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Abstract: A subset A of a semigroup S is called a chain (antichain) if ab € {a,b} (ab ¢ {a,b}) for
any (distinct) elements a,b € A. A semigroup S is called periodic if for every element x € S there
exists n € N such that x" is an idempotent. A semigroup S is called (anti)chain-finite if S contains
no infinite (anti)chains. We prove that each antichain-finite semigroup S is periodic and for every
idempotent e of S the set {/e = {x € S:3n € N (x" = ¢)} is finite. This property of antichain-finite
semigroups is used to prove that a semigroup is finite if and only if it is chain-finite and antichain-
finite. Furthermore, we present an example of an antichain-finite semilattice that is not a union of
finitely many chains.
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1. Introduction

It is well-known that a partially ordered set X is finite iff all chains and antichains
in X are finite. The notions of chain and antichain are well-known in the theory of order
(see, e.g., ([1] (O-1.6)) or [2]). In this paper we present a similar characterization of finite
semigroups in terms of finite chains and antichains.

Let us recall that a magma is a set S endowed with a binary operation S x S — S,
(x,y) — xy. If the binary operation is associative, then the magma S is called a semigroup. A
semilattice is a commutative semigroup whose elements are idempotents. Each semilattice
S carries a natural partial order < defined by x < y iff xy = yx = x. Observe that two
elements x, y of a semilattice are comparable with respect to the partial order < if and only
if xy € {x,y}. This observation motivates the following algebraic definition of chains and
antichains in any magma.

A subset A of a magma S is defined to be

* achainif xy € {x,y} for any elements x,y € A;
e anantichain if xy ¢ {x,y} for any distinct elements x,y € A.

The definition implies that each chain consists of idempotents.

A magma S is defined to be (anti)chain-finite if it contains no infinite (anti)chains.

Let us note that chain-finite semilattices play an important role in the theory of
complete topological semigroups. In [3], Stepp showed that for each homomorphism
f : X = Y from a chain-finite semilattice X to a Hausdorff topological semigroup Y, the
image f[X] is closed in Y. Banakh and Bardyla [4] extended the result of Stepp to the
following characterization:

Theorem 1. For a semilattice X the following conditions are equivalent:
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e X s chain-finite;

* X s closed in each Hausdorff topological semigroup containing X as a discrete subsemigroup;

e For each homomorphism f : X — Y into a Hausdorff topological semigroup Y, the image
f[X] is closed;

For other completeness properties of chain-finite semilattices see [4-6]. Antichain-
finite posets and semilattices were investigated by Yokoyama [7].

The principal result of this note is the following theorem characterizing finite
semigroups.

Theorem 2. A semigroup S is finite if and only if it is chain-finite and antichain-finite.

A crucial step in the proof of this theorem is the following proposition describing the
(periodic) structure of antichain-finite semigroups.
A semigroup S is called periodic if for every x € S there exists n € N such that x" is an
idempotent of S. In this case
s— U ¥
ecE(S)

where E(S) = {x € S: xx = x} is the set of idempotents of S and
Ye={x€S:IneN (x"=e)}
fore € E(S).

Proposition 1. Each antichain-finite semigroup S is periodic and for every e € E(S) the set /e
is finite.

Theorem 2 and Proposition 1 will be proved in the next section.
Remark 1. Theorem 2 does not generalize to magmas. To see this, consider the set of positive
integers N endowed with the following binary operation: nm = nifn < mand nm = 1ifn > m.

This magma is infinite but each nonempty chain in the magma is of the form {1,n} for some n € N,
and each nonempty antichain in this magma is a singleton.

Next we present a simple example of an antichain-finite semilattice which is not a
union of finitely many chains.

Example 1. Consider the set
S={(2n—-1,0):n e Nyu{(2n,m) :n,m e N, m < 2n}
endowed with the semilattice binary operation

) ifx=yandi=j;
—-1,0) ifx=yandi#j;
x,1) ifx<y;
YoJ) ify <x.

