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Abstract: A subset A of a semigroup S is called a chain (antichain) if ab ∈ {a, b} (ab /∈ {a, b}) for
any (distinct) elements a, b ∈ A. A semigroup S is called periodic if for every element x ∈ S there
exists n ∈ N such that xn is an idempotent. A semigroup S is called (anti)chain-finite if S contains
no infinite (anti)chains. We prove that each antichain-finite semigroup S is periodic and for every
idempotent e of S the set ∞

√
e = {x ∈ S : ∃n ∈ N (xn = e)} is finite. This property of antichain-finite

semigroups is used to prove that a semigroup is finite if and only if it is chain-finite and antichain-
finite. Furthermore, we present an example of an antichain-finite semilattice that is not a union of
finitely many chains.

Keywords: semigroup; semilattice; chain; antichain
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1. Introduction

It is well-known that a partially ordered set X is finite iff all chains and antichains
in X are finite. The notions of chain and antichain are well-known in the theory of order
(see, e.g., ([1] (O-1.6)) or [2]). In this paper we present a similar characterization of finite
semigroups in terms of finite chains and antichains.

Let us recall that a magma is a set S endowed with a binary operation S × S → S,
〈x, y〉 7→ xy. If the binary operation is associative, then the magma S is called a semigroup. A
semilattice is a commutative semigroup whose elements are idempotents. Each semilattice
S carries a natural partial order ≤ defined by x ≤ y iff xy = yx = x. Observe that two
elements x, y of a semilattice are comparable with respect to the partial order ≤ if and only
if xy ∈ {x, y}. This observation motivates the following algebraic definition of chains and
antichains in any magma.

A subset A of a magma S is defined to be

• a chain if xy ∈ {x, y} for any elements x, y ∈ A;
• an antichain if xy /∈ {x, y} for any distinct elements x, y ∈ A.

The definition implies that each chain consists of idempotents.
A magma S is defined to be (anti)chain-finite if it contains no infinite (anti)chains.
Let us note that chain-finite semilattices play an important role in the theory of

complete topological semigroups. In [3], Stepp showed that for each homomorphism
f : X → Y from a chain-finite semilattice X to a Hausdorff topological semigroup Y, the
image f [X] is closed in Y. Banakh and Bardyla [4] extended the result of Stepp to the
following characterization:

Theorem 1. For a semilattice X the following conditions are equivalent:
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• X is chain-finite;
• X is closed in each Hausdorff topological semigroup containing X as a discrete subsemigroup;
• For each homomorphism f : X → Y into a Hausdorff topological semigroup Y, the image

f [X] is closed;

For other completeness properties of chain-finite semilattices see [4–6]. Antichain-
finite posets and semilattices were investigated by Yokoyama [7].

The principal result of this note is the following theorem characterizing finite
semigroups.

Theorem 2. A semigroup S is finite if and only if it is chain-finite and antichain-finite.

A crucial step in the proof of this theorem is the following proposition describing the
(periodic) structure of antichain-finite semigroups.

A semigroup S is called periodic if for every x ∈ S there exists n ∈ N such that xn is an
idempotent of S. In this case

S =
⋃

e∈E(S)

∞
√

e,

where E(S) = {x ∈ S : xx = x} is the set of idempotents of S and

∞
√

e = {x ∈ S : ∃n ∈ N (xn = e)}

for e ∈ E(S).

Proposition 1. Each antichain-finite semigroup S is periodic and for every e ∈ E(S) the set ∞
√

e
is finite.

Theorem 2 and Proposition 1 will be proved in the next section.

Remark 1. Theorem 2 does not generalize to magmas. To see this, consider the set of positive
integers N endowed with the following binary operation: nm = n if n < m and nm = 1 if n ≥ m.
This magma is infinite but each nonempty chain in the magma is of the form {1, n} for some n ∈ N,
and each nonempty antichain in this magma is a singleton.

Next we present a simple example of an antichain-finite semilattice which is not a
union of finitely many chains.

Example 1. Consider the set

S = {〈2n− 1, 0〉 : n ∈ N} ∪ {〈2n, m〉 : n, m ∈ N, m ≤ 2n}

endowed with the semilattice binary operation

〈x, i〉 · 〈y, j〉 =


〈x, i〉 if x = y and i = j;
〈x− 1, 0〉 if x = y and i 6= j;
〈x, i〉 if x < y;
〈y, j〉 if y < x.

It is straightforward to check that the semilattice S has the following properties:

1. S is antichain-finite;
2. S has arbitrarily long finite antichains;
3. S is not a union of finitely many chains;
4. The subsemilattice L = {〈2n− 1, 0〉 : n ∈ N} of S is a chain;
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5. S admits a homomorphism r : S→ L such that r−1(〈x, 0〉) = {〈y, i〉 ∈ S : y ∈ {x, x + 1}}
is finite for every element 〈x, 0〉 ∈ L.

