4)

=0.

Therefore, λ1 = 157.9953, λ2 = −79.1872, λ3 = −16.6237, and λ4 = 9.7267, are the
eigenvalues of D(2). Subsequently, the Jordan canonical form of D(2) can be written from these
eigenvalues as follows:

J =


157.9953 0 0 0

0 −79.1872 0 0
0 0 −16.6237 0
0 0 0 9.7267

.

Thus, the invertible matrix C, such that D(2) = CJC−1 is as follows:

C =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

,

which is equals to the form of I. Next, take the diagonal entries of J to form matrix D, such that
D = diag(J). In other words,

D =


157.9953 0 0 0

0 −79.1872 0 0
0 0 −16.6237 0
0 0 0 9.7267

,

which is equals to the form of J. Then, the semisimple part of D(2), denoted by D(2)S is obtained.

D(2)S = CDC−1

= CJC−1

= I J I−1

= J

=


157.9953 0 0 0

0 −79.1872 0 0
0 0 −16.6237 0
0 0 0 9.7267


= D(2).

Finally, by substituting D(2) and D(2)S into Equation (1), the nilpotent part of D(2) (denoted
as D(2)N) is obtained.

D(2) = D(2)S + D(2)N

D(2)N = D(2)− D(2)S

= D(2)− D(2)

= 0.
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Table 7. Diagonal matrix of EEG signals of Patient A at time t = 1 to t = 15 written as a summation of their respective
semisimple and nilpotent parts.

Time (t) Diagonal Matrix of EEG Signals Semisimple + Nilpotent

1


68.7781 0 0 0

0 −10.8010 0 0
0 0 12.3599 0
0 0 0 8.9931




68.7781 0 0 0
0 −10.8010 0 0
0 0 12.3599 0
0 0 0 8.9931

+ 0

2


157.9953 0 0 0

0 −79.1872 0 0
0 0 −16.6237 0
0 0 0 9.7267




157.9953 0 0 0
0 −79.1872 0 0
0 0 −16.6237 0
0 0 0 9.7267

+ 0

3


344.9355 0 0 0

0 −110.7869 0 0
0 0 −33.4233 0
0 0 0 −10.7072




344.9355 0 0 0
0 −110.7869 0 0
0 0 −33.4233 0
0 0 0 −10.7072

+ 0

4


231.7667 0 0 0

0 76.0740 0 0
0 0 −6.6500 0
0 0 0 −55.0074




231.7667 0 0 0
0 76.0740 0 0
0 0 −6.6500 0
0 0 0 −55.0074

+ 0

5


189.9893 0 0 0

0 −89.1127 0 0
0 0 −4.6975 0
0 0 0 78.9104




189.9893 0 0 0
0 −89.1127 0 0
0 0 −4.6975 0
0 0 0 78.9104

+ 0

6


144.5070 0 0 0

0 64.1286 0 0
0 0 −57.0125 0
0 0 0 −15.4075




144.5070 0 0 0
0 64.1286 0 0
0 0 −57.0125 0
0 0 0 −15.4075

+ 0

7


117.8229 0 0 0

0 48.2682 0 0
0 0 4.3713 0
0 0 0 −69.2551




117.8229 0 0 0
0 48.2682 0 0
0 0 4.3713 0
0 0 0 −69.2551

+ 0

8


72.1601 0 0 0

0 46.2205 0 0
0 0 −12.3181 0
0 0 0 7.4489




72.1601 0 0 0
0 46.2205 0 0
0 0 −12.3181 0
0 0 0 7.4489

+ 0

9


170.5583 0 0 0

0 −56.4471 0 0
0 0 13.7837 0
0 0 0 34.4731




170.5583 0 0 0
0 −56.4471 0 0
0 0 13.7837 0
0 0 0 34.4731

+ 0

10


86.9395 0 0 0

0 −27.7214 0 0
0 0 38.9823 0
0 0 0 10.1077




86.9395 0 0 0
0 −27.7214 0 0
0 0 38.9823 0
0 0 0 10.1077

+ 0
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Table 7. Cont.