X
X

(
(i) - () = 2
(

It is straightforward to check that the semilattice S has the following properties:

S is antichain-finite;

S has arbitrarily long finite antichains;

S is not a union of finitely many chains;

The subsemilattice L = {(2n —1,0) : n € N} of S is a chain;

L=
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5. S admits a homomorphism r : S — L such that r—1({x,0)) = {{y,i) € S:y € {x,x + 1}}
is finite for every element (x,0) € L.

Example 1 motivates the following question.

Question 1. Let S be an antichain-finite semilattice. Is there a finite-to-one homomorphism
r: S — Y toa semilattice Y which is a finite union of chains?

A function f : X — Y is called finite-to-one if for every y € Y the preimage f~'(y)
is finite.

2. Proofs of the Main Results

In this section, we prove some lemmas implying Theorem 2 and Proposition 1. More
precisely, Proposition 1 follows from Lemmas 1 and 4; Theorem 2 follows from Lemma 5.
The following lemma exploit ideas of Theorem 1.9 from [8].

Lemma 1. Every antichain-finite semigroup S is periodic.

Proof. Given any element x € S we should find a natural number n € N such that x” is an
idempotent. First we show that x" = x™ for some n # m. Assuming that x" # x™ for any
distinct numbers 1, m, we conclude that the set A = {x" : n € N} is infinite and for any
n,m € N we have x"x™ = x"t" ¢ {x",x"}, which means that A is an infinite antichain
in S. However, such an antichain cannot exist as S is antichain-finite. This contradiction
shows that x” = x™ for some numbers n < m and then for the number k = m — n we have
X"tk = x™ = x". By induction we can prove that x" TPk = x" for every p € N. Choose any
numbers 7, p € N such that r + n = pk and observe that

r+n

xR — xr+nxpk n+pk _ = x ,

=x"x
which means that x"*" is an idempotent and hence S is periodic. [

Anelement1 € Sis called an identity of S if x1 = x = 1x for all x € S. For a semigroup
Slet S' = SU {1} where 1 is an element such that x1 = x = 1x for every x € S'. If S
contains an identity, then we will assume that 1 is the identity of S and hence S! = S.

Foraset A C S and element x € S we put

xA={xa:a€ A} and Ax={ax:aec A}.
For any element x of a semigroup S, the set
Hey={y€S:yS' =x8' A Sly =5y}

is called the H-class of x. By Lemma 1.7.9 [9], for every idempotent ¢ its #-class H, coincides
with the maximal subgroup of S that contains the idempotent e.

Lemma 2. If a semigroup S is antichain-finite, then for every idempotent e of S its H-class H,
is finite.

Proof. Observe that the set H, \ {¢} is an antichain (this follows from the fact that the left
and right shifts in the group H, are injective). Since S is antichain-finite, the antichain

H, \ {e} is finite and so is the set H,. [

Lemma 3. If a semigroup S is antichain-finite, then for every idempotent e in S we have

(He' O\O/E)U<°\O/EH6)§H
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Proof. Given any elements x € {/eandy € H,, we have to show that xy € H, and yx € H,.
Since x € Ve, there exists a number n € N such that x" = e. Then ¥ H181 = exS1 C eS!
and eS! = x?"S! C x"*1S!, and hence eS' = x"*!S. By analogy we can prove that
Sle = S1x"*1 Therefore, x"*! € H,.

Then xy = x(ey) = (xe)y = (xx")y = x""y € H, and yx = (ye)x = ylex) =
yx""le H,. O

For each k € N by [N]¥ we denote the set of all k-element subsets of N. The proofs
of the next two lemmas essentially use the classical Ramsey Theorem, so let us recall its
formulation, see ([10] (p. 16)) for more details.

Theorem 3 (Ramsey). For any n,k € Nand map x : [NJ* — n = {0,...,n — 1} there exists an
infinite subset I C N such that x[[I]¥] = {c} for some number c € n.

Lemma 4. If a semigroup S is antichain-finite, then for every idempotent e € E(S) the set /e
is finite.

Proof. By Lemma 2, the H-class H, is finite. Assuming that /¢ is infinite, we can choose a
sequence (X, )new Of pairwise distinct points of the infinite set {/e \ He.
LetP = {(n,m) €c wxw:n<m}and x : P — 5 = {0,1,2,3,4} be the function
defined by
if XX = X5
if X%, = X5

0
1
x(n,m) =<2 if x,xp = Xp;
3 if xpxy = X,
4

otherwise.