Example 1 motivates the following question.

Question 1. Let S be an antichain-finite semilattice. Is there a finite-to-one homomorphism
r : S→ Y to a semilattice Y which is a finite union of chains?

A function f : X → Y is called finite-to-one if for every y ∈ Y the preimage f−1(y)
is finite.

2. Proofs of the Main Results

In this section, we prove some lemmas implying Theorem 2 and Proposition 1. More
precisely, Proposition 1 follows from Lemmas 1 and 4; Theorem 2 follows from Lemma 5.

The following lemma exploit ideas of Theorem 1.9 from [8].

Lemma 1. Every antichain-finite semigroup S is periodic.

Proof. Given any element x ∈ S we should find a natural number n ∈ N such that xn is an
idempotent. First we show that xn = xm for some n 6= m. Assuming that xn 6= xm for any
distinct numbers n, m, we conclude that the set A = {xn : n ∈ N} is infinite and for any
n, m ∈ N we have xnxm = xn+m /∈ {xn, xm}, which means that A is an infinite antichain
in S. However, such an antichain cannot exist as S is antichain-finite. This contradiction
shows that xn = xm for some numbers n < m and then for the number k = m− n we have
xn+k = xm = xn. By induction we can prove that xn+pk = xn for every p ∈ N. Choose any
numbers r, p ∈ N such that r + n = pk and observe that

xr+nxr+n = xr+nxpk = xrxn+pk = xrxn = xr+n,

which means that xr+n is an idempotent and hence S is periodic.

An element 1 ∈ S is called an identity of S if x1 = x = 1x for all x ∈ S. For a semigroup
S let S1 = S ∪ {1} where 1 is an element such that x1 = x = 1x for every x ∈ S1. If S
contains an identity, then we will assume that 1 is the identity of S and hence S1 = S.

For a set A ⊆ S and element x ∈ S we put

xA = {xa : a ∈ A} and Ax = {ax : a ∈ A}.

For any element x of a semigroup S, the set

Hx = {y ∈ S : yS1 = xS1 ∧ S1y = S1x}

is called theH-class of x. By Lemma I.7.9 [9], for every idempotent e itsH-class He coincides
with the maximal subgroup of S that contains the idempotent e.

Lemma 2. If a semigroup S is antichain-finite, then for every idempotent e of S its H-class He
is finite.

Proof. Observe that the set He \ {e} is an antichain (this follows from the fact that the left
and right shifts in the group He are injective). Since S is antichain-finite, the antichain
He \ {e} is finite and so is the set He.

Lemma 3. If a semigroup S is antichain-finite, then for every idempotent e in S we have

(He · ∞
√

e) ∪ ( ∞
√

e · He) ⊆ H.
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Proof. Given any elements x ∈ ∞
√

e and y ∈ He, we have to show that xy ∈ He and yx ∈ He.
Since x ∈ ∞

√
e, there exists a number n ∈ N such that xn = e. Then xn+1S1 = exS1 ⊆ eS1

and eS1 = x2nS1 ⊆ xn+1S1, and hence eS1 = xn+1S. By analogy we can prove that
S1e = S1xn+1. Therefore, xn+1 ∈ He.

Then xy = x(ey) = (xe)y = (xxn)y = xn+1y ∈ He and yx = (ye)x = y(ex) =
yxn+1 ∈ He.

For each k ∈ N by [N]k we denote the set of all k-element subsets of N. The proofs
of the next two lemmas essentially use the classical Ramsey Theorem, so let us recall its
formulation, see ([10] (p. 16)) for more details.

Theorem 3 (Ramsey). For any n, k ∈ N and map χ : [N]k → n = {0, . . . , n− 1} there exists an
infinite subset I ⊆ N such that χ

[
[I]k
]
= {c} for some number c ∈ n.

Lemma 4. If a semigroup S is antichain-finite, then for every idempotent e ∈ E(S) the set ∞
√

e
is finite.

Proof. By Lemma 2, theH-class He is finite. Assuming that ∞
√

e is infinite, we can choose a
sequence (xn)n∈ω of pairwise distinct points of the infinite set ∞

√
e \ He.

Let P = {〈n, m〉 ∈ ω × ω : n < m} and χ : P → 5 = {0, 1, 2, 3, 4} be the function
defined by

χ(n, m) =



0 if xnxm = xn;
1 if xmxn = xn;
2 if xnxm = xm;
3 if xmxn = xm;
4 otherwise.