Time (t) Diagonal Matrix of EEG Signals Semisimple + Nilpotent

11


131.6197 0 0 0

0 79.0798 0 0
0 0 31.3179 0
0 0 0 −23.4889




131.6197 0 0 0
0 79.0798 0 0
0 0 31.3179 0
0 0 0 −23.4889

+ 0

12


291.5204 0 0 0

0 −76.3992 0 0
0 0 8.4397 0
0 0 0 70.2041




291.5204 0 0 0
0 −76.3992 0 0
0 0 8.4397 0
0 0 0 70.2041

+ 0

13


567.2732 0 0 0

0 −13.5454 0 0
0 0 135.0278 0
0 0 0 50.9611




567.2732 0 0 0
0 −13.5454 0 0
0 0 135.0278 0
0 0 0 50.9611

+ 0

14


417.5200 0 0 0

0 −48.7430 0 0
0 0 81.2046 0
0 0 0 5.1459




417.5200 0 0 0
0 −48.7430 0 0
0 0 81.2046 0
0 0 0 5.1459

+ 0

15


193.0988 0 0 0

0 −71.5117 0 0
0 0 48.6786 0
0 0 0 11.2976




193.0988 0 0 0
0 −71.5117 0 0
0 0 48.6786 0
0 0 0 11.2976

+ 0

In contrast, Theorem 11 is executed on the unipotent matrix of EEG signals of Patient
A at time t = 1 to t = 15 (refer to Table 8), and the description on how to achieve the
decomposition are described by Example 2.

Example 2. The unipotent matrix of EEG signals during epileptic seizure at time t = 2, is

U(2) =


1 0.5468 −0.8309 8.895
0 1 2.4452 6.6199
0 0 1 3.3119
0 0 0 1

.

Then, the characteristic polynomial of U(2) can be determined by finding the determinant of
(U(2)− λI) = 0.

U(2)− λI =


1− λ1 0.5468 −0.8309 8.895

0 1− λ2 2.4452 6.6199
0 0 1− λ3 3.3119
0 0 0 1− λ4


det(U(2)− λI) =(1− λ1)(1− λ2)(1− λ3)(1− λ4) = 0.

Therefore, λ1 = 1, λ2 = 1, λ3 = 1, and λ4 = 1, are the eigenvalues of U(2). Subsequently, the
Jordan canonical form of U(2) can be written from these eigenvalues as follows:

J =


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

.
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Matrix D can be formed, such that D = diag(J). In other words,

D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

which is in the form of identity matrix, I. Notice that U(2) = CJC−1, then J is replaced by D
such that

U(2)S = CDC−1

= CIC−1

= CC−1.

= I.

Therefore, the semisimple part of U(2) is in the form of identity matrix I. Then, the nilpotent part
of U(2), is

U(2)N = U(2)−U(2)S

=


1 0.5468 −0.8309 8.895
0 1 2.4452 6.6199
0 0 1 3.3119
0 0 0 1

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



=


0 0.5468 −0.8309 8.895
0 0 2.4452 6.6199
0 0 0 3.3119
0 0 0 0

.

Table 8. Unipotent matrix of EEG signals of Patient A at time t = 1 to t = 15 written as a summation of their respective
semisimple and nilpotent parts.

Time (t) Unipotent Matrix of EEG Signals Semisimple + Nilpotent

1


1 −1.7693 2.3933 3.5579
0 1 −0.7405 −1.4740
0 0 1 −1.8018
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 −1.7693 2.3933 3.5579
0 0 −0.7405 −1.4740
0 0 0 −1.8018
0 0 0 0



2


1 0.5468 −0.8309 8.8955
0 1 2.4452 6.6199
0 0 1 3.3119
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 0.5468 −0.8309 8.8955
0 0 2.4452 6.6199
0 0 0 3.3119
0 0 0 0



3


1 1.4185 −0.2744 −15.9462
0 1 −3.8254 −11.4390
0 0 1 1.1833
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 1.4185 −0.2744 −15.9462
0 0 −3.8254 −11.4390
0 0 0 1.1833
0 0 0 0



4


1 −0.4499 15.5040 1.2788
0 1 13.9690 −0.8115
0 0 1 0.4189
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 −0.4499 15.5040 1.2788
0 0 13.9690 −0.8115
0 0 0 0.4189
0 0 0 0



5


1 −1.3695 −22.3137 0.4863
0 1 −3.9190 −0.1132
0 0 1 0.3099
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 −1.3695 −22.3137 0.4863
0 0 −3.9190 −0.1132
0 0 0 0.3099
0 0 0 0


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Table 8. Cont.