By the Ramsey Theorem 3, there exists an infinite subset ) C w such that x[P N (Q
Q)] = {c} forsome c € {0,1,2,3,4}.

If c = 0, then x;,x;;, = x; for any numbers n < m in (). Fix any two numbers n < m
in ). By induction we can prove that xpxh = x, for every p € N. Since x,, € Y/e, there
exists p € N such that x§1 =e. Then x,, = xnxfn = xpe € H, by Lemma 3. However, this
contradicts the choice of x;,.

By analogy we can derive a contradiction in cases ¢ € {1,2,3}.

If ¢ = 4, then the set A = {x,, },cq is an infinite antichain in S, which is not possible
as the semigroup S is antichain-finite.

Therefore, in all five cases we obtain a contradiction, which implies that the set /e
is finite. O

Our final lemma implies the non-trivial “if” part of Theorem 2.
Lemma 5. A semigroup S is finite if it is chain-finite and antichain-finite.

Proof. Assume that S is both chain-finite and antichain-finite. By Lemma 1, the semigroup
S is periodic and hence S = U,cf(s) ¥/e. By Lemma 4, for every idempotent e € E(S) the
set /e is finite. Now it suffices to prove that the set E(S) is finite.

To derive a contradiction, assume that E(S) is infinite and choose a sequence of
pairwise distinct idempotents (e;)new in S. Let P = {(n,m) € w X w : n < m} and
x: P —{0,1,2,3,4,5} be the function defined by the formula
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if epe € {en, em} and eme, € {en, em};
if epey, = ey and eyey, € {en, em};
if epey, = ey and eyey & {en, em};
ifepen & {en, em} and eye, = ey;
if eper & {en, em} and eme, = ey;

ifepen & {en, em} and eye, & {ey, em}-

Gl = W N — O

The Ramsey Theorem 3 yields an infinite subset Q) C w such that x[P N (Q x Q)] =
{c} forsome ¢ € {0,1,2,3,4,5}.

Depending on the value of c, we shall consider six cases.

If ¢ = 0 (resp. ¢ = 5), then {ey, }new is an infinite (anti)chain in S, which is forbidden
by our assumption.

Next, assume that ¢ = 1. Then eqe,, = e, and ey, € {en, e } for any numbers n < m
in Q. For any number k € ), consider the set Z; = {eqe; : k < n € Q}. Observe that for
any euey, emex € Zx we have

(ener) (emex) = en(exem)ex = enerer = eney,

which means that Z is a chain. Since S is chain-finite, the chain Zj is finite.

By induction we can construct a sequence of points (zy)xew € [Tkew Zk and a decreas-
ing sequence of infinite sets ()i such that Qg C ) and for every k € w and n € ()
we have e,e; = zx and n > k. Choose an increasing sequence of numbers (k;);c., such that
ko € Qpand k; € O, , for every i € N. We claim that the set Z = {z, : i € w} is a chain.
Take any numbers ,j € w and choose any number n € O, N O

Ifi <j, then

2k 2k = (enekl_)(enekj) = en(ekl.en)ekj = enexCk; = enek; = Z,.

Ifi > j, then k; € Qki—l - ij. and hence

22k = (ener,) (enek;) = en(exen)ex; = en(exex;) = enzk; = en(eney;) = enek, = ;-

In both cases we obtain that ZkZk; € {2,/ zk].}, which means that the set Z = {z;, : i €

w} is a chain. Since S is chain-finite, the set Z is finite. Consequently, there exists z € Z
such that the set A = {i € w : z, = z} is infinite. Choose any numbers i < j in the set
A and then choose any number 1 € Qk]. C (). Observe thatk; € Qk]._ . € (), and hence
Ck;Ck, = Zk; = Z- Then

ek/ = ek]ek] = (ek]-en)ek]- = ekj(enekj) = ek]zk/ = ek]'Z = ekaki = ek](ek]ekl) = ek]'eki ¢ {ek]rekj}

asc=1.
By analogy we can prove that the assumption ¢ € {2,3,4} also leads to a contradic-
tion. O
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