By the Ramsey Theorem 3, there exists an infinite subset Ω ⊆ ω such that χ[P ∩ (Ω×
Ω)] = {c} for some c ∈ {0, 1, 2, 3, 4}.

If c = 0, then xnxm = xn for any numbers n < m in Ω. Fix any two numbers n < m
in Ω. By induction we can prove that xnxp

m = xn for every p ∈ N. Since xm ∈ ∞
√

e, there
exists p ∈ N such that xp

m = e. Then xn = xnxp
m = xne ∈ He by Lemma 3. However, this

contradicts the choice of xn.
By analogy we can derive a contradiction in cases c ∈ {1, 2, 3}.
If c = 4, then the set A = {xn}n∈Ω is an infinite antichain in S, which is not possible

as the semigroup S is antichain-finite.
Therefore, in all five cases we obtain a contradiction, which implies that the set ∞

√
e

is finite.

Our final lemma implies the non-trivial “if” part of Theorem 2.

Lemma 5. A semigroup S is finite if it is chain-finite and antichain-finite.

Proof. Assume that S is both chain-finite and antichain-finite. By Lemma 1, the semigroup
S is periodic and hence S =

⋃
e∈E(S)

∞
√

e. By Lemma 4, for every idempotent e ∈ E(S) the
set ∞
√

e is finite. Now it suffices to prove that the set E(S) is finite.
To derive a contradiction, assume that E(S) is infinite and choose a sequence of

pairwise distinct idempotents (en)n∈ω in S. Let P = {〈n, m〉 ∈ ω × ω : n < m} and
χ : P→ {0, 1, 2, 3, 4, 5} be the function defined by the formula
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χ(n, m) =



0 if enem ∈ {en, em} and emen ∈ {en, em};
1 if enem = en and emen /∈ {en, em};
2 if enem = em and emen /∈ {en, em};
3 if enem /∈ {en, em} and emen = en;
4 if enem /∈ {en, em} and emen = em;
5 if enem /∈ {en, em} and emen /∈ {en, em}.

The Ramsey Theorem 3 yields an infinite subset Ω ⊆ ω such that χ[P ∩ (Ω×Ω)] =
{c} for some c ∈ {0, 1, 2, 3, 4, 5}.

Depending on the value of c, we shall consider six cases.
If c = 0 (resp. c = 5), then {en}n∈ω is an infinite (anti)chain in S, which is forbidden

by our assumption.
Next, assume that c = 1. Then enem = en and emen /∈ {en, em} for any numbers n < m

in Ω. For any number k ∈ Ω, consider the set Zk = {enek : k < n ∈ Ω}. Observe that for
any enek, emek ∈ Zk we have

(enek)(emek) = en(ekem)ek = enekek = enek,

which means that Zk is a chain. Since S is chain-finite, the chain Zk is finite.
By induction we can construct a sequence of points (zk)k∈ω ∈ ∏k∈ω Zk and a decreas-

ing sequence of infinite sets (Ωk)k∈ω such that Ω0 ⊆ Ω and for every k ∈ ω and n ∈ Ωk
we have enek = zk and n > k. Choose an increasing sequence of numbers (ki)i∈ω such that
k0 ∈ Ω0 and ki ∈ Ωki−1

for every i ∈ N. We claim that the set Z = {zki
: i ∈ ω} is a chain.

Take any numbers i, j ∈ ω and choose any number n ∈ Ωki
∩Ωkj

.
If i ≤ j, then

zki
zkj

= (eneki
)(enekj

) = en(eki
en)ekj

= eneki
ekj

= eneki
= zki

.

If i > j, then ki ∈ Ωki−1
⊆ Ωkj

and hence

zki
zkj

= (eneki
)(enekj

) = en(eki
en)ekj

= en(eki
ekj

) = enzkj
= en(enekj

) = enekj
= zkj

.

In both cases we obtain that zki
zkj
∈ {zki

, zkj
}, which means that the set Z = {zki

: i ∈
ω} is a chain. Since S is chain-finite, the set Z is finite. Consequently, there exists z ∈ Z
such that the set Λ = {i ∈ ω : zki

= z} is infinite. Choose any numbers i < j in the set
Λ and then choose any number n ∈ Ωkj

⊆ Ωki
. Observe that k j ∈ Ωkj−1

⊆ Ωki
and hence

ekj
eki

= zki
= z. Then

ekj
= ekj

ekj
= (ekj

en)ekj
= ekj

(enekj
) = ekj

zkj
= ekj

z = ekj
zki

= ekj
(ekj

eki
) = ekj

eki
/∈ {ekj

, ekj
}

as c = 1.
By analogy we can prove that the assumption c ∈ {2, 3, 4} also leads to a contradic-

tion.
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