Time (t) Unipotent Matrix of EEG Signals Semisimple + Nilpotent

6


1 −0.8564 −1.4359 1.4699
0 1 −0.1128 0.4404
0 0 1 2.0473
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 −0.8564 −1.4359 1.4699
0 0 −0.1128 0.4404
0 0 0 2.0473
0 0 0 0



7


1 −1.2084 20.7007 −1.0977
0 1 4.9237 −0.2032
0 0 1 −0.0381
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 −1.2084 20.7007 −1.0977
0 0 4.9237 −0.2032
0 0 0 −0.0381
0 0 0 0



8


1 0.3065 −0.5738 0.7648
0 1 −0.6329 −2.0170
0 0 1 −2.1552
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 0.3065 −0.5738 0.7648
0 0 −0.6329 −2, 0170
0 0 0 −2.1552
0 0 0 0



9


1 1.1922 −6.2497 0.8064
0 1 −1.7927 1.0293
0 0 1 0.1651
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 1.1922 −6.2497 0.8064
0 0 −1.7927 1.0293
0 0 0 0.1651
0 0 0 0



10


1 0.0757 0.0211 −0.5391
0 1 0.2608 −0.8494
0 0 1 0.8002
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 0.0757 0.0211 −0.5391
0 0 0.2608 −0.8494
0 0 0 0.8002
0 0 0 0



11


1 −0.2034 −0.2917 −0.3253
0 1 −0.4063 −0.7863
0 0 1 0.0965
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 −0.2034 −0.2917 −0.3253
0 0 −0.4063 −0.7863
0 0 0 0.0965
0 0 0 0



12


1 2.6099 10.4038 0.4690
0 1 2.0321 −0.1328
0 0 1 −0.8214
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 2.6099 10.4038 0.4690
0 0 2.0321 −0.1328
0 0 0 −0.8214
0 0 0 0



13


1 −7.6123 −1.5497 −3.0422
0 1 0.2342 −1.1323
0 0 1 1.9818
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 −7.6123 −1.5497 −3.0422
0 0 0.2342 −1.1323
0 0 0 1.9818
0 0 0 0



14


1 0.7170 −1.0360 0.4817
0 1 −0.2545 −7.9147
0 0 1 0.5028
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 0.7170 −1.0360 0.4817
0 0 −0.2545 −7.9147
0 0 0 0.5028
0 0 0 0



15


1 −0.0956 −1.0390 −1.7747
0 1 1.2105 −1.7274
0 0 1 −2.9159
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 −0.0956 −1.0390 −1.7747
0 0 1.2105 −1.7274
0 0 0 −2.9159
0 0 0 0



Following the analogy of elementary EEG signals as prime numbers together with
Conjecture 1, the semisimple part of EEG signals (in terms of diagonal matrices) can
be considered as the smallest prime number, 2. The result is in line with the assertion
claimed in the previous studies [8,14] that the elementary EEG signals mimic the prime
numbers’ properties. Consequently, it is an indicative that the occurrence of epileptic
seizure recorded as EEG signals, to a certain extent, do not occur randomly but follow a
similar pattern found in the distribution of prime numbers among positive integers. The
process of decomposing the EEG signals via Krohn-Rhodes decomposition and Jordan-
Chevalley decomposition techniques together with the results’ interpretation, respectively,
are summarized in Table 9.
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Table 9. Summary of decomposition techniques executed on the EEG signals and their significant results.

Krohn-Rhodes Decomposition Jordan-Chevalley Decomposition

Purpose
To decompose the semigroup of EEG signals in terms of
affine scaling EEG signal groups, aperiodic semigroups,

and the group of diagonal EEG signals.

To express the elementary EEG signals (unipotent and
diagonal matrix of EEG signals) as a sum of their

semisimple and nilpotent parts.

Main Results Theorems 1, 6, and 8. Theorems 10 and 11.

Interpretation

• The EEG signals can be described in terms of simple
algebraic structures.

• The building blocks of EEG signals can be perceived
as prime numbers.

• The elementary EEG signals can be written as a
sum of their simpler parts, which is similar to
prime numbers where some primes can be writ-
ten as a sum of two primes.

• The results provide a substantial manifestation
that the EEG signals contain some patterns similar
to prime numbers.

5. Conclusions

Theorems 10 and 11 highlight that any elementary EEG signals recorded during
an epileptic seizure can be decomposed into semisimple and nilpotent parts. A similar
property can be observed in prime numbers, stating that some primes can be expressed
as a sum of two primes. This property provides suggestive evidence that the EEG signals
recorded during a seizure do contain some patterns, as much peculiar pattern found in the
seemingly random distribution of prime numbers. That this property exhibits similarities
to prime numbers aligns with the predictions by the Krohn-Rhodes Theorem. The results
support the work of perceiving the elementary EEG signals as primes and open up the
opportunities to extend its properties with the rich features of prime numbers. Let us
conclude the paper by listing some of the fundamental features in prime numbers that are
possible to be explored and extended to the EEG signals as follows:

1. There are infinitely many primes.
2. The integer 2 is the only even prime.
3. The integer 1 plays a special role, being neither prime nor composite.
4. Well-ordering principle.
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